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A backward semi-Lagrangian method based on the error correction method is designed to 
solve incompressible Navier–Stokes equations. The time derivative of the Stokes equation is 
discretized with the second order backward differentiation formula. For the induced steady 
Stokes equation, a projection method is used to split it into velocity and pressure. Fourth-
order finite differences for partial derivatives are used to the boundary value problems 
for the velocity and the pressure. Also, finite linear systems for Poisson equations and 
Helmholtz equations are solved with a matrix-diagonalization technique. For characteristic 
curves satisfying highly nonlinear self-consistent initial value problems, the departure 
points are solved with an error correction strategy having a temporal convergence of order 
two. The constructed algorithm turns out to be completely iteration free. In particular, the 
suggested algorithm possesses a good behavior of the total energy conservation compared 
to existing methods. To assess the effectiveness of the method, two-dimensional lid-driven 
cavity problems with large different Reynolds numbers are solved. The doubly periodic 
shear layer flows are also used to assess the efficiency of the algorithm.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The model problems we consider are the incompressible Navier–Stokes equations on a bounded domain Ω ⊂ R
2 which 

are given by⎧⎨⎩
∂tu + (u · ∇)u + ∇p = ν�u,

∇ · u = 0,

u|Γ = g := (g1, g2)
T ,

(1)

where u = (u, v)T , p, ν and Γ denote the velocity field, pressure, kinematic viscosity and the boundary of Ω , respectively. 
Here, the boundary conditions for velocity fields are considered slip or periodic cases.

✩ This work was supported by basic science research program through the National Research Foundation of Korea (NRF) funded by the Ministry of 
Education, Science and Technology (grant number 2011-0029013). The first author (Piao) was supported by the 2014 Hannam University Research Fund. 
Also, the corresponding author (Kim) was partially supported by basic science research program through the National Research Foundation of Korea (NRF) 
funded by the Ministry of Education, Science and Technology (grant number 2011-0009825).

* Corresponding author.
E-mail addresses: piaoxf76@hanmail.net (X. Piao), syboo@knu.ac.kr (S. Bu), jiya525@naver.com (S. Bak), kimps@knu.ac.kr (P. Kim).
http://dx.doi.org/10.1016/j.jcp.2014.11.040
0021-9991/© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jcp.2014.11.040
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:piaoxf76@hanmail.net
mailto:syboo@knu.ac.kr
mailto:jiya525@naver.com
mailto:kimps@knu.ac.kr
http://dx.doi.org/10.1016/j.jcp.2014.11.040
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2014.11.040&domain=pdf


190 X. Piao et al. / Journal of Computational Physics 283 (2015) 189–204
Characteristic-based methods are popular among numerical techniques for solving time-dependent advection-dominated 
partial differential equations (see [10]). One such method, the backward semi-Lagrangian (BSL) method was designed by 
Robert [28] to solve meteorological equations in the beginning of the eighties. BSL methods have various significant ad-
vantages. (i) They allow a large time step size without damaging the accuracy of the solution. (ii) Unlike pure Lagrangian 
methods, they do not suffer from mesh-deformation, so that no remeshing is needed. If free boundaries are present, a new 
mesh should be used at each time step. (iii) They yield algebraic symmetric systems of equations to be solved. Because of 
these advantages, BSL methods have been extensively used in the numerical simulation of models for fluid dynamics (for 
examples, see [2–4,9,25,29,34,35] and the references therein).

Most existing BSL methods focus on the development of the interpolation scheme of the solution and spatial discretiza-
tion schemes. Despite the importance of accuracy in numerical schemes for finding departure points of fluid particles 
arriving at an Eulerian grid point, it has been received little attention. One reason for this is that the characteristic curves of 
the particles are described by highly nonlinear ordinary differential equations (ODE) which must be coupled with the solu-
tion of the original problems. This is a so-called self-consistency problem and the reason why a high-order time integration 
scheme is practically hard to implement. It is a known drawback of the BSL methods.

Methods for solving the characteristic equation have a particularly sensitive effect on the accuracy of BSL methods. 
Traditionally, two main strategies have been proposed and implemented to solve highly nonlinear initial value problems 
(IVPs) and to find the departure points of the fluid particles. One is an implicit approach requiring iteration [1,32,34]. The 
other is a substepping method, which is an explicit type [34]. These methods have both second-order convergence accuracy, 
but it is well known that for a stiff problem, the implicit method achieves a slightly more accurate result compared to 
the explicit method. Furthermore, when the Reynolds number is large, the implicit method gets a more accurate solution 
than the explicit method. In addition, the explicit method may work ineffectively in some special cases. The conventional 
second-order backward integration schemes require an iteration process such as fixed point or Newton iteration when 
the velocity changes with time (see [23]). At each time and for every spatial point, this iteration process requires the 
interpolation of solutions which need considerable computational costs. Sometimes, it is prone to accumulate errors during 
a long-time simulation.

The primary aim of this paper is to develop a BSL method that retains the advantages of conventional second order 
BSL methods but that does not require the ineffective iteration steps for solving the self-consistent nonlinear problem of 
the characteristic equations. To accomplish these, we discretize the time derivative of the Stokes equations with the second 
order backward differentiation formula (BDF2) and apply a projection method in order to split the steady state Stokes 
equation into velocity and pressure. Secondly, fourth-order finite differences for partial derivatives are used to discretize 
the Poisson equation for the pressure and the Helmholtz equation for the velocity. Also, the finite discrete linear systems 
for both the Poisson equation and the Helmholtz equation are solved with a matrix-diagonalization technique. Finally, we 
apply the error correction techniques, which originated in our recent articles (see [20–22,27]), to solve the highly nonlinear 
initial value problem of finding the departure points of fluid particles. The error correction method (ECM) is based on the 
Euler’s polygon on each time integration step. To maintain the advantages of the ECM, we suggest a modified Euler’s polygon 
and apply the A-stable midpoint rule for the time integration of the initial value problems. As an interpolation scheme for 
the solution, the Hermite cubic interpolation technique discussed by Kim et al. [19] is used. The resulting algorithm turns 
out to be completely iteration free. In particular, it exhibits a good behavior of the total energy conservation compared to 
existing methods. To assess the effectiveness of the method, two-dimensional lid-driven cavity problems with large different 
Reynolds numbers are solved. The doubly periodic shear layer flows are also used to assess the efficiency of the proposed 
method. Throughout these numerical tests, it is shown that the proposed method is quite efficient compared to existing 
methods.

This paper is organized as follows. In Section 2, we include a brief review of the backward semi-Lagrangian method 
together with the projection method to deal with steady state Stokes equations. Also, we review the fourth-order finite 
difference schemes for approximating partial derivatives and the Hermite cubic interpolation theory required for the spatial 
discretization. Section 3 describes the error correction scheme for solving the self-consistent nonlinear initial value problem 
for the characteristic curves. In Section 4, we review the matrix-diagonalization technique for solving the finite systems 
obtained from the discretization based on the finite difference method of the Poisson equation and the Helmholtz equation. 
Several test problems are performed in Section 5 to exhibit the accuracy and superiority of the proposed method. Finally, in 
Section 6, a summary for the method, and some discussion of further work are given.

2. Preliminary

The aim of this section is to review a backward semi-Lagrangian scheme for solving the model problem (1) based on 
the characteristic curve and also to introduce a projection method for a steady Stokes’ equation [14,16,24,34]. The splitting 
scheme is referred to as the rotational form of the velocity-correction scheme in [16] and is also used with semi-Lagrangian 
schemes in [14,34]. Let π (s, x; t) := (π1(t), π2(t))T be the characteristic curves satisfying the initial value problem given by⎧⎨⎩

dπ(s,x; t)

dt
= u

(
t,π(s,x; t)

)
, t < s, (2)
π(s,x; s) = x,
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where u is the solution of the model problem (1) and x = (x1, x2)
T denotes the arbitrary spatial variable. Then, by combining 

(2) with (1), one may check that the total derivative of u(t, π (s, x; t)) along the characteristic curve π (s, x; t) satisfies the 
following Stokes equation:

d

dt
u
(
t,π(s,x; t)

)+ ∇p
(
t,π(s,x; t)

)= ν�u
(
t,π(s,x; t)

)
. (3)

For further discussion, we introduce a uniform discretization of the temporal variable as follows:

tm = mh, 0 ≤ m ≤ M, (4)

where M is the number of time steps and h is a time step size. Also, we introduce notations uk(x) := u(tk, x) and 
pk(x) := p(tk, x). After evaluating (3) at time t = tm+1 by setting s = tm+1 and then applying the second order backward 
differentiation formula to approximate the total time derivative, one gets the following steady state Stokes equation with an 
asymptotic term O(h2).

3

2h
um+1(x) − ν�um+1(x) + ∇pm+1(x) = fm+1(x) +O

(
h2), (5)

where

fm+1(x) = 4um(π(tm+1,x; tm)) − um−1(π(tm+1,x; tm−1))

2h
. (6)

As a strategy for treating the Stokes equation (5), we will split it into pressure and velocity using a projection scheme as fol-
lows. By taking the divergence of both sides of the Stokes equation (5) and using the divergence free condition ∇ · u(t,x) = 0
in (1), we get a Poisson equation for the pressure given by

�pm+1(x) = ∇ · fm+1(x) +O
(
h2). (7)

To get a suitable boundary condition for the pressure pm+1(x), we first multiply an outer normal vector n into both sides of 
Eq. (5) and then take a limit of the spatial variable x to the boundary. Then, by using the identity �u = ∇(∇ ·u) −∇ ×∇ ×u
and the boundary condition of (1), we find

∂

∂n
pm+1(x)

∣∣∣∣
Γ

= n ·
(

fm+1(x) − 3

2h
um+1(x) − ν∇ × ∇ × um+1(x)

)∣∣∣∣
Γ

+O
(
h2)

= n ·
(

fm+1(x) − 3

2h
gm+1(x) − ν∇ × ∇ × um+1(x)

)∣∣∣∣
Γ

+O
(
h2). (8)

Notice that the last term in the parentheses of the right hand side of (8) is unknown and hence a suitable approximation is 
required. Substituting the expansion um+1(x) = 2um(x) − um−1(x) + O(h2) into (8), one gets a known Neumann boundary 
condition for the pressure with an asymptotic term O(h2) given by

∂

∂n
pm+1(x)

∣∣∣∣
Γ

= n ·
(

fm+1(x) − 3

2h
gm+1(x) − ν∇ × ∇ × (

2um(x) − um−1(x)
))∣∣∣∣

Γ

+O
(
h2). (9)

Finally, combining Eqs. (7) and (9) leads to a Neumann boundary value problem for the pressure at time tm+1 with an 
asymptotic term O(h2) described by⎧⎪⎨⎪⎩

�pm+1(x) = ∇ · fm+1(x) +O
(
h2),

∂

∂n
pm+1(x)

∣∣∣∣
Γ

= n ·
(

fm+1(x) − 3

2h
gm+1(x) − ν∇ × ∇ × (

2um(x) − um−1(x)
))∣∣∣∣

Γ

+O
(
h2). (10)

Notice that given the velocities at the times tm and tm−1, one can get an approximate value for the pressure pm+1 at time 
tm+1 by truncating the asymptotic term, and then solving the boundary value problem (10). Further, after solving (10) and 
then using Eq. (5) together with the Dirichlet boundary condition for the velocity given in (1), the velocity field um+1 at 
time tm+1 can be obtained by solving the Helmholtz equation described by⎧⎨⎩

3

2h
um+1(x) − ν�um+1(x) = fm+1(x) − ∇pm+1(x) +O

(
h2),

um+1(x)
∣∣
Γ

= gm+1(x).

(11)

Notice that the original problem (1) is split into one nonlinear initial value problem (2) and two linear boundary value 
problems (10) and (11). This is a backward semi-Lagrangian method (BSLM). Note that both boundary value problems (10)
and (11) require the function values of fm+1 defined by (6). To find this, one has to solve the initial value problem (2) to 
get departure points π(tm+1, x; tm) and π(tm+1, x; tm−1) reaching the same point x = π(tm+1, x; tm+1). In fact, the slope 
function of the characteristic curve π (s, x; t) is the unknown velocity field u on time interval (tm, tm+1]. Thus, one may 
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conclude that the solutions of the problems (2), (10) and (11) are self-consistent and hence the problem we have to solve 
has a highly nonlinear self consistency, which is comparable with the nonlinearity of the original problem (1). Also, from 
the boundary value problems (10) and (11), one can get approximate values for the velocity and the pressure only at the 
grid points. Usually, however, the departure points π(tm+1, x; tm) and π (tm+1, x; tm−1) do not coincide with grid points. 
Hence, a suitable interpolation scheme for the solutions is needed.

In the following subsequent sections, we will develop numerical schemes to solve these self-consistent problems. In 
particular, we focus on the development of an iteration free scheme for solving the initial value problem (2). To solve the 
boundary value problems (10) and (11), we will use a finite difference scheme. Notice that the numerical solutions for the 
velocity field and the pressure are known only on the grid points and hence an interpolation scheme has to be adopted 
to solve the boundary value problems. Before closing this section, we introduce a fourth-order finite difference scheme for 
approximating the first and second order partial derivatives and introduce the Hermite cubic interpolation technique. For 
simplicity, we assume that the computational domain Ω is a rectangle given by Ω := [x1,min, x1,max] × [x2,min, x2,max] ⊂ R

2

and it is uniformly divided as follows:

xk,min = xk,0 < xk,1 < · · · < xk,Nk = xk,max, xk,i = xk,0 + i�xk, (12)

where �xk := (xk,max − xk,min)/Nk (k = 1, 2) are given uniform spatial mesh sizes in xk directions. For a function f , we let 
f i, j := f (xi, j), xi, j := (x1,i, x2, j)

T . The first and second derivatives ∂
∂x1

f i, j and ∂2

∂x2
1

f i, j , which are required in our calculation, 
are approximated by the fourth-order finite difference schemes (for example, see [13]) defined by

∂

∂x1
f i, j = f i−2, j − 8 f i−1, j + 8 f i+1, j − f i+2, j

12�x1
+O

(
�x4

1

)
, i = 2,3, · · · , N1 − 2,

∂

∂x1
f i, j = ±−22 f i, j + 36 f i±1, j − 18 f i±2, j + 4 f i±3, j

12�x1
+O

(
�x3

1

)
, i = 0, N1,

∂

∂x1
f i, j = 6 f i+1, j − 6 f i−1, j

12�x1
+O

(
�x2

1

)
, i = 1, N1 − 1 (13)

and

∂2

∂x2
1

f i, j = − f i−2, j + 16 f i−1, j − 30 f i, j + 16 f i+1, j − f i+2, j

12�x2
1

+O
(
�x4

1

)
, i = 2,3, · · · , N1 − 2,

∂2

∂x2
1

f i, j = 45 f i, j − 154 f i±1, j + 214 f i±2, j − 156 f i±3, j + 61 f i±4, j − 10 f i±5, j

12�x2
1

+O
(
�x4

1

)
, i = 0, N1,

∂2

∂x2
1

f i, j = 10 f i∓1, j − 15 f i, j − 4 f i±1, j + 14 f i±2, j − 6 f i±3, j + f i±4, j

12�x2
1

+O
(
�x4

1

)
, i = 1, N1 − 1, (14)

respectively, where the notations f i±k and f i∓1 are chosen so that the corresponding points xi±k and xi∓1 are included in 
the computational domain Ω . Similarly, the approximations for the derivatives ∂

∂x2
f i, j and ∂2

∂x2
2

f i, j are defined. With these 

approximations, we introduce the Hermite cubic interpolation HF [19], which is defined as follows: for x := (x1, x2)
T ∈

[x1,i, x1,i+1] × [x2, j, x2, j+1],
HF (x) := Hi, j f (x) =

∑
0≤k+l≤3

Ck,l(x − xi, j)
k,l + C3,1(x − xi, j)

3,1 + C1,3(x − xi, j)
1,3, (15)

where (x − xi, j)
k,l = (x1 − x1,i)

k(x2 − x2, j)
l and the coefficients Ck,l are uniquely defined as follows.

C0,0 = f (xi, j), C1,0 = ∂

∂x1
f (xi, j), C0,1 = ∂

∂x2
f (xi, j),

C2,0 = 3
(

f (xi+1, j) − f (xi, j)
)− ∂

∂x1
f (xi+1, j) − 2

∂

∂x1
f (xi, j),

C0,2 = 3
(

f (xi, j+1) − f (xi, j)
)− ∂

∂x2
f (xi, j+1) − 2

∂

∂x2
f (xi, j),

C3,0 = −2
(

f (xi+1, j) − f (xi, j)
)+ ∂

∂x1
f (xi+1, j) + ∂

∂x1
f (xi, j),

C0,3 = −2
(

f (xi, j+1) − f (xi, j)
)+ ∂

∂x2
f (xi, j+1) + ∂

∂x2
f (xi, j),

C2,1 = 3 f (xi+1, j+1) − 2
∂

∂x1
f (xi, j+1) − ∂

∂x1
f (xi+1, j+1) − 3

3∑
C0,k − C2,0,
k=0
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C3,1 = −2 f (xi+1, j+1) + ∂

∂x1
f (xi, j+1) + ∂

∂x1
f (xi+1, j+1) + 2

3∑
k=0

C0,k − C3,0,

C1,2 = 3 f (xi+1, j+1) − 2
∂

∂x2
f (xi+1, j) − ∂

∂x2
f (xi+1, j+1) − 3

3∑
k=0

Ck,0 − C0,2,

C1,3 = −2 f (xi+1, j+1) + ∂

∂x2
f (xi+1, j) + ∂

∂x2
f (xi+1, j+1) + 2

3∑
k=0

Ck,0 − C0,3,

C1,1 = ∂

∂x1
f (xi, j+1) − C1,3 − C1,2 − C1,0, (16)

where all the partial derivatives are approximated with the mentioned finite difference scheme. For vector valued functions, 
the hermite interpolation scheme can be extended as follows: for F := (F1, F2)

T , we have

HF(x) = (
HF1(x),HF2(x)

)T
.

For a simple expression of the first and second partial derivatives (13) and (14), we introduce the differentiation matrices 
D1,Nk and D2,Nk of size (Nk + 1) × (Nk + 1) as follows.

D1,Nk = 1

12�xk

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−22 36 −18 4

−6 0 6 0

1 −8 0 8 −1
. . .

. . .
. . .

. . .
. . .

1 −8 0 8 −1

0 −6 0 6

−4 18 −36 22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(17)

and

D2,Nk = 1

12�x2
k

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

45 −154 214 −156 61 −10

10 −15 −4 14 −6 1

−1 16 −30 16 −1
. . .

. . .
. . .

. . .
. . .

−1 16 −30 16 −1

1 −6 14 −4 −15 10

−10 61 −156 214 −154 45

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (18)

Then, the first and second derivatives ∂
∂xk

f i, j , being 2 ≤ i ≤ N1 − 2 if k = 1, and 2 ≤ j ≤ N2 − 2 if k = 2 and ∂2

∂x2
k

f i, j are 
respectively expressed with the described matrices as follows.

∂

∂x1
f i, j = (D1,N1 F )i, j +O

(
�x4

1

)
,

∂

∂x2
f i, j = (

F DT
1,N2

)
i, j +O

(
�x4

2

)
,

∂2

∂x2
1

f i, j = (D2,N1 F )i, j +O
(
�x4

1

)
,

∂2

∂x2
2

f i, j = (
F DT

2,N2

)
i, j +O

(
�x4

2

)
, (19)

where F = ( f i, j)(N1+1)×(N2+1) . In a similar way, the last two equations of (13) can be simplified with the above differentia-
tion matrices.

3. Error correction method for solving (2)

This section aims to develop an iteration free numerical scheme for finding the approximate values of π (tm+1, xi, j; tm−k), 
k = 0, 1, where xi, j denotes an arbitrary grid point. We will follow the technique of the error correction method recently 
developed by the authors (for examples, see [20,21,27]). In particular, we will derive an integration scheme with the rate of 
convergence order 2. Assume that the velocity vector u(t, x) for time tm−k , k = 0, 1, is already calculated at all grid points, 
whose approximations are denoted by

Um−k := {
Um−k, V m−k}, (

Um−k) = um−k,
(

V m−k) = vm−k,
i, j i, j i, j i, j
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where um−k
i, j and vm−k

i, j are approximated solutions at time tm−k and grid points xi, j which are obtained either from the 
initial conditions or by using the scheme described later. For simplicity, let π i, j(t) := π(tm+1, xi, j; t) be the solution of the 
self-consistent nonlinear initial value problem given by⎧⎨⎩

dπ i, j(t)

dt
= u

(
t,π i, j(t)

)
, t ∈ [tm−1, tm+1),

π i, j(tm+1) = xi, j,

(20)

where u is the solution of the model problem (1). Notice that the Taylor’s expansion of π i, j(t) about tm−1 together with 
the initial condition π i, j(tm+1) = xi, j can be written as

π i, j(t) = π i, j(tm−1) + (t − tm−1)u
(
tm−1,π i, j(tm−1)

)
+ (t − tm−1)

2

4h2

(
xi, j − π i, j(tm−1) − 2hu

(
tm−1,π i, j(tm−1)

))+O
(
h3), t ∈ [tm−1, tm+1]. (21)

Thus, a relation between π i, j(tm) and π i, j(tm−1) using the interpolation scheme (15) can be obtained by evaluating equation
(21) at time tm as follows.

π i, j(tm) ≈ 1

4

(
xi, j + 3π i, j(tm−1) + 2hHUm−1(π i, j(tm−1)

))
. (22)

Eq. (22) gives a suitable approximation of π i, j(tm), provided an approximation of π i, j(tm−1). Hence, we will focus on finding 
an approximation of π i, j(tm−1). First, we introduce existing explicit and implicit second-order schemes for comparison. 
As stated in [24,34], an approximation πm−1

i, j of π i, j(tm−1) can be obtained using either the second order explicit mid-point 
rule

π̂ = xi, j − hUm
i, j, πm−1

i, j = xi, j − 2hHUm(π̂), (23)

or the second order implicit mid-point rule

πm−1
i, j = xi, j − 2α, α ≈ hHUm(xi, j − α). (24)

Note that the solution α of the last equation in (24) is usually obtained by iterative methods such as the fixed point iteration 
or the Newton iteration method.

Our development of a new iteration free second-order scheme for (20) begins with a discussion using Euler’s polygon 
in the error correction strategy [20,21]. Since π i, j(t) is the position of the trajectory of the fluid particles over the solution 
surface, the characteristic curves π i, j(t) = π(tm+1, xi, j; t) can be assumed to be sufficiently smooth with respect to the time 
variable t . Thus, for the characteristic curve π i, j(t) satisfying (20), taking its Taylor’s expansion about tm+1, and the Taylor’s 
expansion of u(tm+1, π i, j(tm+1)) about tm , we get the following expansion

π i, j(t) = xi, j + (t − tm+1)u
(
tm+1,π i, j(tm+1)

)+O
(
h2)

= xi, j + (t − tm+1)u(tm,xi, j) +O
(
h2)

≈ xi, j + (t − tm+1)Um
i, j, t ∈ [tm−1, tm+1]. (25)

Following (25), we introduce an Euler’s polygon yi, j(t) defined by

yi, j(t) := xi, j + (t − tm+1)Um
i, j, t ∈ [tm−1, tm+1] (26)

and define

ψ i, j(t) := π i, j(t) − yi, j(t), t ∈ [tm−1, tm+1]. (27)

By differentiating both sides of (27) and applying the Taylor’s expansion into the result together with (20), one gets an 
asymptotically first-order ODE given by

ψ ′
i, j(t) = u

(
t,ψ i, j(t) + yi, j(t)

)− y′
i, j(t)

= u
(
t,yi, j(t)

)+ ux
(
t,yi, j(t)

)
ψ i, j(t) − Um

i, j +O
(
ψ i, j(t)

2)
≈ Ux

(
tm,yi, j(tm)

)
ψ i, j(t) + u

(
t,yi, j(t)

)− Um
i, j, t ∈ [tm−1, tm+1], (28)

where the Jacobian matrices ux(t, yi, j(t)) and Ux(tm, yi, j(tm)) are given by

ux
(
t,yi, j(t)

)=
[

∂
∂x1

u(t,yi, j(t))
∂

∂x2
u(t,yi, j(t))

∂
∂x1

v(t,yi, j(t))
∂

∂x2
v(t,yi, j(t))

]
, t ∈ [tm−1, tm+1]

and
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Ux
(
tm,yi, j(tm)

)=
[

∂
∂x1

HUm(yi, j(tm)) ∂
∂x2

HUm(yi, j(tm))

∂
∂x1

HV m(yi, j(tm)) ∂
∂x2

HV m(yi, j(tm))

]
, (29)

respectively. Note that the first equation of (28) is known as the deferred differential equation for (20) and one can use it 
together with (27) to find the approximate value πm−1

i, j . However, there may be some computational difficulties in solving 
the equation due to the highly nonlinearity of the self-consistent constraint for the velocity field u. On the other hand, the 
last equation of (28) is of linear, while being self-consistent on the right hand side. Since the solution of Eq. (28) corresponds 
to the error for the Euler’s polygon, we would like to say the proposed method with the so-called error correction method 
(ECM) rather than the deferred correction method.

To solve Eq. (28), we apply the mid-point integration method, which is known as an A-stable implicit method. From (26)
and (27), it can be seen that ψ i, j(tm+1) = 0. Hence, integrating both sides of (28) over [tm−1, tm+1] using the mid-point 
integration rule, one gets an asymptotic formula given by

−ψ i, j(tm−1) ≈ 2h
(
Ux
(
tm,yi, j(tm)

)
ψ i, j(tm) +HUm(yi, j(tm)

)− Um
i, j

)
. (30)

Since ψ i, j(tm) = 1
2 (ψ i, j(tm+1) + ψ i, j(tm−1)) + O(h2) which can be proved by the Taylor’s expansion theorem, Eq. (30) can 

be rewritten as(
I + hUx

(
tm,yi, j(tm)

))
ψ i, j(tm−1) ≈ 2h

(
Um

i, j −HUm(yi, j(tm)
))

, (31)

where I is an identity matrix. Finally, combining the solution of (31) with (26) and (27), one gets an approximate formula 
πm−1

i, j defined by

πm−1
i, j := yi, j(tm−1) + ψm−1

i, j , (32)

where ψm−1
i, j is the solution of Eq. (31). From the approximation πm−1

i, j defined by (32), identity (22) gives an approximation 
of π i, j(tm).

4. Finite difference methods for Poisson equation and Helmholtz equation

In this section, we present implementation details for solving the Poisson equation (10) and the Helmholtz equation (11)
based on the finite difference scheme discussed in Section 2. Using the differentiation matrices defined in (17) and (18), the 
spatial discretization formula for both Eqs. (10) and (11) can be obtained and it can be solved with matrix-diagonalization 
techniques ([18,30]). For reader’s convenience, we review the matrix-diagonalization solvers of (10) and (11).

4.1. Matrix-diagonalization method to Poisson equation (10)

Assume the approximations πm−1
i, j and πm

i, j are obtained using the scheme developed in the previous section. Then, the 
Poisson equation (10) using the differentiation matrices (17) and (18) is discretized as follows.

D2,N1 Pm+1 + Pm+1 DT
2,N2

≈ D1,N1 F m+1
1 + F m+1

2 DT
1,N2

, (33)

where Pm+1 is the matrix of size (N1 + 1) × (N2 + 1) for the pressure and F m+1
k (k = 1, 2) are matrices of the same size, 

whose elements are defined by(
F m+1

1

)
i, j := 1

2h

(
4HUm(πm

i, j

)−HUm−1(πm−1
i, j

))
,

(
F m+1

2

)
i, j := 1

2h

(
4HV m(πm

i, j

)−HV m−1(πm−1
i, j

))
. (34)

The xk-component of the right-hand side of the boundary equation in (10) can be discretized by

BC1 ≈ −ν
(

D1,N1

(
2V m − V m−1)− (

2Um − Um−1)DT
1,N2

)
DT

1,N2
+ F m+1

1 − 3

2h
Gm+1

1 ,

BC2 ≈ −νD1,N1

(
D1,N1

(
2V m − V m−1)− (

2Um − Um−1)DT
1,N2

)+ F m+1
2 − 3

2h
Gm+1

2 . (35)

Here, U k and V k , k = m, m − 1, are the approximated matrices for the velocity vector u(tk, x) defined by

Uk := (
uk

i, j

)
(N1+1)×(N2+1)

, V k := (
vk

i, j

)
(N1+1)×(N2+1)

and the matrix Gm+1
k is defined by

Gm+1
k := (

gk(tm+1,xi, j)
)
(N1+1)×(N2+1)

,

where gk is the kth component of g. Then, the boundary conditions of (10) along xk = xk,min and xk = xk,max can be 
discretized by
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(
Pm+1)

k, j ≈
(

(BC1)k, j −
N1−1∑
l=1

(D1,N1)k,l
(

Pm+1)
l, j

)/
(D1,N1)k,k, k = 0, N1,

(
Pm+1)

i,l ≈
(

(BC2)i,l −
N2−1∑
k=1

(
Pm+1)

i,k

(
DT

1,N2

)
k,l

)/
(D1,N2)l,l, l = 0, N2, (36)

where i = 1, · · · , N1 − 1, j = 1, · · · , N2 − 1. Combining (33) with (36) leads to a linear system for P̃ = Pm+1(1 : N1 − 1, 1 :
N2 − 1) given by

D2,N1 P̃ + P̃ DT
2,N2

≈ H, (37)

where D2,Nk are the matrices constructed from D2,Nk by taking the interior elements (i, j) = (1 : N1 − 1, 1 : N2 − 1) and H
is from the right-hand side of (33) together with some manipulations of (36). Since D2,Nk are diagonalizable, Eq. (37) can 
be solved using the matrix-diagonalization procedure as follows. Let D2,Nk = RkΣk R−1

k and define P̂ := R−1
1 P̃ (RT

2 )−1 and 
Ĥ := R−1

1 H(RT
2 )−1, where Σk = diag{σk,1, · · · , σk,Nk−1}. Recall that D2,Nk is singular with one dimensional null space [26]. 

Thus, we take σk,1 = 0. Then, a particular solution of (37) is given by

P̂ i, j ≈
{

0 i = j = 1,

Ĥi, j
σ1,i+σ2, j

, otherwise.
(38)

Hence, the pressure can be calculated with the formula Pm+1(1 : N1 − 1, 1 : N2 − 1) = P̃ = R1 P̂ RT
2 and the boundary values 

(without four corners) of the pressure Pm+1 are determined by (36). Finally, since (36) holds for i = 0, N1, j = 0, N2, the 
values of Pm+1 at the four corner points can be also recovered by (36).

4.2. Matrix-diagonalization method to Helmholtz equation (11)

Discretizing the Helmholtz equation (11) using (17) and (18) results in finite difference systems for Um+1 and V m+1, 
respectively. For Um+1, the finite system is described by

3

2h
Um+1 − ν

(
D2,N1 Um+1 + Um+1 DT

2,N2

)= G :≈ F m+1
1 − D1,N1 Pm+1. (39)

As the case of the discretization for pressure, let Ũ = Um+1(1 : N1 − 1, 1 : N2 − 1) and D̃2,Nk = D2,Nk (1 : N1 − 1, 1 : N2 − 1). 
Then, (39) leads to

3

2h
Ũ − ν

(
D̃2,N1 Ũ + Ũ D̃T

2,N2

)= G, (40)

where G is defined from G in a similar way to how H was defined from H in the previous subsection. Since D̃2,Nk

are also diagonalizable, let D̃2,Nk = Q kΛk Q −1
k and define Û := Q −1

1 Ũ (Q T
2 )−1 and Ĝ := Q −1

1 G(Q T
2 )−1, where Λk =

diag{λk,1, · · · , λk,Nk−1}. Then, the solution of (40) can be directly calculated by the following formula

Û i, j ≈ Ĝ i, j
3

2h − ν(λ1,i + λ2, j)
, i = 1,2, · · · , N1 − 1, j = 1,2, · · · , N2 − 1 (41)

and Ũ = Q 1Û Q T
2 . This completes the computational scheme of Um+1. The approximation of V m+1 is conducted with a 

similar way.

5. Numerical examples

In this section, we perform numerical experiments to illustrate the accuracy and effectiveness of the proposed numerical 
algorithm. The numerical results of three test problems are given. For simplicity, the proposed scheme discussed in the pre-
vious sections is simply denoted by ECM2. The other notations ERK2 and Fixed2 are the corresponding numerical methods, 
for which the approximation πm−1

i, j is obtained by using (23) and (24), respectively. Here, the stopping criterion of the fixed 
point iteration is taken so that the following inequality is satisfied∥∥α(n+1) − α(n)

∥∥
2 ≤ h2,

where α(n) is the nth iterative solution and the initial approximation α(0) = 0. The velocity [U 1, V 1] at time h in all 
numerical examples is computed with the first order backward difference formula and the backward Euler scheme instead 
of the second order backward difference formula and mid-point rules used in ECM2.
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Table 1
The spatial convergence rate on [0, 2] for u, v, p, ∇ · u and ∇ · f (ν = 10−2, k = 2, h = 2−9).

N1 = N2 u-error Rate v-error Rate p-error Rate ∇ · u Rate ∇ · f-error Rate

20 1.12 × 10−2 – 1.12 × 10−2 – 1.66 × 10+0 – 8.40 × 10−2 – 6.33 × 10+1 –
40 1.57 × 10−3 2.83 1.57 × 10−3 2.83 1.52 × 10−1 3.45 1.38 × 10−2 2.60 1.00 × 10+1 2.66
80 1.83 × 10−4 3.10 1.83 × 10−4 3.10 1.37 × 10−2 3.47 1.46 × 10−3 3.24 1.09 × 10+0 3.20

160 1.78 × 10−5 3.36 1.78 × 10−5 3.36 1.42 × 10−3 3.27 9.82 × 10−5 3.89 7.49 × 10−2 3.86
320 3.27 × 10−6 2.44 3.27 × 10−6 2.44 1.75 × 10−4 3.03 5.32 × 10−6 4.21 4.73 × 10−3 3.99

Table 2
The spatial convergence rate on [0, 2] for u, v, p, ∇ · u and ∇ · f (ν = 10−3, k = 2, h = 2−9).

N1 = N2 u-error Rate v-error Rate p-error Rate ∇ · u Rate ∇ · f-error Rate

20 1.70 × 10−2 – 1.70 × 10−2 – 1.67 × 10+0 – 1.39 × 10−1 – 1.07 × 10+2 –
40 2.46 × 10−3 2.79 2.46 × 10−3 2.79 1.52 × 10−1 3.45 2.80 × 10−2 2.31 2.06 × 10+1 2.38
80 3.07 × 10−4 3.00 3.07 × 10−4 3.00 1.38 × 10−2 3.47 3.76 × 10−3 2.90 2.80 × 10+0 2.88

160 3.50 × 10−5 3.13 3.50 × 10−5 3.13 1.43 × 10−3 3.26 4.28 × 10−4 3.13 3.19 × 10−1 3.13
320 4.41 × 10−6 2.99 4.41 × 10−6 2.99 1.78 × 10−4 3.01 3.06 × 10−5 3.81 2.25 × 10−2 3.83

Table 3
The temporal convergence rate of ECM2 on t ∈ [0, 2] for u, v, p, ∇ · u and ∇ · f (ν = 10−2, k = 4, N1 = N2 = 512).

h u-error Rate v-error Rate p-error Rate ∇ · u Rate ∇ · f-error Rate

2−2 2.58 × 10−1 – 2.58 × 10−1 – 8.30 × 10−1 – 1.78 × 10−1 – 3.26 × 10+1 –
2−3 3.46 × 10−2 2.90 3.46 × 10−2 2.90 1.19 × 10−1 2.81 3.31 × 10−2 2.43 4.95 × 10+0 2.72
2−4 1.07 × 10−2 1.69 1.07 × 10−2 1.69 2.81 × 10−2 2.08 9.03 × 10−3 1.87 1.53 × 10+0 1.70
2−5 3.07 × 10−3 1.80 3.07 × 10−3 1.80 9.56 × 10−3 1.55 2.05 × 10−3 2.14 4.81 × 10−1 1.67
2−6 8.25 × 10−4 1.90 8.25 × 10−4 1.90 3.23 × 10−3 1.57 5.58 × 10−4 1.88 1.88 × 10−1 1.36
2−7 2.16 × 10−4 1.93 2.16 × 10−4 1.93 1.26 × 10−3 1.35 9.50 × 10−5 2.55 8.22 × 10−2 1.19

Example 1. To check the order of convergence of the proposed scheme, we test the problem (1) whose exact solution is 
given by (for example, see [8,33])

u(t, x1, x2) = − cos(kx1) sin(kx2)exp
(−2k2νt

)
,

v(t, x1, x2) = sin(kx1) cos(kx2)exp
(−2k2νt

)
,

p(t, x1, x2) = −1

4

(
cos(2kx1) + cos(2kx2)

)
exp

(−4k2νt
)
, (42)

where ν is a kinetic viscosity and k is a nonzero constant. The initial and boundary conditions are taken from the exact 
solution (42) and the computational domain is [0, 2π ]2.

To measure the computational error for the proposed scheme, we use the root mean square (RMS) error which is defined 
by

ErrRMS := max
0≤m≤M

√√√√√ 1

(N1 + 1)(N2 + 1)

N1,N2∑
i=0, j=0

(
φm

i, j − φ(tm, x1,i, x2, j)
)2

, (43)

where φ(tm, x1,i, x2, j) is the exact solution at grid points (x1,i, x2, j), at time t = tm and φm
i, j is its approximation. Here, 

φ stands for u, v , p and ∇ · f.
The spatial convergence rate is calculated on the time interval [0, 2] with the fixed value k = 2 and the fixed time step 

size h = 2−9 for two different Reynolds numbers ν = 10−2 and ν = 10−3. The numerical results are listed in Tables 1 and 2. 
From the tables, it is clear that the rate of spatial convergence for both pressure and velocity is almost 3. That is, the 
present algorithm has numerically third-order spatial convergence. Besides the spatial convergence analysis for pressure and 
velocity, we calculate the spatial convergence order for ∇ · f. Further, we list the values of ∇ · u which are shown to be zero 
as �x goes to zero.

In order to investigate the temporal convergence, we simulate the problem with the fixed value k = 4 and the fixed 
number of spatial grids N1 = N2 = 512 for different Reynolds numbers ν = 10−2 (Tables 3–5) and ν = 10−3 (Tables 6–8). 
The simulation is carried out by ranging the time step size from 2−2 to 2−7 and the convergence rate is calculated on the 
time interval [0, 2]. The numerical results are listed in Tables 3–8, where Tables 3 and 6 are for ECM2, Tables 4 and 7 are 
for ERK2 and Tables 5 and 8 are for Fixed2. The results show that all schemes have second order temporal convergence 
numerically. Also, in the sense of the numerical accuracy, the three methods have similar accuracy.



198 X. Piao et al. / Journal of Computational Physics 283 (2015) 189–204
Table 4
The temporal convergence rate of ERK2 on t ∈ [0, 2] for u, v, p, ∇ · u and ∇ · f (ν = 10−2, k = 4, N1 = N2 = 512).

h u-error Rate v-error Rate p-error Rate ∇ · u Rate ∇ · f-error Rate

2−2 2.51 × 10−1 – 2.51 × 10−1 – 8.26 × 10−1 – 1.81 × 10−1 – 2.14 × 10+1 –
2−3 3.36 × 10−2 2.90 3.36 × 10−2 2.90 1.78 × 10−1 2.22 3.53 × 10−2 2.36 5.32 × 10+0 2.01
2−4 1.07 × 10−2 1.65 1.07 × 10−2 1.65 4.54 × 10−2 1.97 9.39 × 10−3 1.91 1.56 × 10+0 1.77
2−5 3.07 × 10−3 1.80 3.07 × 10−3 1.80 1.43 × 10−2 1.66 2.07 × 10−3 2.18 4.81 × 10−1 1.70
2−6 8.25 × 10−4 1.90 8.25 × 10−4 1.90 4.49 × 10−3 1.67 5.60 × 10−4 1.88 1.88 × 10−1 1.36
2−7 2.16 × 10−4 1.93 2.16 × 10−4 1.93 1.59 × 10−3 1.50 9.51 × 10−5 2.56 8.21 × 10−2 1.19

Table 5
The temporal convergence rate of Fixed2 on t ∈ [0, 2] for u, v, p, ∇ · u and ∇ · f (ν = 10−2, k = 4, N1 = N2 = 512).

h u-error Rate v-error Rate p-error Rate ∇ · u Rate ∇ · f-error Rate

2−2 2.54 × 10−1 – 2.54 × 10−1 – 5.88 × 10−1 – 1.92 × 10−1 – 4.45 × 10+1 –
2−3 3.67 × 10−2 2.79 3.67 × 10−2 2.79 1.17 × 10−1 2.33 3.21 × 10−2 2.58 6.69 × 10+0 2.73
2−4 1.10 × 10−2 1.74 1.10 × 10−2 1.74 3.27 × 10−2 1.84 8.76 × 10−3 1.87 1.63 × 10+0 2.04
2−5 3.11 × 10−3 1.82 3.11 × 10−3 1.82 1.09 × 10−2 1.59 2.04 × 10−3 2.11 4.82 × 10−1 1.75
2−6 8.29 × 10−4 1.91 8.29 × 10−4 1.91 3.58 × 10−3 1.60 5.58 × 10−4 1.87 1.88 × 10−1 1.36
2−7 2.16 × 10−4 1.94 2.16 × 10−4 1.94 1.35 × 10−3 1.40 9.54 × 10−5 2.55 8.22 × 10−2 1.19

Table 6
The temporal convergence rate of ECM2 on t ∈ [0, 2] for u, v, p, ∇ · u and ∇ · f (ν = 10−3, k = 4, N1 = N2 = 512).

h u-error Rate v-error Rate p-error Rate ∇ · u Rate ∇ · f-error Rate

2−2 3.37 × 10−1 – 3.38 × 10−1 – 1.17 × 10+0 – 2.43 × 10+0 – 1.57 × 10+2 –
2−3 5.72 × 10−2 2.56 5.72 × 10−2 2.56 1.49 × 10−1 2.98 4.55 × 10−2 5.74 7.64 × 10+0 4.36
2−4 1.45 × 10−2 1.98 1.45 × 10−2 1.98 3.07 × 10−2 2.28 1.61 × 10−2 1.50 2.27 × 10+0 1.75
2−5 3.52 × 10−3 2.04 3.52 × 10−3 2.04 1.10 × 10−2 1.49 3.68 × 10−3 2.13 6.71 × 10−1 1.76
2−6 9.03 × 10−4 1.96 9.03 × 10−4 1.96 4.02 × 10−3 1.45 1.05 × 10−3 1.80 2.06 × 10−1 1.70
2−7 2.29 × 10−4 1.98 2.29 × 10−4 1.98 1.50 × 10−3 1.42 3.91 × 10−4 1.43 7.81 × 10−2 1.40

Table 7
The temporal convergence rate of ERK2 on t ∈ [0, 2] for u, v, p, ∇ · u and ∇ · f (ν = 10−3, k = 4, N1 = N2 = 512).

h u-error Rate v-error Rate p-error Rate ∇ · u Rate ∇ · f-error Rate

2−2 3.09 × 10−1 – 3.09 × 10−1 – 9.67 × 10−1 – 5.38 × 10−1 – 4.44 × 10+1 –
2−3 1.94 × 10−1 0.67 1.94 × 10−1 0.67 1.97 × 10−1 2.29 1.09 × 10+0 −1.02 1.21 × 10+2 −1.44
2−4 1.40 × 10−2 3.80 1.40 × 10−2 3.80 4.69 × 10−2 2.07 1.59 × 10−2 6.10 2.42 × 10+0 5.64
2−5 3.52 × 10−3 1.99 3.52 × 10−3 1.99 1.61 × 10−2 1.54 3.79 × 10−3 2.07 6.84 × 10−1 1.82
2−6 9.03 × 10−4 1.96 9.03 × 10−4 1.96 5.34 × 10−3 1.59 1.05 × 10−3 1.85 2.07 × 10−1 1.72
2−7 2.29 × 10−4 1.98 2.29 × 10−4 1.98 1.84 × 10−3 1.54 3.91 × 10−4 1.43 7.80 × 10−2 1.41

Table 8
The temporal convergence rate of Fixed2 on t ∈ [0, 2] for u, v, p, ∇ · u and ∇ · f (ν = 10−3, k = 4, N1 = N2 = 512).

h u-error Rate v-error Rate p-error Rate ∇ · u Rate ∇ · f-error Rate

2−2 3.54 × 10−1 – 3.54 × 10−1 – 1.10 × 10+0 – 1.55 × 10+0 – 8.36 × 10+1 –
2−3 9.66 × 10−2 1.88 9.66 × 10−2 1.88 2.25 × 10−1 2.28 8.42 × 10−2 4.21 1.01 × 10+1 3.04
2−4 2.45 × 10−2 1.98 2.45 × 10−2 1.98 5.31 × 10−2 2.08 1.79 × 10−2 2.24 2.36 × 10+0 2.11
2−5 4.90 × 10−3 2.32 4.90 × 10−3 2.32 1.23 × 10−2 2.11 3.88 × 10−3 2.20 6.72 × 10−1 1.81
2−6 9.87 × 10−4 2.31 9.87 × 10−4 2.31 4.38 × 10−3 1.49 1.13 × 10−3 1.78 2.06 × 10−1 1.71
2−7 2.29 × 10−4 2.11 2.29 × 10−4 2.11 1.59 × 10−3 1.46 4.05 × 10−4 1.48 8.08 × 10−2 1.35

In order to investigate the effect of viscosity ν for the proposed scheme when the time step sizes decrease, we simulate 
the problem with the fixed value k = 4 and the fixed number of spatial grids N1 = N2 = 256 for different Reynolds numbers
ν = 1 and ν = 10−4. The numerical results are listed in Table 9. For ν = 1, the numerical errors decrease as h decreases. 
However, for small ν = 10−4, the numerical errors do not decrease even though h is decreasing.

Example 2. The next problem is the two-dimensional lid-driven cavity problem. This problem is often used to demonstrate 
the accuracy and efficiency of numerical schemes for incompressible flows. The problem has a great scientific interest 
because it displays almost all fluid mechanical phenomena for incompressible viscous flows in the simple geometric settings. 
The computational domain is the unit square [0, 1]2 and the initial and boundary conditions are as follows
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Table 9
The numerical error performances of ECM2 on t ∈ [0, 2] for u, v, p, ∇ · u and ∇ · f (k = 4, N1 = N2 = 256).

ν h u-error v-error p-error ∇ · u ∇ · f-error

1 2−2 8.43 × 10−2 8.43 × 10−2 1.00 × 10+0 5.19 × 10−1 4.68 × 10+0

2−3 6.88 × 10−2 6.88 × 10−2 9.46 × 10−1 4.45 × 10−1 7.36 × 10+0

2−4 4.80 × 10−2 4.80 × 10−2 8.40 × 10−1 3.28 × 10−1 9.87 × 10+0

2−5 3.18 × 10−2 3.18 × 10−2 6.55 × 10−1 1.82 × 10−1 1.12 × 10+1

2−6 2.20 × 10−2 2.20 × 10−2 4.55 × 10−1 7.01 × 10−2 9.55 × 10+0

2−7 9.85 × 10−3 9.85 × 10−3 2.82 × 10−1 2.06 × 10−2 8.09 × 10+0

2−8 3.37 × 10−3 3.37 × 10−3 1.62 × 10−1 5.26 × 10−3 6.20 × 10+0

2−9 9.94 × 10−4 9.94 × 10−4 8.88 × 10−2 1.24 × 10−3 4.36 × 10+0

10−4 2−2 4.42 × 10−1 4.43 × 10−1 2.86 × 10+0 9.10 × 10+0 1.45 × 10+2

2−3 6.61 × 10−2 6.61 × 10−2 2.16 × 10−1 1.76 × 10−1 8.09 × 10+0

2−4 1.75 × 10−2 1.75 × 10−2 4.42 × 10−2 2.61 × 10−2 2.30 × 10+0

2−5 4.35 × 10−3 4.35 × 10−3 1.75 × 10−2 9.07 × 10−3 6.77 × 10−1

2−6 1.07 × 10−3 1.07 × 10−3 8.31 × 10−3 3.78 × 10−3 3.72 × 10−1

2−7 2.60 × 10−4 2.60 × 10−4 6.24 × 10−3 1.48 × 10−3 2.88 × 10−1

2−8 8.25 × 10−5 8.25 × 10−5 5.75 × 10−3 1.19 × 10−3 4.55 × 10−1

2−9 7.40 × 10−5 7.40 × 10−5 5.65 × 10−3 1.75 × 10−3 1.32 × 10+0

u(0,x) =
{

(1,0)T , x2 = 1 & x ∈ Γ,

(0,0)T , otherwise,
, u(t,x) =

{
(1,0)T , x2 = 1 & x ∈ Γ,

(0,0)T , x2 
= 1 & x ∈ Γ,
t > 0. (44)

Let

Err(mh) = max
i, j

((
um+1

i, j − um
i, j

)2 + (
vm+1

i, j − vm
i, j

)2)1/2

be the maximum root square error between two consequent times tm and tm+1. When Err(mh) < 10−7, we regard the cavity 
problem as a steady state. In order to see the streamline contours of the solution, we simulate the problem with spatial 
grids of fixed size N1 = N2 = 256 and fixed time step h = 0.01 for different Reynolds numbers Re = 1000, 3200, 5000, 7500. 
The numerical results are exhibited in Fig. 1. One can see the typical separations and secondary vortices at the bottom 
corners of the cavity, as well as the top left. These numerical results are in very good agreement with the benchmark 
results of Ghia et al. [15] and other established numerical results [5,7,17,31,33]. It confirms that the proposed method gives 
quantitatively accurate solutions.

Also, we calculate the horizontal velocities on the vertical centerline of the cavity and compare the numerical results 
with those obtained from Ghia [15], the second explicit method ERK2 and the implicit second method Fixed2. For all 
computations, the same fine grid mesh spacing 1

256 and the time step size 0.01 are used. In particular, when Re = 7500, 
two numerical simulations are generated. We use the time step size h = 0.001 only for ERK2 because ERK2 does not reach 
the steady state with h = 0.01, while we use the time step sizes h = 0.01 and h = 0.001 for the other three methods. The 
comparisons are exhibited in Fig. 2. As shown in Fig. 2, the two implicit type methods, the proposed scheme and Fixed2 
have similar performance and results are close to that of Ghia [15]. In contrast, the explicit method, ERK2, has a different 
performance compared to the other methods.

In Table 10, in order to examine effectiveness of ECM2, we list CPU time for IVPs, CPU time for the rest of the time step, 
and overall CPU time for the time step obtained by three methods (ECM2, ERK2 and Fixed2) with spatial step size 1

256 and 
time step size 0.01 by varying the Reynolds number Re. Here, CPU time for IVPs means an average per time step. From 
Table 10, ECM2 needs similar overall CPU time to Fixed2, while ECM2 requires less CPU time than Fixed2 for solving IVPs, 
which is one of main focuses in this paper to develop an iteration free method. From the results discussed in Fig. 2 and 
Table 10, we can conclude that the proposed scheme is superior to the other methods.

Example 3. As our last example, we consider the doubly periodic shear layer flow problem [6,11,12] defined on the unit 
square Ω = [0, 1]2. The initial conditions are taken as

u(0,x) = 1x2≤ 1
2

tanh

(
ρ

(
x2 − 1

4

))
+ 1x2> 1

2
tanh

(
ρ

(
3

4
− x2

))
, v(0,x) = 1

20
sin(2πx1), (45)

which correspond to a layer of thickness O( 1
ρ ). Here, 1A denotes the characteristic function.

We first calculate the vorticities of the solution of the shear-layer rollup problem with ρ = 30, Re = 105, the number 
of spatial grids N1 = N2 = 128 and the time step size h = 0.01 at different times t = 0.8, 1.0, 1.2 and 1.5. The numerical 
results are displayed in Fig. 3.

To show the effectiveness of the proposed method, we next estimate the conservations of the energy and the enstrophy 
defined by
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Fig. 1. The steady-state stream contours for different Reynolds numbers with N1 = N2 = 256 and h = 0.01.

Energy(t) =
∫
Ω

(
u2(t,x) + v2(t,x)

)
dx ≈ �x1�x2

N1∑
i=0

N2∑
j=0

(
u2(t,xi, j) + v2(t,xi, j)

)
,

and

Enstrophy(t) =
∫
Ω

w2(t,x)dx ≈ �x1�x2

N1∑
i=0

N2∑
j=0

w2(t,xi, j),

where w(t, x) is the vorticity defined by

w(t,x) = ∇ × u(t,x) = ∂

∂x1
v(t,x) − ∂

∂x2
u(t,x).

In Fig. 4, we compare the numerical results obtained by the three methods, ECM2, ERK2 and Fixed2. One can confirm that 
the present scheme is superior to the other methods in the sense of both conservations. Note that all schemes satisfy that 
the total energy decreases with time.
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Fig. 2. Profiles of u-velocity along vertical line through geometric center in cavity obtained from different schemes by varying Reynolds numbers with 
N1 = N2 = 256 and h = 0.01 (especially for the case Re = 7500, h = 0.001 in the above figure only for ERK2 and h = 0.001 in the below figure for three 
methods).
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Table 10
Comparison of ECM2, ERK2 and Fixed2 with N1 = N2 = 256 and h = 0.01.

Re ECM2 ERK2 Fixed2

IVPs Rest Total IVPs Rest Total IVPs Rest Total

1000 0.0803 0.0849 0.1652 0.0711 0.0878 0.1589 0.0901 0.0781 0.1682
3200 0.0778 0.0859 0.1637 0.0704 0.0869 0.1574 0.0887 0.0770 0.1657
5000 0.0790 0.0842 0.1632 0.0693 0.0884 0.1577 0.0868 0.0771 0.1638
7500 0.0779 0.0855 0.1634 – – – 0.0884 0.0781 0.1665

Fig. 3. Vorticities of the solution for the shear-layer rollup problem at time t = 0.8,1.0,1.2 and 1.5 with ρ = 30,Re = 105, N1 = N2 = 128 and h = 0.01.

Also, we examine the effect of the time step size and the viscosity number for energy conservation by varying the time 
step sizes h = 0.03, 0.02, 0.01, 0.005 and the viscosities ν = 10−k , k = 5, 6, 7, 8. The results are shown in Fig. 5. One can 
see that the smaller the time step size and the viscosity number are, the better the conservation is.

6. Conclusion and further discussion

A new iteration free backward semi-Lagrangian scheme for solving an incompressible Navier–Stokes equation is devel-
oped with ECM framework for finding the departure points of the characteristic curves and a projection method to split the 
steady state Stokes equation into the velocity and the pressure. Unlike the traditional method of calculating departure points 
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Fig. 4. Comparisons of the energy and enstrophy conservation properties among several methods for the shear-layer rollup problem with ρ = 30, Re = 105, 
when N1 = N2 = 128 and h = 0.01.

Fig. 5. Energy conservation properties of the proposed scheme with fixed ν = 1.0 × 10−5 varying the time step sizes (on the left) and with fixed time step 
size h = 0.005 different ν = 1.0 × 10−5, 1.0 × 10−6, 1.0 × 10−7, 1.0 × 10−8 (on the right), when N1 = N2 = 128 and ρ = 30.

in an existing implicit scheme or explicit scheme, we suggest a new method that is an iteration free explicit scheme but 
has all the good properties of the conventional second-order implicit method. With several numerical results, it is shown 
that the proposed method obtains outstanding numerical results compared to existing methods. Also, it is shown that the 
proposed scheme has a good conservation property of the total energy for small time steps and small viscosity numbers.

In order to fully explore the efficiency of ECM, several extended issues are currently being pursued. One is to develop a 
higher order time integration scheme which is not possible in implicit scheme due to the self-consistency constraint of the 
backward semi-Lagrangian method. Notice that all schemes to calculate the velocity, pressure and the characteristic curves 
are completely iteration free. Hence, another issue is to develop a parallelization algorithm for the proposed method. The 
proposed method is developed only for two-dimensional problems. Thus, the other challenge is to extend the idea of the 
proposed method into three dimensional problems. Additionally, the generalization of the proposed idea will be applied to 
many physical problems containing the convection and diffusion terms. Results along these directions will be reported in 
the future.
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