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In this paper, we introduce the notion of recurrent conformal 2-forms on a pseudo-
Riemannian manifold of arbitrary signature. Some theorems already proved for the same
differential structure on a Riemannian manifold are proven to hold in this more general
contest. Moreover other interesting results are pointed out; it is proven that if the asso-
ciated covector is closed, then the Ricci tensor is Riemann compatible or equivalently,
Weyl compatible: these notions were recently introduced and investigated by one of the
present authors. Further some new results about the vanishing of some Weyl scalars on
a pseudo-Riemannian manifold are given: it turns out that they are consequence of the
generalized Derdziniski-Shen theorem. Topological properties involving the vanishing of
Pontryagin forms and recurrent conformal 2-forms are then stated. Finally, we study the
properties of recurrent conformal 2-forms on Lorentzian manifolds (space-times). Previ-
ous theorems stated on a pseudo-Riemannian manifold of arbitrary signature are then
interpreted in the light of the classification of space-times in four or in higher dimensions.
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1. Introduction

Recurrent manifolds have been of great interest and were investigated by many
geometers (see for example [1, 24, 25, 32, 33, 52, 74]). In particular, Walker studied
manifolds on which the Riemann curvature tensor is recurrent [74] while conformally
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recurrent manifolds were investigated by Adati and Miyazawa [1] as well as other
geometers (see for example [24, 25, 52, 58-61]). In 1972, McLenaghan and Leroy [46]
and then McLenaghan and Thompson [47] embarked on a detailed investigation of
space-times with complex-recurrent conformal curvature tensor. They showed that
such spaces belong to types D and N of the Petrov—Penrose diagram, and found
the metric forms of these spaces in the case in which the recurrence vector is real.
In [36] the authors introduced the notion of K-recurrent manifold. A Riemannian
manifold with generalized curvature tensor is said to be K-recurrent tensor (KRM ),
if it is nonzero and satisfies the following condition (see [18, 60]):

ViKy = ai Ky, (1)

where «; is a non-null covector.
Recently, the present authors (see [42-44]) introduced the notion of recurrent
forms on a Riemannian manifold. They stated the following:

Definition 1. Let M be an n-dimensional Riemannian manifold. The curvature 2-

form Qz’}()l = K}’,’Cldxj A da¥ is said to be recurrent if there exist a nonzero scalar

1-form « for which:

being o = a;dx’ the associated 1-form and Dy, = Vin%daci Adx? A dxF is the
covariant exterior derivative [35] associated to the connection V with respect to the
(positive definite) metric gg;.

In particular, they investigated the properties of recurrent conformal 2-forms on
an n-dimensional Riemannian manifold, i.e.:

being ), = Cﬁldxj A dx* the curvature 2-form associated to the conformal
curvature tensor, defined in local components as [56]:

. . 1., m m m
T = Rk + — (07" R — 07"R + R g — R g1)

R
— (8" g1 — 01" gj1)- 4
(n—l)(n—?)(] Gkl kgjl) ( )
In the previous expression the Ricci tensor is defined as Ry = —R;,; [75] and the

scalar curvature as R = g% R;; (it may be scrutinized that the conformal curvature
tensor vanishes identically for n = 3 [56]). Some useful theorems about recurrent
curvature 2-forms were stated and the particular case with harmonic conformal
curvature tensor i.e. for which V,, =0 [5] was investigated. In the same paper
was introduced the notion of recurrence of a generalized Ricci 1-form, i.e. for the
vector-valued 1-form defined as:

Ay = Kpda, (5)
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being K = —K]7,, the symmetric contraction of the generalized curvature tensor.
The following definition was stated:

Definition 2. Let M be an n-dimensional Riemannian manifold. The generalized
Ricci 1-form A gy = K wdz® is said to be recurrent if there exist a nonzero scalar
1-form ( for which:

DAy = BN Ay, (6)
being 3 = B;dx’ the associated 1-form.

In [41] and subsequently in [37] a new generalized (0,2) symmetric tensor was
introduced and studied; precisely the new tensor was defined as:

Zii = Rig + ¢gu, (7)

where ¢ is an arbitrary scalar function and was named generalized Z tensor. These
authors pointed out several interesting properties of such tensor. From the results
in [37, 41] the Z tensor may be used to write the Einstein’s field equations of
general relativity (see [15, 29, 65, 66, 73]). In fact the equation Zy = kT being
k= 8346 the Einstein’s gravitational constant and the condition V!Z;; = 0 coming
from the stress-energy tensor give Vk(g + ) = 0 that is p = —% + A. The
term A is thus the cosmological constant and Einstein’s equations take the form
Ry — %gkl + Agry = kTy;. These equations relate the Ricci tensor of a space-
time to the matter content described by the stress-energy tensor Ty;. Moreover, a
Z form associated to the Z tensor was introduced in [42]. Then the notion of Z
recurrent form was defined [42] and several properties of Riemannian manifolds on
which the Z form is recurrent was studied in depth. The notion of Z recurrent form
incorporates both pseudo-Z-symmetric and weakly Z-symmetric manifolds [37, 41].
In this paper, we investigate the properties of recurrent conformal 2-forms on
pseudo-Riemannian manifolds. In Sec. 2, some general properties already proven
in the Riemannian case are readily extended to the case of arbitrary signature and
some new results are stated; moreover it is proven that if the associated covector is
closed then the Ricci tensor is Riemann- and Weyl-compatible: these notions were
recently introduced and investigated by one of the present authors (see [38—40]).
In Sec. 3, we study conformal changes of metric and recurrent 2-forms; a nice
result is pointed out. In Sec. 4, a deep account of Riemann and Weyl compati-
bility of (0,2) symmetric tensors is given: some new results about the generalized
Derdzinski—Shen theorem are investigated. It is shown that this implies the vanish-
ing of some Weyl’s scalars. In Sec. 5, topological properties involving Pontryagin
forms and recurrent conformal 2-forms are stated. Finally, in Sec. 6, we study the

properties of recurrent conformal 2-forms on Lorentzian manifolds (space-times).
Previous theorems stated on a pseudo-Riemannian manifold of arbitrary signature
are then interpreted in the light of the classification of space-times in four or in n
dimensions. Throughout the paper, all manifolds under considerations are assumed
to be connected Hausdorff manifolds endowed with a non-degenerate metric of
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arbitrary signature, i.e. n-dimensional pseudo-Riemannian manifolds; where neces-
sarily we will specialize to a metric of signature s = n—2, i.e. to n(>4)-dimensional
Lorentz manifolds [29].

2. Recurrent Conformal Forms: General Properties

In this section, we extend the notion of recurrent conformal 2-forms to pseudo-
Riemannian manifolds of arbitrary signature. First we recall some basic definitions
about generalized curvature tensors and associated forms: consider a class of tensor
K of type (1,3), with the local components 1ot defined on an n-dimensional
vector space with the usual symmetries of the Riemann tensor satisfying the first
Bianchi identity. Specifically, we admit a generalized curvature tensor satisfying the
following relations [34, 36, 68]:

(a) Kﬁfl—'—K]’ZZJ +Kl7;lk:07 Kﬂl:_K]ZJI'“

(8)
(b)  ViKGi + VK + Ve K = By,

where B, is a tensor source in the second Bianchi identity. Moreover, we may

also define an associated completely covariant (0,4) tensor Ky, = gmhK b with

the following further properties [34]:

Kikim = —Kpjim = —Kjkmi,
9)
Kjkim = Kimjk-
In this way the contraction Kj; = — K", defines a symmetric generalized Ricci
tensor [43]. An n-dimensional pseudo-Riemannian manifold is said to be K-flat

if K7 = 0 and K- 5ymmetr1c if VK7, = 0, K-harmonic if V,, K7}, = 0 and
K- recurrent if ViK7y, = o Ky, [36]. Novv the vector-valued form absoc1ated to a
generalized curvature tensor is given by:

Wiey = Kjjyda? A dz”. (10)
If we consider the symmetric contraction K3 = —K,, a generalized Ricci 1-form

may be defined [43] as follows:
A(K)l = Kkldfl,‘k. (11)

Hereafter, we consider an n-dimensional pseudo-Riemannian manifold admitting
nonzero tensor K. The forms Q?}{)l,A(K)l are said to be closed if DQ?}W =0,
DA gy = 0 being D the exterior covariant derivative. This implies respectively

ViKy + VK + VK5 = 0= By,
and
ViKp — ViKy =0,
for the previously defined forms (see [43, 44]).
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We recall that a generalized curvature tensor K with vanishing tensor B;?kl is
called a proper generalized curvature tensor ([50, p. 27]).

The notion of recurrent curvature form enlarges the closedness condition and
the ordinary recurrence of curvature tensors. Here, we extend such definitions to
pseudo-Riemannian manifolds.

Definition 3. Let M be an n-dimensional pseudo-Riemannian manifold. The cur-
vature 2-form €7, = Kﬁldxj Adz* is said to be recurrent if there exist a nonzero
scalar 1-form « for which:

being o = a;dz’ the associated 1-form.

It is easy to see that the previous condition is a generalization of the notion of
K-recurrency. In fact if we write Eq. (12) in local components we have:

(VK — a; ;’fcl)dxi Adxd A da® = 0. (13)

If o = 0 we recover the closedness of 27, The following theorem stated in [44]
explains the meaning of this kind of recurrence.

Theorem 4 ([44]). Let M be an n-dimensional pseudo-Riemannian manifold. The
curvature 2-form Q?}()l = K;'}Cldacj A dx® satisfies condition (12) if and only if:

Proof. From Eq. (13) we easily obtain the following expression:

(ViK iy — ai Ky )da' A da? A da®
1 -
- g(Vi TR ﬂl)éfsl,fdxr Adx® A dxt
= > (ViKJy — i K8/ da”™ A da® A dat = 0. (15)

rst
r<s<t

The above condition is fulfilled if and only if (V; K7, — aiK;’,’Cl)(Sij ¥ — 0 from which

rst

Eq. (14) follows immediately. Obviously if the manifold is K-recurrent ViKG, =
a; K7}, then condition (14) is satisfied. m|

Now we focus on the notion of recurrence for the generalized Ricci 1-form
A(K)l = Kkld{L‘k where Kkl = _KZ’L’L]C['

Definition 5. Let M be an n-dimensional pseudo-Riemannian manifold. The gen-
eralized Ricci 1-form A( K=K wdz® is said to be recurrent if there exist a nonzero
scalar 1-form 3 for which:

DA gy = BN Ay, (16)
being 3 = B;dx’ the associated 1-form.
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In local components the previous equation may be written in the form:
(ViKy — BiKp)da® A dz® = 0. (17)
If B = 0 the closedness of the generalized Ricci 1-form is recovered. The following
theorem explains the meaning of this kind of recurrence [44].
Theorem 6. Let M be an n-dimensional pseudo-Riemannian manifold. The gen-
eralized Ricci 1-form A gy = Kpdz! satisfies condition (16) if and only if:
ViKi — VK = BiKi — B K. (18)
Proof. From Eq. (16) we easily obtain the following expression:
(ViKy — BiKp)da® A da® = %(viK,d — Bi K)ok dx" A da®
= (ViKp — BiKp)oikda" Ada® = 0. (19)

r<s

The above condition is fulfilled if and only if (V; Ky — o, K kl)(ﬁ’; = 0 from which
one concludes immediately. O

Remark 7. The previous Theorem 6 written for the Ricci 1-form A; = Rydz”®
becomes V Ry — ViR = BiRi — PrRi- It is easy to see that if we consider
a Ricci recurrent manifold, i.e. the condition V;Ry; = §; Ry [53], then on such
manifold the Ricci 1-form is recurrent. Ricci recurrent space-times were also studied
in detail by Hall [28]. Moreover other differential structures satisfy Theorem 6 for the
Ricci 1-form. Tamassy and Binh [69] introduced and studied a pseudo-Riemannian
manifold whose Ricci tensor satisfies the equation:

ViRji = AxRj; + BjRi + DRy,

being A, B, D nonzero 1-forms. From this we infer easily ViRjy — V;Ry =
(Ar — Bi)Rji — (Aj — Bj) Ry and the Ricci 1-form is recurrent. Finally, it should
be mentioned that also pseudo-Ricci symmetric manifolds defined by the condi-
tion ViR = 2AxRj + AjRi + ARy and introduced by Chaki [6] obviously
satisfy (18).

Some other useful relations may be obtained from Eq. (14). A contraction with
g"! gives immediately:

vaﬂl + Vijl — VkKjl = Ome;-r];l + Oéijl — OékKjl. (20)
A further contraction gives:
2V'K; — V;K = 2d'Kj; — o K. (21)
A further interesting theorem may be stated for recurrent 2-form
Wiy = Kjjyda? A dz”.
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Theorem 8. Let M be an n-dimensional pseudo-Riemannian manifold with recur-
rent 2-form Q?}()l = K}’,’Cldxj Adx®. Then the following relation is fulfilled:

viK%l + VjK]?;Ll + kalT]nZ + leiTl?j = O‘iKﬁcl + OzjK]?;Ll + OszlT]n»i + alKZ,:Lj. (22)

Proof. We write four versions of Eq. (14) with cyclically permuted indices ¢, j, k, [
and sum up; then use the first Bianchi identity for the tensor K to simplify. |

Hereafter, we concentrate on recurrent conformal 2-forms on pseudo-Rie-
mannian manifolds. We recall that a manifold is conformally recurrent [1, 36] when
the conformal curvature tensor satisfies the relation V;C7, = «;C7f; where o is
a nonzero covector. In [68] Suh, Kwon and Yang studied conformally recurrent
pseudo-Riemannian manifolds with harmonic conformal curvature tensor, i.e. with

Vin Gl = 0 [5]. In the Riemannian case they stated the following theorem:

Theorem 9 ([68, Remark 3.3]). Let M be an n(n > 4)-dimensional Riemannian
manifold with Riemaniann connection V. Assume that M is conformally recur-
rent and has the harmonic conformal curvature tensor. Then M is conformally
symmetric.

Now if we consider the recurrent conformal 2-form DQ’(%)l =aAl Q?(lj)l on a

pseudo-Riemannian manifold the general Eq. (14) may be written as [44]:
VICJ’ZI + VJC,?ZZ + VkC[?l = aiCﬂl + osz,?}l + OszZLl = Z’Lkl (23)

Obviously Eq. (23) is satisfied when ViCiy = aiCjy. As a consequence of the
previous condition if we take i = m we get:

VOl = amCiy. (24)

We remark that a (0,4) version of Eq. (23) may be written, i.e.:
ViCikim + ViCritm + ViCijim = ®Cjirim + a;Clritm + a.Cijim, (25)

where Cjxim = gpmCjy,- It is well-known (see [1, Eq. (3.7)]) that the source term
for the second Bianchi identity for the conformal curvature tensor may be written
in the following form:
1 m m
=3 3[53' VpCra + 01"V, CFy
+ 9 VpCi + ga VOl + g VpCil. (26)
Note that C,?}p = g"" Oy, = g g™ Chjrs. Considering Egs. (23) and (26) we may
easily state the following proposition:

+ 6"V Ch

Proposition 10. Let M be an n(>4)-dimensional non-conformally flat pseudo-
Riemannian manifold with recurrent conformal 2-form: then o;Cly + a;CF +
aClhy = 0 if and only if V., Cly = 0.

gl —
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Proof. If V,,,CJ}; = 0 from (26) we have V,C7, + V;Cph + Vi Cy = 0 and thus
a;Cly + a; O + akC’]l = 0; on the other hand if the right- hand side of (23)
Vanlshes then taking i = m we get the result. O

The condition «;C" Tty CPy + o O T =0ona pseudo-Riemannian manifold
has been extensively studled in the geometmc literature (see for example [13, 20,
22, 23)).

Here, we prove the following lemma.

Lemma 11. Let M be an n-dimensional non-conformally flat pseudo-Riemannian
manifold with recurrent conformal 2-form: if a;Cfy; + a; Oy + awC7) = 0 then:

(1) ooy =0,
(2) CpCit =0,
(3) Clmjcj

pak —

Proof. From alekl + ;O + oszjl = 0 we have also o, Cj; = 0 and thus
contracting with o' one obtains a’a;CJ}; = 0 from which we infer (1); on the
other hand contracting with C/* one obtams OzIC’J%CJM
(2). Finally contracting o;Cjrim + @jCritm + @xCijim = 0 with C}’,fg and using
amCiiy = 0 we get @;CirimCEJ = 0 from which (3) follows immediately. O

= 0 from which we infer

Following the same trick of [22] we are in a position to prove the following:

Proposition 12. Let M be an n-dimensional non-conformally flat pseudo-Rie-
mannian manifold with recurrent conformal 2-form: then o;Cjrim + &;Clrim +
axCijim = 0(i.e. V,, CT} T = = 0) if and only if there exist a symmetric (0,2) ten-
sor Ay for which

Cjklm = ajamAkl — ajalAmk — akamAjl + CkatlAjm, (27)
being o'a; = 0.
Proof. If the Weyl tensor is of the form (27), then after straightforward calculations
it is easy to see that o;Cjrim + @ Criim + a1 Cijim = 0 holds and thus the covector
«; is null.

On the other hand, let #" be a unit vector such that §?«; = 1: then contracting
the condition o;Cjrim + @jCritm + @xClijim = 0 with 0" a first time we infer

Cikim = ajGiCiklm — akGiCijlm. (28)
Contracting again the previous result with 6 we get:
0" Crny = i Ap — o Ajy,

being Ay, = 0:0™Cix, a symmetric (0,2) tensor. Inserting back in Eq. (28) we get

the result. 0O
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Remark 13. Let us consider conformal recurrent 2-form that are also Ricci flat,
i.e. with Ry = 0: in this case we have R, = C7y; from Eq. (23) recalling the
second Bianchi identity for the Riemann tensor we 1mmedlately have

Such a condition describes the so-called B-space introduced and studied by
Venzi [70]. Moreover, the previous condition is fulfilled by any four-dimensional
space-time of Petrov type T5 (see [55, p. 111] or [13]).

Now, we will state a fundamental theorem involving an algebraic relation which
is satisfied in the case of recurrent conformal 2-form DQ(”C) ;= QA Q(”C) ; with closed
recurrence parameter (see [44]).

Theorem 14. Let M be an n(>4)-dimensional pseudo-Riemannian manifold with
recurrent conformal 2-form, i.e. with DQ?}J)l =aA Q?é‘)l: then if ay is a closed

1-form the following algebraic relation is fulfilled:
Rim Ry + Rjm Ry + R R} = 0. (30)

The proof of the previous theorem need some auxiliary lemmas. The first one is
known as Lovelock’s differential identity and may be found for example in [35, 36].

Lemma 15 (Lovelock’s differential identity). Let M be an n-dimensional
pseudo-Riemannian manifold: then the following identity is fulfilled:

ViV R+ ViV R + ViV R = — R R — Rijm Ry — Ry R, (31)

Lovelock’s identity is thus written for the conformal curvature tensor (see
[36, 44]):

ViV Oy + ViV Oy + ViV O

n— m
=3 (leR]kl + Rjm Ry + Rem R5)).- (32)
Now, we recall that V,, ﬁl = amCJ",’Cl and V; ﬁl +V, C,’C’Z’l—i—Vka = azCJ",’Cl-i-
o Ol + G thus the left-hand side of previous equation may be written in the
form:

(Viam)Clpy + (Vjam) Oy + (Viam )Cl + am (i Cly + ;O + aCF). - (33)

Now the divergence of a;CT}; + a;Ci + apCl

i1 = Bl is taken to give straight-

forwardly:

+am(a¢0ﬁcl +a,;Cr + oszZ-l) Vi Bl (34)
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If the closeness of the recurrence parameter is taken into account we can write
finally:
n—3

We have thus proved the following result:

Lemma 16. Let M be an n-dimensional pseudo-Riemannian manifold with the
recurrent conformal curvature 2-form DQ{%)Z =aAl Qz’é)l: if the recurrence param-
eter is closed then (35) holds.

Now the following lemma about the source term of the second Bianchi identity
for the conformal curvature tensor is stated [44]:

Lemma 17. The divergence of the source term in the second Bianchi identity for
the conformal curvature tensor takes the form:

m 1 m m m
VB = _m(Rim Tt Rim Ry + Rem Ri)- (36)

Proof. We recall that in the case of conformal curvature tensor the source term B
takes the form:

1
Zbkl = m[(sjm(szkl — VkRil) + 5im(kajl — Vijl) + 5,2”(VjRil — Vile)

+9u(ViRy — Vi R") + g (ViR — ViR") 4+ g (Vi R}" — V;R[)]

1 m
- m[% (Vzngl - kagil)
+ 06" (Vi Rgj — VRgw) + 63" (VRgu — ViRgji)]. (37)

Taking the covariant derivative V,, of the previous equation and recalling that
ViV R = 0 (see [35, 36, 44]) we obtain:

m 1 m m m
VmBijk:l == —m(vlvaﬂcl + VJVmRkil + kamle) (38)
Now Lovelock’s identity is used to conclude. O

Proof of Theorem 14. If we take into account both Lemmas 16 and 17 we
simply infer RimRﬂl + Rjm R} + kaR?}l = 0 and the theorem is proven.
O

Now the left-hand side of Eq. (32) is simply the exterior covariant derivative of
the vector-valued 1-form associated with the divergence of the conformal curvature
tensor, i.e. Ilcy = VmC;’,’Cldxj A dz®: thus in view of the previous theorem the
following result is obtained

Theorem 18. Let M be an n-dimensional pseudo-Riemannian manifold with
recurrent conformal curvature 2-form, i.e. DQ?}J)l =aA Q?é‘)l: if the recurrence
parameter is closed then DIlcy = 0.

1450056-10
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If the Ricci tensor satisfies Eq. (30) it is named Riemann-compatible (see [14,
19, 38-40, 57]). Geometric and topological consequences of this condition were
extensively studied in [39]. If we insert in relation the local form of the Weyl tensor
(4) (see [56]) we obtain:

Rim ﬁcl + ijclgl + kaczl'l =0. (39)

The Ricci tensor is thus Weyl-compatible. In recent works Weyl compatibility has
been extensively investigated in the Riemannian case [39] and in the pseudo-
Riemannian case [40]. We note that results on semi-Riemannian manifolds sat-
isfying (30) and (39) are also given in some papers published earlier than [38-40]
(see [14, 19, 57]). In Sec. 4, we will give a deep account of its consequences. If we use
Einstein’s equations in (39) we infer an analogous condition for the stress-energy
tensor, namely:

From the above discussion we may state the following:

Theorem 19. Let M be an n-dimensional pseudo-Riemannian manifold with
recurrent conformal curvature 2-form, i.e. DQ’(”C)I =aA Q’(”C)l: if the recurrence
parameter is closed then the Ricci and the stress-energy tensors are Weyl-comp-
atible.

Now, we provide some examples of recurrent conformal 2-form as follows:

Example 1. De and Bandyopadhyay in [10] (see also [9] for a detailed com-
pendium) introduced the notion of weakly conformally symmetric manifolds and
proved its existence in the Riemannian case by an example. The same kind of
Riemannian manifolds were also investigated in [64]. Here, we extend this notion
to manifolds endowed with metric of arbitrary signature. A non-conformally flat
pseudo-Riemannian manifold is said to be weakly conformally symmetric (WCS),,
if the conformal curvature tensor satisfies the condition:

ViCikim = AiCjgim + BjCikim + CiClim + DiCikim + EmCirii, (41)

where A, B,C,D, E are called associated 1-forms. By permuting cyclically the
indices 1, j, k and summing the resulting equations we infer simply:

ViCikim + V;iCritm + ViCijim
= (Al — B, — Ci)cjk:lm + (Aj — Bj - Cj)ckilm + (Ak — By — Ck)cijlm' (42)

Example 2 (See [67]). For any integer p(>2) and any complex number ¢ such
that |c|>1 we define complex Euclidean space C2"*! of index 2n is defined as
follows:

1450056-11
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Let {27,297, 2271} = {21 ..., 2?"*1} be a complex coordinate of C2"+1. Then
M = M (p, c¢) is an indefinite complete complex hypersurface of index 2n defined by

22t = Zhj(zj +e2d7), hy(z) = 2P,
J

where ¢ is any complex number such that |¢| > 1. Then the component of the cur-
vature tensor of M is given by

Gk = —hjkhim = —p*(p — 1)%00im 2772,

Kijpme = —hjkhime = —cp®(p — 1)%6x6im 2?72
From this M is not necessarily flat. Moreover, we get
Kijkﬁ’Ln = _hjknﬁim = _p2(p - 1)2(]3 - 2)6jm6ik|z|2(p_2)z_l

=P —2)0jnz" Kijem = %6 Kijrm,

where a; = d3; and the smooth function 3; is defined by

hj(z)

8 =log "2 = log 2%, p>3.

So, we know here that the recurrent parameter 1-form o becomes coclosed, that
is, Via; = Vja;. Then the derivative of the component of Riemannian curvature
tensor Ragys = g(R(Eo, Eg)E,, Es), a, B,... =1,...,4n, is given as follows:

Rapcpe = 2agRaBep,

where the indices A, B,... = 1,...,2n. In such a case we have known that the
Ricci tensor is flat if |¢| = 1 and the complex hypersurface M of index 2n in a
(2n + 1)-dimensional indefinite complex Euclidean space C2"*1 of index 2n defined
above is conformally recurrent. So, it naturally composes a subclass of recurrent
conformal curvature 2-form which is non-weakly conformal symmetric satisfying
(25). Also this gives an example of Theorem 6, because M is Ricci flat but not
conformally flat.

We have thus proven the following.

Theorem 20. On an n-dimensional weakly conformally symmetric pseudo-Rie-
mannian manifold the conformal curvature 2-form is recurrent, i.e. DQ%)Z =aAl

Q?é’)l with Q; = Al — Bi — Cl

Moreover, if the covector a; = A; — B; — C; is a closed 1-form from the above
discussion we have the following theorem.

Theorem 21. Let M be an n-dimensional weakly conformally symmetric pseudo-
Riemannian manifold. If the covector c; = A; — B; — C; is closed, then the Ricci
tensor is Riemann-compatible, i.e. the relation RimC’ﬁl + RjmCll + R CT, = 0

gl —
is fulfilled.

1450056-12
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Example 3. De and Gazi introduced and studied in [11] the notion of almost
pseudo-conformally symmetric manifold and proved its existence by a suitable
example. A non-conformally flat pseudo-Riemannian manifold is said to be almost
pseudo-conformally symmetric manifold (APCS),, if the conformal curvature tensor
satisfies the condition:

ViCirim = (Ai + Bi)Cikim + A;Cintm + AkClitm + ACkim + AmCikii,

where A, B are non-null 1-forms. By permuting cyclically the indices i, j, k and
summing the resulting equations we obtain:

ViCjkim + ViCitim + ViCijim
= (B; — 4i)Cjrim + (Bj — Aj)Critm + (Br — Ak)Cijim.-

Moreover it can be shown ([11, Theorem 2.1]) that V,,C7; = B, CJ;. This gives
another example of non-weakly conformal symmetric satisfying (25).

We have thus proven the following:

Theorem 22. On an n-dimensional almost pseudo-conformally symmetric pseudo-
Riemannian manifold the conformal 2-form is recurrent, i.e. DQ’(”C)I =aA Q?&)l
with a; = B; — A;; moreover it is VmC;’,’Cl =0 if and only if BmCﬂl =0.

Example 4. We consider again the B-space introduced by Venzi [70], i.e. a; Rjpim+
o Ryiim + o Rijim = 0 and suppose that it is also Ricci recurrent with the same
recurrence parameter, i.e. V; Ry = a; Rg;. From the definition of conformal curva-
ture tensor it is then V;Cjgim = ViRjkim + 0 (Cjgim — Rjkim) and thus the confor-
mal 2-form is recurrent satisfying (25) by the second Bianchi identity. This kind of
B-space also becomes another subclass which is not weakly conformal symmetric.

Theorem 23. Let M be an n-dimensional B-space described by the condition

aiRjkim + o Riitm + arRijim = 0: if the Ricci tensor is recurrent with the
same recurrence parameter, then the conformal 2-form is recurrent, i.e. DQ’(”C)I =
a A Qz’é) .-

3. Recurrent Conformal 2-Forms and Conformal Transformations

In this section, we study the behavior of recurrent conformal 2-forms under con-
formal transformations of the metric tensor. Let M be an n-dimensional pseudo-
Riemannian manifold with the metric tensor gi;. The metric transformation gi; =
€27 g1 being o a scalar function defines a conformal transformation which leaves the
angle between two vectors unchanged (see [71, 72; 56, p. 238)); if the scalar function
is constant the transformation is called homothetic (see [66]). It is well-known that
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under conformal transformations the Christoffel symbols change as follows:

being X; = V,o a closed 1-form. It is a matter of fact that under a conformal
transformation the Weyl tensor remains unchanged (see [56, p. 241]), i.e.:

O = Clia- (44)

We take a covariant derivative V of the tensor Cj,, obtaining after straight-
forward calculations recalling that we have Cjklm = €27 Cljpm (see [56, p. 241]
and [71)):

ViCikim = ViCikim — 4XiCikim — X;Cikim — X1Ciikim — XmCjrti
+ 95 XP Cprim + 91 XP Clipim + 9i XPClirpm + gmiXPClirip. (45)

Now three versions of the previous equation with cyclically permuted indices
1,7, k are written and summed up to obtain:

ViCikim + ViClitm + ViCijim = ViCikim + V;Critm + VCijim
—2XCjrim — 2X;Citim — 2X1.Cliim
+ 9 XPCikpm + 91; XP Cripm
+ 9 X Cijpm + gmiXP Cjrp
+ 9mi XPCritp + gmi XPCljip. (46)
We may thus state the following result.

Theorem 24. Let M be an n-dimensional pseudo-Riemannian manifold with
recurrent conformal curvature 2-form, i.e. DQ’(”C)I =XA Q?&)l being X closed. If
Vi Cliy = 0 then a conformal change may be chosen such that ?mCﬁl =0.

Proof. Recalling that X is closed, take the conformal change such that X; =
Vio. Now from the definition of recurrent conformal 2-form V;Cjiim + V;Critm +
vkcijlm = Xicj'k-lm +chkilm +XkCijlm with the condition VmCﬁd = 0 recalling
Proposition 10 we have X;Cxim + X;Critm + XxCijim = 0 and thus X™Cjrim = 0.
From Eq. (46) we infer simply V;Cjxim + VjChitm + ViCijim = 0: contracting with
g™ we get V™ Cligim = 0. |

4. Riemann- and Weyl-Compatible Tensors

In this section, we review the notions of Riemann- and Weyl-compatible tensors.
These notions were introduced by one of the present authors and deeply investigated
in [38-40]. Moreover applications of the extended Derdzinski-Shen’s theorem [38]
to particular Weyl-compatible tensors give some interesting new results about the
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vanishing of particular scalars associated to the Weyl tensor. Moreover some new
useful theorems will be pointed out.

Definition 25. A symmetric tensor by; is named Riemann-compatible (see [38, 39])
if it satisfies the following algebraic condition:

This definition arises naturally even on a manifold endowed with a symmetric
connection when considering the exterior covariant derivative of the vector-valued
1-form given by B; = brydx®. A first covariant derivative brings:

1 .
DBy = 5Ojpda’ A dz®, (48)

being O x =: V;bi — Vibj a (0, 3) tensor defined in [39] as the Codazzi deviation

tensor. The following statement is well-known in literature:

Theorem 26 (See [17, 39]). Let M be an n-dimensional manifold endowed with

a symmetric connection: then DB; = 0 if and only if by is a Codazzi tensor.
Whether DB # 0 or not a further covariant derivative brings [40]:

1
2-3!
With standard algebraic manipulations the previous expressions may be written in
the form:

D’B; = Vi@jkﬁij;dxr Adx® A dat. (49)

1 ..
DQBl = 5 Z Vi@jklfsmkdxr Adz® A dxt

rst
r<s<t
= Y (VeOuu + ViOui + ViOrq)da” Ada® Ada'. (50)
r<s<t

Now the following identity links the Codazzi deviation tensor to the Riemann tensor
(see [39] and [40] for further details):

Vi@jkl + Vj@kil + vk@ijl = bimR?}cl + bijZ;L»l + bka?}l' (51)
Thus the following result is easily inferred [40]:

Theorem 27. Let M be an n-dimensional manifold endowed with a symmetric
connection: then D*B; = 0 if and only if by is Riemann-compatible.

On the other hand, the notion of Weyl compatibility obviously needs the pres-
ence of a pseudo-Riemannian metric and we suppose also Vig; = 0. The next
theorem follows immediately from [39, Theorem 7.6] (see also [40]).

Theorem 28. Let M be an n-dimensional pseudo-Riemannian manifold. If a sym-
metric tensor by is Riemann-compatible then it is also Weyl-compatible, i.e. it sat-
isfies the condition:

bim Cliy + bjm Oy + b CLy = 0. (52)
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The existence of Weyl-compatible tensors poses strong restrictions on the struc-
ture of the Weyl tensor. The following extension of Derdzinski and Shen’s theorem
was proved in [38] by one of the present authors (see also [45] for an alternative
proof).

Theorem 29 ([45]). Let M be an n-dimensional pseudo-Riemannian manifold
with a Weyl-compatible tensor by. If X,Y, Z are eigenvectors of b with eigenvalues
v (e, b1 X = AXG,bY; = pY;, blZ; = vZ;) then:

XIY*Z Clppn = 0, v # A\, . (53)

It will be shown that the previous theorem may allow some particular scalars
associated to the Weyl tensor to vanish. A simple example of application of this
deep result is given in the following example.

Example 5. Consider the Weyl compatibility of the symmetric tensor:
bab = )\1 (XaYE) + XbYa) + )\2(ZaWb + ZbWa)a (54)

being XY, Z, W four null vectors with the properties XY, =1, Z°W, =1 while
all others scalar products vanish. It easy to see that the four vectors are eigenvectors

of bap,i.e.:
X%ap = M1 Xy,
Y%ap = 1Y,
Z%ab = A2 Zp,
Wby = Ao W,

If A1 # A2 a simple consequence of the extended Derdzinski-Shen theorem are
the following sets of relations:

XYl Z¢Chpeq = 0, ZWCChhpeq = 0,
XaYbWCCabcd = Oa ZaWchCabcd = 07

Thus the following sets of scalars vanish:

XY Z¢XCpeq = 0, XY 'WeXCupea = 0,
I{ XY ZYIC0 g =0, I XY'WeYLC,pq = 0,
XY ZWILCpeq = 0, XY WeZICyupeq = 0,

(55)
ZeWbYeX 40, p.q = 0, ZW XY Chpeq = 0,
HI ZWPYeZ9C0eq =0, IV ZOWPX°ZC0p.q = 0,
ZWOY WaC e = 0. ZW X WACypeq = 0.

1450056-16



Recurrent conformal 2-forms on pseudo-Riemannian manifolds

We have thus proven the following.

Theorem 30. Let M be an n-dimensional pseudo-Riemannian manifold. If the
tensor bay, = M (XoYs + XpYa) + X (Z Wy + Z,W,) (with the properties XY, =
1, Z°W, = 1 while all other scalar products vanish) is Weyl-compatible and Ay # A2
then Egs. (55) are fulfilled.

In view of Theorems 19 and 30, we may assert.

Corollary 31. Let M be an n-dimensional pseudo-Riemannian manifold with
recurrent conformal 2-form, i.e. with DQ’(%)l = aA Q?(lj)l being « closed. If the
Ricci tensor (or the stress-energy tensor) is of the form Ra, = M (XY, + X3 Ya) +
Ao (Z Wy + ZpyW,,) with A1 # Ao then Egs. (55) are satisfied.

Remark 32 (See [67]). In Example 2 in Sec. 2 we have introduced an indefinite
complete complex hypersurface of index 2n in an indefinite complex Euclidean space
C27*1 of index 2n as follows:

22l = Zjhj(zj +¢277),  hj(z) = 2P,

where ¢ is any complex number such that |¢| > 1. In such a case we have known that
the Ricci tensor is flat if |¢| = 1. The complex hypersurface M of index 2n in C2n+1
of index 2n defined above is conformally recurrent. Here, we have known that its
conformal curvature tensor is coclosed, that is, harmonic V MC,]X[BC = 0, which is
neither locally symmetric nor conformally flat if p > 3. From this, together with
Proposition 10, it follows that the hypersurface M has a closed recurrent conformal
2-form, that is, DQ%)l = aﬂ%)l = 0. Moreover, the recurrent parameter 1-form is
coclosed, that is, V;a; = V. This gives an example of Theorem 40 in Sec. 5.

On four-dimensional Lorentzian manifold a stress-energy tensor of the form (54)
is typical of a non-null Maxwell field (see [66, p. 62]).

Some other properties involving particular classes of Weyl-compatible tensors
may be pointed out without directly using Derdziniski-Shen’s theorem: they are
based only on the definition of Weyl compatibility. Let us consider for example the
following one:

brr = A X1 X1, (56)
where we suppose that X*X; = 0. Weyl’s compatibility reads in full:
Xi X" Clgim + X; X" O + X X O = 0. (57)

Now consider a vector Y orthogonal to X, i.e. X*Y}, = 0; the previous expression
is thus multiplied by X?Y7Y! to get easily:

Xp(X'XIYX™Cij1m) = 0, (58)
from which the following scalar vanishes:
XYIX"™Y'Cijim = 0. (59)
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On the other hand transvecting Eq. (57) with X?Y7Z! being Z any other arbi-
trary vector it is inferred:

Xp(XYIZX™Cyjim) = 0, (60)
from which the following scalar vanishes
XYIX"Z'Cjim = 0. (61)
We have just proven the following.
Theorem 33. Let M be an n-dimensional pseudo-Riemannian manifold. If the
symmetric tensor by = AX, X (with XkX,, = 0) results to be Weyl-compatible then

XinXmYlCijlm =0 and XinXleCijlm = 0 for any vector Y orthogonal to X
and for any other vector Z.

In view of Theorems 19 and 33, we may assert.

Corollary 34. Let M be an n-dimensional pseudo-Riemannian manifold with
recurrent conformal 2-form, i.e. with DQ’(”C)I = a/\Qz’é)l being a closed. If the Ricci

tensor (or the stress-energy tensor) is of the form Ry = AXpX; (with X*X} = 0)
then XinXmYlCijlm =0 and XinXleCijlm =0 for any vector Y orthogonal to
X and for any other vector Z.

Remark 35. On a four-dimensional Lorentzian manifold a stress-energy tensor of
the form (56) is typical of a null Maxwell field or a pure dust field (see [66, p. 61]);
in particular a Ricci tensor of the form by, = AX X, in (56) emerges from a pp-wave
metric (see [27, Eq. (8.11)] and Sec. 6).

On a four-dimensional Lorentzian manifold a stress-energy tensor of the form
(56) is typical of a null Maxwell field or of a pure dust field (see [66, p. 61]).

Now we stress other consequences of Weyl compatibility. Let us consider a sym-
metric Weyl-compatible (0, 2) tensor written as follows:

bri = N X Xp + XYY, (62)

where X*X,, = 1, V,Y* = 1, X*Y}, = 0. Let Z* be a vector belonging to the null
space of b, i.e. Z*by; = 0. In this case Derdzinski-Shen theorem gives:

X"Y'Z*Cpm = 0, (63)

if the condition A, A2 # 0 is satisfied. Another useful consequence is obtained if
the condition of Weyl compatibility is written in full:

MXi XmCly + M X; X Cilly + M Xk X Gy
+ XYY Cliy + XYY Oy + XY Y O = 0. (64)

The previous expression (64) is thus multiplied by Y to give:
X X"V Clrim + X; XY Critn, + Xp XY Cijirn = 0. (65)
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On the other hand on transvecting (64) with X' brings:
YY" X O + YY" X Critm, + YY" X'Cijim = 0. (66)
Now (65) is multiplied by Y recalling that X*Y}, = 0; we thus infer that:
X; XYY Cormi — X XYY Cljpy = 0. (67)
Define the (0,2) symmetric tensor Dy, = Cipmi Y'Y then:
X; X" D = X4 X" Djpm. (68)

Thus X™Dy,,, = Xk(XijDjm), and X turns out to be an eigenvector of the
symmetric tensor D. On an n = 4 Lorentzian manifold and if Y is time-like, D
identifies with the electric part of the Weyl tensor (see [4] and Sec. 6).

Theorem 36. Let M be an n-dimensional pseudo-Riemannian manifold. If the
symmetric tensor by = M X X; + A\2YrY; results to be Weyl-compatible, then X
turns out to be an eigenvector of the symmetric tensor Dy, = il Y 'YL Moreover
if M is a four-dimensional Lorentzian manifold and if Y is time-like, then X turns
out to be an eigenvector of the electric part of the Weyl tensor.

Consider now the same Weyl-compatible tensor (62) with the properties X*X; =
0, .Y* = 0, X*Y}, = 1. In this case, Eq. (65) is multiplied by X*Y7Z* being
Z*X; = 0 to give easily:

X ZEX ™Y Critrm = 0. (69)
On the other hand on multiplying Eq. (66) by Y'X7Z* being Z*Y;, = 0 it is inferred
that

Y™ X'Z5Y  Crim = 0. (70)
Thus, the following result holds:

Theorem 37. Let M be an n-dimensional pseudo-Riemannian manifold. If the
symmetric tensor by = M XX, + AoYiY), is Weyl-compatible (being XkX, =0,
YiYF =0, X*Y, = 1), then X'ZEX™Y ! Crity = 0 and Y X'Z*Y Chityn = 0 for
any vector Z being orthogonal both to X and Y.

In view of Theorems 19 and 37, we may assert.

Corollary 38. Let M be an n-dimensional pseudo-Riemannian manifold with
recurrent conformal 2-form, i.e. with DQ%)l =aA Q?}J)l being « closed. If the
Ricci tensor (or the stress-energy tensor) is of the form Ri = M XX + AYiY]
(being X*X, = 0, Y% = 0, XFY, = 1) then X Z"X™Y'Chitn = 0 and
Y"X ' ZFY  Criim = 0 for any vector Z being orthogonal both to vector fields X
and Y on M.
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5. Recurrent Conformal 2-Forms and Pontryagin Forms

In this section, we prove some topological properties of n-dimensional pseudo-
Riemannian manifolds equipped with recurrent conformal 2-form. First, we need
some background material about Pontryagin forms. Consider the following 4k forms
wr on an orthonormal basis of tangent vectors built with the Riemann tensor
(16, 49, 39]:

wi( X1+ Xa) = R Rig (X A X3)(XE A XG),

ija

wa(X1 -+ Xs) = R Re RE RO G(XTAXD) - (XE A XY). (71)

mnc’ Vpqd

The Pontryagin forms (see [49, 39] and also [56, pp. 317-318]) Py result from total
antisymmetrization of wy : Pi(X7 -+ Xup) = ZP(—l)pwk(Xl -+ Xy)) where P is
the permutation taking (1---4k) to (i1 ---i4).

In [16] the authors considered compact manifolds admitting indefinite metrics
with V;C7, = 0: they showed that in such case all the Pontryagin forms vanish.
We consider here first the topological consequences originating from a recurrent
conformal 2-form with harmonic conformal curvature tensor, i.e. with V,,,C7, = 0:

from Proposition 10 and Lemma 11 we have thus Cfijqu = 0. Now as shown
by Avez [2] (see also [16]) in the definition of the forms wy one may replace the

Riemann curvature tensor with the conformal curvature tensor, i.e. for example:

wi(X1 -+ Xq) = O, Ol (X1 A X3)(X5 A XG). (72)

ija
In the case of recurrent conformal 2-forms with harmonic conformal curvature
tensor it is thus w; = 0 and the following theorem is stated.

Theorem 39. Let M be an n-dimensional pseudo-Riemannian manifold with
recurrent conformal 2-form, i.e. with DQ?}J)l =aAl Q?é‘)l: if Vin Oy = 0 the first
Pontryagin form vanishes, i.e. P = 0.

Let us now consider a compact orientable four-dimensional pseudo-Riemannian
manifold. The vanishing of the first Pontryagin form has a deep topological conse-
quence. In fact the Hirzebruch’s signature theorem (see [31] and [56, pp. 229-230])
can be written as follows:

S(M) = /M P (73)

In the previous expression 7(M) is the Hirzebruch’s signature: it is a topologi-
cal invariant that coincides with the usual topological signature. We conclude the
following theorem.

Theorem 40. Let M be a compact orientable n-dimensional pseudo-Riemannian
manifold with recurrent conformal 2-form, i.e. with DQ%)l =aA Q?é‘)l: if Vil =
0 the Hirzebruch's signature is null.

1450056-20



Recurrent conformal 2-forms on pseudo-Riemannian manifolds

Further in [39] the authors pointed out that in the Riemannian case the R-
compatibility of a real symmetric tensor by; equipped with n distinct eigenvalues
implies all the Pontryagin forms to vanish ([39, Theorem 5.3]). We recall that in the
pseudo-Riemannian case (or in the Lorentzian case) the eigenvectors and the eigen-
values are often complex (see [63] or Hall [27, p. 202]). We take into consideration
a symmetric R-compatible tensor by; that may be written in the form:

bt = M Xk (D)X3(1) + Mo X (2)X0(2) + - - - + M X (n) X3 (n), (74)

where X7(a)X(b) = €d4p is an orthonormal basis of the pseudo-Riemannian mani-
fold and \; # Ay # -+ - # A, In view of the generalized Derdziriski-Shen’s theorem
[39] it is:

RIX(a)' A X(b)X(c)p =0, a#b+#c. (75)

It follows that all column vector of the matrix M (a,b) = Rf}X(a)i A X (D) are
orthogonal to X (c), i.e. they belong to the subspace spanned by X (a) and X (b).
Because of the antisymmetry of indices k, 1, it is M (a, b)* = A\ X (a)® A X (b) and
thus it is inferred that:

R X (a)' A X (b)Y = Aap X (a)" A X (b)". (76)

Now, it is easy to see that the generic Pontryagin form vanishes: for example
we have:

wi (X1 -+ Xy) = Ry, Ry (X] A X3) (X5 A XJ)
= A2 X34 (XT A X2p)(X3q A XJ)
=0
and so on. It is thus proven that the following statement holds.

Theorem 41. Let M be an n-dimensional pseudo-Riemannian manifold with a
symmetric Riemann-compatible tensor by of the form (74) with n distinct eigen-
values: then all Pontryagin form vanish.

Moreover considering Hirzebruch’s signature theorem we may prove, in four
dimensions.

Corollary 42. Let M be a four-dimensional compact orientable pseudo-Rieman-
nian manifold with a symmetric Riemann-compatible tensor by, of the form (74)
with four distinct eigenvalues: then the Hirzebruch's signature vanishes.

Remark 43. As an example for the previous Corollary 42 we may choose a (0, 2)
symmetric Codazzi tensor Vibj; = V by [17] with four distinct eigenvalues: in this
case such tensor is Riemann- and Weyl-compatible and the Hirzebruch’s signature
vanishes.
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6. Recurrent Conformal 2-Forms on Lorentzian Manifolds

In this section, we study the properties of recurrent conformal 2-forms on Lorentzian
manifolds (space-times). Previous theorems stated on a pseudo-Riemannian man-
ifold of arbitrary signature are then interpreted in the light of the classification
of space-times in four or in higher dimensions. In particular the applications of
extended Derdzinski—Shen theorem and the consequence of Weyl’s compatibility
offer the backbone for the vanishing of some scalars involving the Weyl tensor. This
gives rise to some constrictions on the Petrov types of such space-times.

We begin with a review of Petrov classification of four-dimensional space-times
(see [27, 54, 55, 66]). This is the algebraic classification of the dual part of the Weyl
tensor in terms of its eigenvalues and eigenvectors (see [27, 66]). It turns out that
the eigenvalues of the Weyl tensor satisfy a fourth-order equation. The eigenvalue
multiplicity classifies five different types of space-times. Thus for Petrov type I
space-time the quartic roots are all distinct, for type II one double root is present,
for type D there are two double roots, for type III one triple root is found, and
finally for type N there is a four-fold root.

The completely degenerate case of conformally flat space-time forms the sixth
type (named O). To be more concrete on a four-dimensional Lorentzian manifold (a
manifold with metric signature +2) let us consider the null tetrad given by k, 1, m,m
being k and [ two real null vectors and m, m two complex conjugate null vectors
such that k*l, = —1,m%mn, = 1 and all remaining scalar products vanishing. The
following bivectors are then defined:

Uab = —lamp + lyMq,
Vab = kamp — kyma, (77)
Wap = mamy — mpma — kol + Fplg.
Then the Weyl tensor may be expanded as follows (see [66, p. 38] or [27, p. 191]):
Cabed = YoUabUcd + 1 (UabtWea + WapUca)
+2(VavUcd + UapVed + Wap Wea)
+¥3(VasWed + WapVea) + ¥aVapVea. (78)

In this expression the five complex coefficients g, 11,12, 3,1%4 are named
Weyl’s scalars [65, 66]. One obtains:

Yo = Capeak®m’km?,

1 = Capeak 1"k m?,

g = Capeak®1"m1°, (79)
P4 = Capeam®1Pme1?,

Yo = Capeak®mbincle.
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Thus it turns out that for Petrov type I it is 19 = 0, for Petrov type II or D it is
o = 11 = 0, for Petrov type III we have ¢y = 11 = 19 = 0, for Petrov type N it
is g = Y1 = 9 = 13 = 0 and finally for Petrov type O all Weyl’s scalar vanish
(see [65, Table 32.1, p. 276]).

Hereafter let M be a four-dimensional Lorentzian manifold on which the con-
formal 2-form is recurrent with closed recurrence parameter: from Theorem 19 any
stress-energy tensor Ty results to be Weyl-compatible. Choose Ty, = ®2k, ki where
® is a complex function: it represents the stress-energy tensor of a pure dust model
(see [66, p. 61]) or a null radiation field. In view of Theorem 33 and Corollary 34
choosing X = k, Y = m, Z = | we have thus ECmPkemiCupeqd = Po = 0 and
k41 kemACopeq = Y1 = 0. We have thus proved the following.

Theorem 44. Let M be a four-dimensional Lorentzian manifold endowed with a
recurrent conformal 2-form, i.e. with DQ%)l =aA Q?}J)l being « closed. If the
stress-enerqgy tensor is of null dust type, i.e. Ty, = ®?kyky, then the Weyl's scalars
Yo and Yy vanish and the Petrov types of such space-time is II or D.

Consider now a stress-energy tensor Ty of the form given in Example 2:

Ty = M (k’alb + kbla) + Ao (mamb + mbma). (80)

‘We have simply kTuy = —Aky, 19Tuy = —Aly, m®Tap = Aomy, m@T ., = Aoy,
and thus in view of Theorem 30 and Corollary 31 if in this case A\; # — A2 we have
for example k*1’mck?Cpeq = 1 = 0 and k*mCl%Cpeq = 3 = 0. We may state
the following.

Theorem 45. Let M be a four-dimensional Lorentzian manifold endowed with a
recurrent conformal 2-form, i.e. with DQ’(”C)I = aA Q?&)l being « closed. If the

stress-energy tensor is of the form Ta, = M (kolp + kpla) + A2 (mamy + mymyg) with
A1 # — Ao then the Weyl’s scalars 11 and 13 vanish.

We here note that the stress-energy tensor of a non-null electromagnetic field
may be written in the form (see [66, p. 62])

Top = 2®1(I)2(kalb + kply +mamyp + mbma)

and the hypothesis of the previous theorem are satisfied.
An equivalent classification of four-dimensional Lorentzian manifolds arises from
Bel and Debever criteria (see [3, 12]) which are based on null vectors k satisfying

increasingly restricted conditions as follows:
(a) typel kpColpsighn k" k® =0,
(b) typell,D kpCqrsqk"k* =0,
(¢) typelll kpCuyrsgh” =0, (81)
(d) typeN Corsgk” =0,
(e) typeO Copsg = 0.
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When k satisfies condition (b) the Weyl tensor is named algebraically special
(see [62, 65, 66]).

Consider now a four-dimensional Lorentzian manifold endowed with a recurrent
conformal 2-form satisfying the further condition VmCﬂl = 0: in view of Proposi-
tion 10 we have aiC]”,’Cl + ;O + akCZ?l = 0 and thus amCﬂl = 0 being « a null
vector. Choosing k = « in the null tetrad formalism we obtain a type N space-time.
We may state the following.

Theorem 46. Let M be a four-dimensional Lorentzian manifold endowed with a
recurrent conformal 2-form, i.e. with DQ%)l = oz/\Q?é)l. If the condition V,,,CTy) =
0 is fulfilled then the space-time is of Petrov type N with respect to the null vector
Q.

Remark 47. A space-time admitting a covariantly constant null vector field &, i.e.
Vika = 0 is named plane-fronted gravitational waves with parallel rays (pp-waves)
(see [27, p. 248] and [66, pp. 383-384]). A metric of the form ([27, Eq. (8.11)])

ds* = H(z,y,u)du? + 2dudv + dz* + dy?,

satisfies this condition: these space-times are either of Petrov type N or conformally
flat; moreover the pp-waves are complex recurrent with closed recurrence parameter
and thus satisfy Eq. (25) and the conformal 2-form results to be recurrent. The Ricci
tensor satisfies ([27, Eq. (8.12)]):
0°H  0°H
Rop = (W + (9—y2 kaks,

being k, = V,u results to be Weyl-compatible. This gives an example of a space-
time of the Petrov type N which satisfies (2.18).

On a four-dimensional Lorentzian manifold it is possible to define the electric
and magnetic part of the Weyl tensor (see [4, 66]). Precisely given a time-like
velocity vector u® (i.e. u;u’ = —1) the following (0,2) tensors are defined:

B = v/ u"Cjgim,
1 af af (82)
Hyg = Ju'u™ (€apjnCly + €apitCpm ),

where €1, is the completely skew-symmetric Levi-Civita symbol. The tensor Ky,
is named electric part of the Weyl tensor, while the tensor Hy; is named magnetic
part of the Weyl tensor; elementary properties are found to be [4]:

9" = ¢"Hy = 0,
ukEkl = ukal =0.

Moreover, the Weyl tensor is uniquely decomposed in its electric and magnetic
parts. In [4] it was specified that Eq. (82) is valid also in the case w;u® = 1. A
fundamental property of the magnetic part of the Weyl tensor satisfying condition
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(30) was stated: we stress it again for completeness. We focus on stress-energy
tensors of the perfect fluid form Ty = augu; + bgi (see [66, p. 61]) with normalized
covectors u;: in this case such covector permits the decomposition of the Weyl
tensor. Equation (40) takes the form:

W™ O 4w um O+ uFu™ O = 0. (83)
The previous equation is thus multiplied by e;;x, to get:
Eijkpuu™ O 1 eI U™ CR 4 egjpuFu™C = 0.

Recalling the skew-symmetric properties of the Levi-Civita symbol we simply
have:

i, m gk k, m ~ij ij
Cijkpu'u" Oy = Epijpu”u C —6”kpu u™Cyl

ij
5”kpu7u sz = qklpuju sz = &Jkpu u™Cyl

Thus we infer that 3¢;j,,u*u™C;? = 0 and so the magnetic part of the Weyl tensor
vanishes.

Theorem 48. Let M be a space-time manifold having a Weyl-compatible stress-
energy tensor of the perfect fluid form Ty = augu; + bgr;. Then the magnetic part
of the Weyl tensor vanishes.

Remark 49. Godel solution of Einstein’s equation ([26]) is known to be:
1
ds® = a® <—(dx1)2 + 562”31(033:2)2 — (dz®)? + (dz*)* + 2€2m1dl‘2dl‘4> ,

2 = L wis anon-null real constant. In [21] the authors pointed out several

where a
curvature properties of Godel space-time: among others they proved ([21, Eq. (19)
and Theorem 2]) that the Ricci tensor of Godel space-time is Riemann- and Weyl-
compatible, and results to be of rank 1, namely Ry; = kwyiw; being k = alz and w;
the 1-form defined as w = (O,aeml,O, a). Moreover, the form w; is Riemann- and
Weyl-compatible (see [40]). We have then wiw,,,C7y + wjwmCy + wkwn Oy = 0
and the Godel space-time results to be purely electric.

Space-times in which Hy; = 0 are named purely electric (see [4, 66]) space-
times, while the condition Ej; = 0 defines purely magnetic space-times [4, 66]. It is
well-known that purely electric space-times are of Petrov type I, D or O [66]. We
have thus the following theorem.

Theorem 50. Let M be a four-dimensional Lorentzian manifold endowed with a
recurrent conformal 2-form, i.e. with DQ%)l =aA Q?}J)l being « closed. If the
stress-energy tensor of the perfect fluid form Ty = augu; + bgg; then Hy = 0 and
the Petrov types are I or D.

Hereafter we investigate m-dimensional Lorentzian manifolds on which the
conformal curvature 2-form is recurrent. The Bel-Debever classification was
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recently extended to the n-dimensional case by some authors and it is exposed
in several references such as [7, 8, 30, 48, 51]. Here, we refer to the classification
given in [51, Table 1]. The supplementary condition VmC]”,’Cl = 0 gives again
aiCﬂl + ;O + oszZ?l = 0: in this case this matches with the n-dimensional
space-time of type N (see [51, Table 1]). We have inferred the following result.

Theorem 51. Let M be an n-dimensional Lorentzian manifold endowed with a

recurrent conformal 2-form, i.e. with DQ%)l = oz/\Q?é)l. If the condition V,,,CTy) =
0 is fulfilled then the space-time is of Petrov type N with respect to the null vector a.

Again consider an n-dimensional Lorentzian manifold endowed with recurrent
conformal 2-form and with the stress-energy tensor of a pure dust model, i.e. T, =
D2k, ky; the Weyl compatibility condition reads:

kakmcbclm + kbkmccalm + kckmCablm =0. (84)

It is readily seen that this condition matches with type II; space-time of [51,
Table 1]. We have thus the following theorem.

Theorem 52. Let M be an n-dimensional Lorentzian manifold endowed with a
recurrent conformal 2-form, i.e. with DQ?}J)l =aAl Q?é)l being o closed. If the
stress-energy tensor is of null dust type, i.e. Toy, = ®kyoky, then the Weyl tensor is
of type Il 4 with respect to k.

In [30] the notions of purely electric and purely magnetic Weyl tensor was
extended to n-dimensional Lorentzian manifolds. In particular it was stated (see
[30], Proposition 3.5) that the Weyl tensor is purely electric with respect to the
time-like vector w if and only if Eq. (83) holds. Thus the results of Theorem 50 are
readily extended to n-dimensional Lorentzian manifolds.
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