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Real Hypersurfaces in Complex Two-Plane
Grassmannians with Reeb Parallel Structure
Jacobi Operator

Imsoon Jeong, Seonhui Kim, and Young Jin Suh

Abstract. In this paper we give a characterization of a real hypersurface of Type (A) in complex two-
plane Grassmannians G2(Cm+2), which means a tube over a totally geodesic G2(Cm+1) in G2(Cm+2),
by means of the Reeb parallel structure Jacobi operator∇ξRξ = 0.

1 Introduction

In the geometry of real hypersurfaces in complex space forms or in quaternionic
space forms, there have been many characterizations of homogeneous hypersurfaces.
For example, in complex projective space CPm we call them real hypersurfaces of
type (A1), (A2), (B), (C), (D), and (E); in complex hyperbolic space CPm, of type
(A0), (A1), (A2), and (B); in quaternionic projective space HPm, of type (A1), (A2),
and (B); and in quaternionic hyperbolic space HHm, of type (A0), (A1), (A2), and
(B). They are completely classified by Kimura [12], Berndt [2, 3], and Martinez and
Pérez [15].

Now let us consider a complex two-plane Grassmannian G2(Cm+2), which con-
sists of all complex 2-dimensional linear subspaces in Cm+2. The complex two-plane
Grassmannian G2(Cm+2) is known to be the unique compact irreducible Riemannian
symmetric space equipped with both a Kähler structure J and a quaternionic Kähler
structure J not containing J (see Berndt and Suh [5, 6]). Accordingly, in G2(Cm+2)
we have two natural conditions for a real hypersurface M so that [ξ] = Span{ξ}
or D⊥ = Span{ξ1, ξ2, ξ3} is invariant under the shape operator. Here ξ = − JN,
ξν = − JνN, ν = 1, 2, 3, and N is a local unit normal vector field on M.

Using the two invariant conditions mentioned above, Berndt and Suh proved the
following theorem.

Theorem 1.1 (Berndt and Suh [5]) Let M be a connected orientable real hypersurface
in G2(Cm+2), where m ≥ 3. Then both [ξ] and D⊥ are invariant under the shape
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operator of M if and only if M is one of the following types:

Type (A) M is an open part of a tube around a totally geodesic Grassmannian G2(Cm+1)
in G2(Cm+2).

Type (B) m is even, say m = 2n, and M is an open part of a tube around a totally
geodesic quaternionic projective space HPn in G2(Cm+2).

Furthermore, the Reeb vector field ξ is said to be Hopf if it is invariant under the
shape operator A. The 1-dimensional foliation of M by the integral manifolds of
the Reeb vector field ξ is said to be a Hopf foliation of M. We say that M is a Hopf
hypersurface in G2(Cm+2) if and only if the Hopf foliation of M is totally geodesic. By
the formulas in Section 3 it can be easily checked that M is Hopf if and only if the
Reeb vector field ξ is Hopf. In such a case, the Reeb flow of ξ on M is said to be
geodesic, and we say M is a real hypersurface with geodesic Reeb flow.

Remark 1.2 Related to a geodesic Reeb flow, we give an example of a ruled real
hypersurface M in G2(Cm+2) that is not Hopf. It is foliated by complex hypersurfaces
that include a maximal totally geodesic submanifold G2(Cm+1) in G2(Cm+2) (see Choi
and Suh [7]). Its integrable distribution is given by T0(x) = {X∈TxM|X⊥ξ}, and the
expression of the shape operator A of M is given by

Aξ = αξ + βU , AU = βξ, and AX = 0

for any X orthogonal to ξ and U . By virtue of the expression of the shape operator, we
know that the distribution T0(x) is integrable. Then the shape operator never com-
mutes with the structure tensor φ. Usually, the function α = g(Aξ, ξ) is not constant
along the direction of ξ, because ξα = g((∇ξA)ξ, ξ) cannot vanish in general. Of
course, the Reeb vector field for a ruled hypersurface M in G2(Cm+2) does not have a
geodesic Reeb flow; that is, M is not Hopf.

The Reeb vector field ξ on M is called Killing if the Reeb flow on M in G2(Cm+2)
is isometric. It is denoted by Lξg = 0, where L (resp. g) denotes the Lie derivative
(resp. the induced Riemannian metric) of M in the direction of the Reeb vector field
ξ. This means that the metric tensor g is invariant under the Reeb flow of ξ on M.

In [6], Berndt and Suh have given a characterization of real hypersurfaces of
Type (A) in Theorem 1.1 when the shape operator A of M in G2(Cm+2) commutes
with the structure tensor φ. This is equivalent to the condition that the Reeb flow on
M is isometric.

By using such a notion, Berndt and Suh [6] gave the following characterization of
Type (A) in G2(Cm+2).

Theorem 1.3 Let M be a connected orientable real hypersurface in G2(Cm+2), m ≥ 3.
Then the Reeb flow on M is isometric if and only if M is an open part of a tube around
a totally geodesic G2(Cm+1) in G2(Cm+2).
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On the other hand, for real hypersurfaces of Type (B) in G2(Cm+2), Lee and Suh
[14] recently proved the following theorem.

Theorem 1.4 Let M be a connected orientable Hopf hypersurface in G2(Cm+2), m ≥ 3.
Then the Reeb vector field ξ belongs to the distribution D if and only if M is locally
congruent to an open part of a tube around a totally geodesic HPn in G2(Cm+2), where
m = 2n.

Now we introduce the notion of structure Jacobi operator Rξ defined by

Rξ(X) = R(X, ξ)ξ,

where R(X,Y )Z denotes the curvature tensor of M in G2(Cm+2) for any tangent vector
fields X, Y , and Z on M. Then the structure Jacobi operator Rξ for the Reeb vector
ξ is said to be parallel if the covariant derivative of the structure Jacobi operator Rξ
vanishes, that is, if∇XRξ = 0 for any vector field X on M.

Related to such a structure Jacobi operator Rξ , many authors have studied some
geometric properties for real hypersurfaces in complex space form Mn(c). In [11],
Ki, Pérez, Santos, and Suh investigated the covariant derivative∇ξS = 0 for the Ricci
tensor S and the parallel structure Jacobi operator ∇ξRξ = 0 along the direction
of ξ. In [19], Pérez, Santos, and Suh classified real hypersurfaces in CPm with a
ξ-invariant structure Jacobi operator, that is, LξRξ = 0. Also, they proved the non-
existence of any real hypersurfaces in CPm with a D-parallel structure Jacobi operator
∇XRξ = 0 for any X ∈ D, where the distribution D is defined by the subspace
Dx = { X∈ TxM | X⊥ ξ }, x ∈ M. So the distribution D becomes an orthogonal
complement of the Reeb vector field ξ on real hypersurfaces in CPm (see [20]).

Moreover, Pérez, and Suh [17] classified real hypersurfaces in quaternionic projec-
tive space HPm whose curvature tensor is parallel in the direction of the distribution
D⊥, that is, ∇ξi R = 0, i = 1, 2, 3. In such a case they are congruent to a tube of
radius π

4 over a totally geodesic HPk in HPm, 2 ≤ k ≤ m− 2.
But in complex two-plane Grassmannians G2(Cm+2), if we consider these proper-

ties, the situation is quite different from that of CPm and HPm.
Recently, Jeong, Pérez, and Suh [10] proved that there does not exist a real hyper-

surface M in G2(Cm+2) with parallel structure Jacobi operator. Also, Jeong, Machado,
Pérez, and Suh [9] obtained the non-existence for real hypersurfaces in G2(Cm+2)
with D⊥-parallel structure Jacobi operator ∇XRξ = 0 for any X belonging to the
distribution D⊥ = Span{ξ1, ξ2, ξ3}.

Motivated by such a notion of parallel structure Jacobi operators, in this paper, we
consider the parallelism of Rξ on M in G2(Cm+2) in the direction of the Reeb vector
field ξ.

We note here that the Reeb parallel structure Jacobi operator∇ξRξ = 0 is weaker
than the parallel structure Jacobi operator ∇XRξ = 0 for any tangent vector field X
on M in G2(Cm+2).

In such a case we say that M has a Reeb parallel structure Jacobi operator. We can
give a characterization of Type (A) hypersurfaces in Theorem 1.1 as follows.
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Theorem 1.5 (Main Theorem) Let M be a connected orientable Hopf real hypersur-
face in G2(Cm+2), m ≥ 3, with Reeb parallel structure Jacobi operator. If the principal
curvature of the Reeb vector field ξ on M is non-vanishing and constant along the direc-
tion of the Reeb vector field ξ, then M is an open part of a tube around a totally geodesic
G2(Cm+1) in G2(Cm+2) with radius r ∈ (0, π

4
√

2
) ∪ ( π

4
√

2
, π√

8
).

Remark 1.6 When the function α = g(Aξ, ξ) vanishes identically, we know that
the ruled hypersurface M in G2(Cm+2) in Remark 1.2 becomes a minimal ruled real
hypersurface in G2(Cm+2) like in Kimura [13]and Ahn, Lee, and Suh [1] for real hy-
persurfaces in complex projective space CPm and complex hyperbolic space CHm,
respectively. In this case, the shape operator becomes

Aξ = βU , AU = βξ, and AX = 0

for any X orthogonal to ξ and U (see [8]). Then the Reeb vector field cannot be Hopf,
so we know that the structure Jacobi operator cannot be Reeb parallel.

2 Riemannian Geometry of G2(Cm+2)

In this section we summarize basic material about G2(Cm+2), for details refer to [4–6].
By G2(Cm+2) we denote the set of all complex two-dimensional linear subspaces in
Cm+2. The special unitary group G = SU (m + 2) acts transitively on G2(Cm+2) with
stabilizer isomorphic to K = S(U (2)×U (m)) ⊂ G. Then G2(Cm+2) can be identified
with the homogeneous space G/K, which we equip with the unique analytic structure
for which the natural action of G on G2(Cm+2) becomes analytic. Denote by g and k

the Lie algebra of G and K, respectively, and by m the orthogonal complement of k

in g with respect to the Cartan–Killing form B of g. Then g = k ⊕ m is an Ad(K)-
invariant reductive decomposition of g. We put o = eK and identify ToG2(Cm+2)
with m in the usual manner. Since B is negative definite on g, its negative restricted
to m×m yields a positive definite inner product on m. By Ad(K)-invariance of B this
inner product can be extended to a G-invariant Riemannian metric g on G2(Cm+2). In
this way G2(Cm+2) becomes a Riemannian homogeneous space, even a Riemannian
symmetric space. For computational reasons we normalize g such that the maximal
sectional curvature of (G2(Cm+2), g) is eight.

When m = 1, G2(C3) is isometric to the two-dimensional complex projective
space CP2 with constant holomorphic sectional curvature eight. When m = 2, we
note that the isomorphism Spin(6) ' SU (4) yields an isometry between G2(C4) and
the real Grassmann manifold G+

2 (R6) of oriented two-dimensional linear subspaces
of R6. In this paper, we will assume m ≥ 3.

The Lie algebra k has the direct sum decomposition k = su(m)⊕su(2)⊕R, where
R denotes the center of k. Viewing k as the holonomy algebra of G2(Cm+2), the center
R induces a Kaehler structure J and the su(2)-part a quaternionic Kaehler structure
J on G2(Cm+2). If J1 is any almost Hermitian structure in J, then J J1 = J1 J, and J J1

is a symmetric endomorphism with ( J J1)2 = I and tr( J J1) = 0.
A canonical local basis { J1, J2, J3} of J consists of three local almost Hermitian

structures Jν in J such that Jν Jν+1 = Jν+2 = − Jν+1 Jν , where the index ν is taken
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modulo three. Since J is parallel with respect to the Riemannian connection ∇ of
(G2(Cm+2), g), there exist for any canonical local basis J1, J2, J3 of J three local one-
forms q1, q2, q3 such that

∇X Jν = qν+2(X) Jν+1 − qν+1(X) Jν+2

for all vector fields X on G2(Cm+2).
The Riemannian curvature tensor R of G2(Cm+2) is locally given by

R(X,Y )Z = g(Y,Z)X − g(X,Z)Y + g( JY,Z) JX

− g( JX,Z) JY − 2g( JX,Y ) JZ

+
3∑

ν=1

{
g( JνY,Z) JνX − g( JνX,Z) JνY − 2g( JνX,Y ) JνZ

}
+

3∑
ν=1

{
g( Jν JY,Z) Jν JX − g( Jν JX,Z) Jν JY

}
,

(2.1)

where { J1, J2, J3} is any canonical local basis of J (see [4]).

3 Some Fundamental Formulas in G2(Cm+2)

In this section we derive some basic formulae and the equation of Codazzi and Gauss
for a real hypersurface in G2(Cm+2) (see [5, 6]).

Let M be a real hypersurface of G2(Cm+2), that is, a hypersurface of G2(Cm+2) with
real codimension one. The induced Riemannian metric on M is denoted by g, and∇
denotes the Riemannian connection of (M, g). Let N be a local unit normal vector
field of M and let A denote the shape operator of M with respect to N.

The Kähler structure J of G2(Cm+2) on M induces an almost contact metric struc-
ture (φ, ξ, η, g). More explicitly, we can define a tensor field φ of type (1,1), a vector
field ξ and its dual 1-form η on M by g(φX,Y ) = g( JX,Y ) and η(X) = g(ξ,X) for
any tangent vector fields X and Y on M. Then they satisfy

φ2X = −X + η(X)ξ, φξ = 0, η(φX) = 0, and η(ξ) = 1

for any tangent vector field X on M. Furthermore, let J1, J2, J3 be a canonical local
basis of J. Then each Jν induces an almost contact metric structure (φν , ξν , ην , g)
on M in such a way that a tensor field φν of type (1,1), a vector field ξν and its dual
1-form ην on M are defined by g(φνX,Y ) = g( JνX,Y ) and ην(X) = g(ξν ,X) for any
tangent vector fields X and Y on M respectively. Then they also satisfy the following:

φ2
νX = −X + ην(X)ξν , φνξν = 0, ην(φνX) = 0, and ην(ξν) = 1

for any tangent vector field X on M and ν = 1, 2, 3.
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Using the above expression (2.1) for the curvature tensor R of G2(Cm+2), the equa-
tions of Gauss and Codazzi are respectively given by

R(X,Y )Z = g(Y,Z)X − g(X,Z)Y

+ g(φY,Z)φX − g(φX,Z)φY − 2g(φX,Y )φZ

+
3∑

ν=1

{
g(φνY,Z)φνX − g(φνX,Z)φνY − 2g(φνX,Y )φνZ

}
+

3∑
ν=1

{
g(φνφY,Z)φνφX − g(φνφX,Z)φνφY

}
−

3∑
ν=1

{
η(Y )ην(Z)φνφX − η(X)ην(Z)φνφY

}
−

3∑
ν=1

{
η(X)g(φνφY,Z)− η(Y )g(φνφX,Z)

}
ξν

+ g(AY,Z)AX − g(AX,Z)AY

and

(∇XA)Y − (∇Y A)X = η(X)φY − η(Y )φX − 2g(φX,Y )ξ

+
3∑

ν=1

{
ην(X)φνY − ην(Y )φνX − 2g(φνX,Y )ξν

}
+

3∑
ν=1

{
ην(φX)φνφY − ην(φY )φνφX

}
+

3∑
ν=1

{
η(X)ην(φY )− η(Y )ην(φX)

}
ξν ,

where R denotes the curvature tensor of a real hypersurface M in G2(Cm+2).
Now let us put

JX = φX + η(X)N, JνX = φνX + ην(X)N

for any tangent vector field X of a real hypersurface M in G2(Cm+2), where N denotes
a unit normal vector field of M in G2(Cm+2).

Then the following identities can be proved in a straightforward way and will be
used frequently in subsequent calculations:

φν+1ξν = −ξν+2, φνξν+1 = ξν+2, φξν = φνξ, ην(φX) = η(φνX),

φνφν+1X = φν+2X + ην+1(X)ξν , φν+1φνX = −φν+2X + ην(X)ξν+1.
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From this and the above formulae we have

(∇Xφ)Y = η(Y )AX − g(AX,Y )ξ, ∇Xξ = φAX,

∇Xξν = qν+2(X)ξν+1 − qν+1(X)ξν+2 + φνAX,

(∇Xφν)Y = −qν+1(X)φν+2Y + qν+2(X)φν+1Y + ην(Y )AX − g(AX,Y )ξν .(3.1)

Moreover, from J Jν = Jν J, ν = 1, 2, 3, it follows that

φφνX = φνφX + ην(X)ξ − η(X)ξν .

On the other hand, by using the fact of Aξ = αξ, α = g(Aξ, ξ), and the Codazzi
equation, we have

Yα = (ξα)η(Y )− 4
3∑

ν=1

ην(ξ)ην(φY )

for any tangent vector field Y on M in G2(Cm+2).
Now let us recall a lemma due to Berndt and Suh [6].

Lemma 3.1 If M is a connected orientable real hypersurface in G2(Cm+2) with geodesic
Reeb flow, then

αg
(

(Aφ + φA)X,Y
)
− 2g(AφAX,Y ) + 2g(φX,Y )

= 2
3∑

ν=1

{
ην(X)ην(φY )− ην(Y )ην(φX)− g(φνX,Y )ην(ξ)

− 2η(X)ην(φY )ην(ξ) + 2η(Y )ην(φX)ην(ξ)
}

for all vector fields X and Y on M.

On the other hand, we introduce the following lemma due to Jeong, Machado,
Pérez, and Suh [9].

Lemma 3.2 Let M be a Hopf real hypersurface in G2(Cm+2). If the principal curvature
α is constant along the direction of ξ, then the distribution D or D⊥ component of the
structure vector field ξ is invariant by the shape operator.

4 The Reeb Parallel Structure Jacobi Operator

In this section we give some lemmas which will be useful in the proof of Theorem 1.5.
Now we put the structure vector ξ = − JN into the curvature tensor R of a real hy-

persurface M in G2(Cm+2), where N denotes a unit normal vector of M in G2(Cm+2).
Then for any tangent vector field X on M in G2(Cm+2) we calculate the structure
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Jacobi operator Rξ in such a way that

RξX = R(X, ξ)ξ = X − η(X)ξ

−
3∑

ν=1

{(
ην(X)− η(X)ην(ξ)

)
ξν + 3ην(φX)φνξ + ην(ξ)φνφX

}
+ αAX − η(AX)Aξ,

(4.1)

where α denotes the function defined by g(Aξ, ξ).
Let us assume that the structure Jacobi operator Rξ on a Hopf hypersurface M in

G2(Cm+2) satisfies the Reeb parallelism (∇ξRξ)X = 0 for any tangent vector field X
on M. By differentiating (4.1), we have

0 = (∇XRξ)Y

= ∇X(RξY )− Rξ∇XY

= −g(φAX,Y )ξ − η(Y )φAX

−
3∑

ν=1

[
g(φνAX,Y )ξν − 2η(Y )ην(φAX)ξν + ην(Y )φνAX

+ 3
{

g(φνAX, φY )φνξ + η(Y )ην(AX)φνξ

− ην(φY )η(AX)ξν + ην(φY )φνφAX
}

+ 4ην(ξ){ην(φY )AX − g(AX,Y )φνξ} + 2ην(φAX)φνφY
]

+ η
(

(∇XA)ξ
)

AY + α(∇XA)Y − αη
(

(∇XA)Y
)
ξ

− αg(AY, φAX)ξ − αη(Y )(∇XA)ξ − αη(Y )AφAX

(4.2)

for any tangent vector fields X and Y on M.
If we put X = ξ and Y = X in (4.2), then we have

0 = (∇ξRξ)X

= 4α
3∑

ν=1

{
ην(φX)ξν − ην(X)φνξ − ην(ξ)ην(φX)ξ + ην(ξ)η(X)φνξ

}
+ (ξα)AX + α(∇ξA)X − 2α(ξα)η(X)ξ

(4.3)

for any tangent vector field X on M.

Remark 4.1 When the function α vanishes, the above equation gives that the struc-
ture Jacobi operator is Reeb parallel∇ξRξ = 0. Moreover, from Pérez and Suh [18],
we know that the Reeb vector field ξ belongs to either the distribution D or the dis-
tribution D⊥.
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Lemma 4.2 Let M be a connected orientable Hopf hypersurface in G2(Cm+2), m ≥ 3,
with Reeb parallel structure Jacobi operator. If the distribution D or D⊥ component of
the Reeb vector field ξ is invariant under the shape operator, then ξ belongs to either the
distribution D or the distribution D⊥.

Proof In order to prove this lemma, let us put ξ = η(X0)X0 + η(ξ1)ξ1 for some unit
vector X0 ∈ D and non-zero functions η(X0) and η(ξ1). By putting X = X0 into
(4.3) we have

0 = 4αη1(ξ)η(X0)φ1ξ + (ξα)AX0 + α(∇ξA)X0 − 2α(ξα)η(X0)ξ.

Using a method similar to that in [10, Lemma 3.1], we obtain φX0 = 0. This gives a
contradiction, which completes the proof of our lemma.

By Lemmas 3.2 and 4.2, we have the following lemma.

Lemma 4.3 Let M be a connected orientable Hopf hypersurface in G2(Cm+2), m ≥ 3,
with Reeb parallel structure Jacobi operator. If the principal curvature α is constant
along the direction of ξ, then the Reeb vector field ξ belongs to either the distribution D

or the distribution D⊥.

5 Proof of Theorem 1.5

In this section, we assume that M is a Hopf hypersurface in G2(Cm+2) with Reeb par-
allel structure Jacobi operator. Then by Lemma 4.2 we assume that the Reeb vector
field ξ belongs to the distribution D or the distribution D⊥.

First, let us investigate the case that the Reeb vector field ξ belongs to the distri-
bution D⊥. Then we have the following lemma, which will be useful in the proof of
Theorem 5.3.

Lemma 5.1 Let M be a connected orientable Hopf real hypersurface in G2(Cm+2),
m ≥ 3, with Reeb parallel structure Jacobi operator. If the principal curvature of the
Reeb vector field ξ is non-vanishing and ξ belongs to the distribution D⊥, then the shape
operator A commutes with the structure tensor field φ.

Proof In order to prove this lemma, we may put ξ = ξ1, because ξ ∈ D⊥. From
(4.3), we have α(∇ξA)X = 0 for any tangent vector field X on M.

Since the geodesic Reeb flow α is non-vanishing, we have (∇ξA)X = 0. By using
the Codazzi equation, we have

0 = (∇ξA)X

= −AφAX + (Xα)ξ + αφAX + φX + φ1X + 2η3(X)ξ2 − 2η2(X)ξ3.

From this, by taking an inner product with ξ, it follows that Xα = 0 for any tangent
vector field X on M.

This gives that the principal curvature α is constant. Then we have

(5.1) AφAX = αφAX + φX + φ1X + 2η3(X)ξ2 − 2η2(X)ξ3.
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From Lemma 3.1, we have

(5.2) 2AφAX = αAφX + αφAX + 2φX + 2φ1X + 4η3(X)ξ2 − 4η2(X)ξ3

for any tangent vector field X on M. Using (5.1) and (5.2), we know that Aφ = φA.
Thus we complete the proof of our lemma.

By Theorem 1.3, we assert that a real hypersurface in G2(Cm+2) with the assump-
tion in Lemma 5.1 is a tube over a totally geodesic G2(Cm+1) in G2(Cm+2). In other
words, M is locally congruent to a real hypersurface of Type (A) in Theorem 1.1.

Conversely, let us check whether real hypersufaces of Type (A) satisfy the Reeb
parallel structure Jacobi operator∇ξRξ = 0.

We recall a proposition given by Berndt and Suh [5].

Proposition 5.2 Let M be a connected real hypersurface of G2(Cm+2). Suppose that
AD ⊂ D, Aξ = αξ, and ξ is tangent to D⊥. Let J1 ∈ J be the almost Hermitian
structure such that JN = J1N. Then M has three (if r = π/2

√
8) or four (otherwise)

distinct constant principal curvatures

α =
√

8 cot(
√

8r), β =
√

2 cot(
√

2r), λ = −
√

2 tan(
√

2r), µ = 0

with some r ∈ (0, π/
√

8). The corresponding multiplicities are

m(α) = 1, m(β) = 2, m(λ) = 2m− 2 = m(µ),

and the corresponding eigenspaces are

Tα = Rξ = R JN = Rξ1,

Tβ = C⊥ξ = C⊥N = Rξ2 ⊕ Rξ3,

Tλ = {X|X ⊥ Hξ, JX = J1X},

Tµ = {X|X ⊥ Hξ, JX = − J1X},

where Rξ, Cξ, and Hξ respectively denote the real, complex, and quaternionic spans of
the structure vector ξ and C⊥ξ denotes the orthogonal complement of Cξ in Hξ.

Now let us check case by case whether real hypersurfaces of Type (A) satisfy for-
mula (4.3).

Case A-1 X ∈ Tα
By using the conditions of ξ ∈ D⊥ and ξα = 0 in (4.3), we assert formula (5.1)

(see [10]). Then it can be easily checked by putting X = ξ in (5.1).

Case A-2 X ∈ Tβ
We put Aξ2 = βξ2, Aξ3 = βξ3, where β =

√
2 cot(

√
2r). By putting X = ξ2 in

(5.1), we have

(∇ξA)ξ2 = −AφAξ2 + αφAξ2 + φξ2 + φ1ξ2 + 2η3(ξ2)ξ2 − 2η2(ξ2)ξ3

= −βAφξ2 + αβφξ2 − 2ξ3 = β2ξ3 − αβξ3 − 2ξ3

= (β2 − αβ − 2)ξ3 = 0.
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Similarly, by putting X = ξ3 in (5.1), we obtain

(∇ξA)ξ3 = −(β2 − αβ − 2)ξ2 = 0.

Case A-3 X ∈ Tλ = {X | X ⊥ Hξ, φX = φ1X}
For any tangent vector field X ∈ Tλ, λ = −

√
2 tan(

√
2r) we get

(∇ξA)X = −AφAX + αφAX + φX + φ1X + 2η3(X)ξ2 − 2η2(X)ξ3

= −λAφX + αλφX + φX + φ1X = −λ2φX + αλφX + 2φX

= −(λ2 − αλ− 2)φX = 0.

Case A-4 X ∈ Tµ = {X | X ⊥ Hξ, φX = −φ1X}
For any tangent vector field X ∈ Tµ, µ = 0 we get

(∇ξA)X = −AφAX + αφAX + φX + φ1X + 2η3(X)ξ2 − 2η2(X)ξ3

= −µAφX + αµφX + φX + φ1X = 0.

Summing up all cases, we have formula (4.3). Thus we can assert the following
theorem.

Theorem 5.3 Let M be a connected orientable Hopf real hypersurface in G2(Cm+2),
m ≥ 3, with Reeb parallel structure Jacobi operator. If the principal curvature of
the Reeb vector field ξ is non-vanishing and ξ∈D⊥, then M is locally congruent to
an open part of a tube around a totally geodesic G2(Cm+1) in G2(Cm+2) with radius
r ∈ (0, π

4
√

2
) ∪ ( π

4
√

2
, π√

8
).

Next we consider the case that the Reeb vector field ξ belongs to the distribution
D. By Theorem 1.4, we see that a Hopf hypersurface in G2(Cm+2) with ξ-parallel
structure Jacobi operator is of Type (B) in Theorem 1.1. In order to complete the
proof of our main theorem let us recall a proposition due to Berndt and Suh [5].

Proposition 5.4 Let M be a connected real hypersurface of G2(Cm+2). Suppose that
AD ⊂ D, Aξ = αξ, and ξ is tangent to D. Then the quaternionic dimension m of
G2(Cm+2) is even, say m = 2n, and M has five distinct constant principal curvatures

α = −2 tan(2r) , β = 2 cot(2r) , γ = 0 , λ = cot(r) , µ = − tan(r)

with some r ∈ (0, π/4). The corresponding multiplicities are

m(α) = 1, m(β) = 3 = m(γ), m(λ) = 4n− 4 = m(µ),

and the corresponding eigenspaces are

Tα = Rξ, Tβ = J Jξ, Tγ = Jξ, Tλ , Tµ,

where
Tλ ⊕ Tµ = (HCξ)⊥, JTλ = Tλ, JTµ = Tµ, JTλ = Tµ.
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Then for ξ ∈ D and ξα = 0 in (4.3), we have

0 = 4α
3∑

ν=1

{
ην(φX)ξν − ην(X)φνξ

}
+ α(∇ξA)X.

From this, by putting X = ξ2 we have 0 = −4αφ2ξ + α(∇ξA)ξ2. By taking the
inner product with φ2ξ and using (3.1), we have−4α + α2β = 0.

Since the principal curvature α is non-zero, it follows that αβ = 4. This gives a
contradiction. Then we assert that the structure Jacobi operator Rξ of real hypersur-
faces of Type (B) in Theorem 1.1 does not satisfy∇ξRξ = 0. Then from this fact, we
assert the following theorem.

Theorem 5.5 There does not exist any connected orientable Hopf hypersurface in
G2(Cm+2), m ≥ 3, with Reeb parallel structure Jacobi operator if the principal curvature
of the Reeb vector field ξ is non-vanishing and ξ∈D.

Combining Theorems 5.3 and 5.5, we complete the proof of Theorem 1.5.

Remark 5.6 Recently, we have been informed that the Reeb invariant structure
Jacobi operator LξRξ = 0 for the Lie derivative Lξ along the Reeb vector field ξ was
studied by Machado and Pérez [16]. But usually the Reeb parallel structure Jacobi
operator∇ξRξ = 0 for the covariant derivative∇ξ along the direction of ξ becomes
a condition weaker than the Reeb invariant LξRξ = 0.
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