Contents lists available at ScienceDirect

Differential Geometry and its Applications

www.elsevier.com/locate/difgeo

Real hypersurfaces in the complex quadric with Reeb invariant shape operator $\stackrel{\bigstar}{\Rightarrow}$

Young Jin Suh

Kyungpook National University, College of Natural Sciences, Department of Mathematics, Daegu 702-701, Republic of Korea

ARTICLE INFO

Article history: Received 23 March 2014 Available online xxxx Communicated by V. Cortes

Keywords: Isometric Reeb flow Reeb invariant Kähler structure Complex conjugation Complex quadric

ABSTRACT

First we introduce the notion of Reeb invariant shape operator for real hypersurfaces in the complex quadric $Q^m = SO_{m+2}/SO_mSO_2$. Next we give a complete classification of real hypersurfaces in $Q^m = SO_{m+2}/SO_mSO_2$ with invariant shape operator.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

When we consider some Hermitian symmetric spaces of rank 2, usually we can give examples of Riemannian symmetric spaces $SU_{m+2}/S(U_2U_m)$ and $SU_{2,m}/S(U_2U_m)$, which are said to be complex two-plane Grassmannians and complex hyperbolic two-plane Grassmannians respectively (see [1,2,12,13]). Those are said to be Hermitian symmetric spaces and quaternionic Kähler symmetric spaces equipped with the Kähler structure J and the quaternionic Kähler structure \mathfrak{J} on $SU_{2,m}/S(U_2U_m)$. The rank of $SU_{2,m}/S(U_2U_m)$ is 2 and there are exactly two types of singular tangent vectors X of $SU_{2,m}/S(U_2U_m)$ which are characterized by the geometric properties $JX \in \mathfrak{J}X$ and $JX \perp \mathfrak{J}X$ respectively.

As another kind of Hermitian symmetric space with rank 2 of compact type different from the above ones, we can give an example of complex quadric $Q^m = SO_{m+2}/SO_mSO_2$, which is a complex hypersurface in complex projective space $\mathbb{C}P^{m+1}$ (see Berndt and Suh [3], and Smyth [10]). The complex quadric also can be regarded as a kind of real Grassmann manifolds of compact type with rank 2 (see Kobayashi and Nomizu [6]). Accordingly, the complex quadric admits both a complex conjugation structure A and a Kähler structure J, which anti-commute with each other, that is, AJ = -JA. Then for $m \geq 2$ the triple (Q^m, J, g)

http://dx.doi.org/10.1016/j.difgeo.2014.11.003 0926-2245/© 2014 Elsevier B.V. All rights reserved.

^{*} This work was supported by grant Proj. No. NRF-2012-R1A2A2A-01043023 from National Research Foundation of Korea. E-mail address: yjsuh@knu.ac.kr.

is a Hermitian symmetric space of compact type with rank 2 and its maximal sectional curvature is equal to 4 (see Klein [5] and Reckziegel [9]).

For the complex projective space $\mathbb{C}P^m$ a full classification was obtained by Okumura in [7]. He proved that the Reeb flow on a real hypersurface in $\mathbb{C}P^m = SU_{m+1}/S(U_mU_1)$ is isometric if and only if M is an open part of a tube around a totally geodesic $\mathbb{C}P^k \subset \mathbb{C}P^m$ for some $k \in \{0, \ldots, m-1\}$. For the complex 2-plane Grassmannian $G_2(\mathbb{C}^{m+2}) = SU_{m+2}/S(U_mU_2)$ the classification was obtained by Berndt and Suh in [1]. The Reeb flow on a real hypersurface in $G_2(\mathbb{C}^{m+2})$ is isometric if and only if M is an open part of a tube around a totally geodesic $G_2(\mathbb{C}^{m+1}) \subset G_2(\mathbb{C}^{m+2})$. But, when we consider an isometric Reeb flow for real hypersurfaces in the complex quadric $Q^m = SO_{m+2}/SO_mSO_2$, the result is quite different from $\mathbb{C}P^m$ and $G_2(\mathbb{C}^{m+2})$. In view of the previous two results in $\mathbb{C}P^m$ and $G_2(\mathbb{C}^{m+2})$ a natural expectation might be that the classification involves at least the totally geodesic $Q^{m-1} \subset Q^m$. But, surprisingly, in [2] Berndt and Suh have proved the following result:

Theorem 1.1. Let M be a real hypersurface of the complex quadric Q^m , $m \ge 3$. The Reeb flow on M is isometric if and only if m is even, say m = 2k, and M is an open part of a tube around a totally geodesic $\mathbb{C}P^k \subset Q^{2k}$.

In a paper due to Pérez, Santos and Suh [8], we have considered a notion of Lie ξ -parallel structure Jacobi operator, $\mathcal{L}_{\xi}R_{\xi} = 0$, for real hypersurfaces in complex projective space $\mathbb{C}P^m$, and in a paper [11], Suh has given a characterization of a tube of radius $r, 0 < r < \frac{\pi}{2}$, over a totally geodesic $G_2(\mathbb{C}^{m+1})$ in $G_2(\mathbb{C}^{m+2})$ in terms of Lie ξ -parallel shape operator.

In this paper we consider a notion of *Lie parallel shape operator* S for real hypersurfaces in complex quadric Q^m along the direction of the Reeb vector field ξ , that is, $\mathcal{L}_{\xi}S = 0$. In this case the shape operator S of M in Q^m is said to be *Reeb invariant*. Motivated by the results mentioned above and using the notion of *isometric Reeb flow* in Theorem 1.1, we give a new characterization of real hypersurfaces in complex quadric Q^m with Reeb *invariant* shape operator as follows:

Main Theorem. Let M be a real hypersurface in the complex quadric Q^m , $m \ge 3$ with Reeb invariant shape operator. Then m = 2k, and M is locally congruent to a tube over a totally geodesic complex projective space $\mathbb{C}P^k$ in Q^{2k} .

2. The complex quadric

For more details in this section we refer to [3–6,9]. The complex quadric Q^m is the complex hypersurface in $\mathbb{C}P^{m+1}$ which is defined by the equation $z_1^2 + \ldots + z_{m+2}^2 = 0$, where z_1, \ldots, z_{m+2} are homogeneous coordinates on $\mathbb{C}P^{m+1}$. We equip Q^m with the Riemannian metric which is induced from the Fubini Study metric on $\mathbb{C}P^{m+1}$ with constant holomorphic sectional curvature 4. The Kähler structure on $\mathbb{C}P^{m+1}$ induces canonically a Kähler structure (J, g) on the complex quadric. For each $z \in Q^m$ we identify $T_z \mathbb{C}P^{m+1}$ with the orthogonal complement $\mathbb{C}^{m+2} \ominus \mathbb{C}z$ of $\mathbb{C}z$ in \mathbb{C}^{m+2} (see Kobayashi and Nomizu [6]). The tangent space $T_z Q^m$ can then be identified canonically with the orthogonal complement $\mathbb{C}^{m+2} \ominus (\mathbb{C}z \oplus \mathbb{C}N)$ of $\mathbb{C}z \oplus \mathbb{C}N$ in \mathbb{C}^{m+2} , where $N \in \nu_z Q^m$ is a normal vector of Q^m in $\mathbb{C}P^{m+1}$ at the point z.

The complex projective space $\mathbb{C}P^{m+1}$ is a Hermitian symmetric space of the special unitary group SU_{m+2} , namely $\mathbb{C}P^{m+1} = SU_{m+2}/S(U_{m+1}U_1)$. We denote by $o = [0, \ldots, 0, 1] \in \mathbb{C}P^{m+1}$ the fixed point of the action of the stabilizer $S(U_{m+1}U_1)$. The special orthogonal group $SO_{m+2} \subset SU_{m+2}$ acts on $\mathbb{C}P^{m+1}$ with cohomogeneity one. The orbit containing o is a totally geodesic real projective space $\mathbb{R}P^{m+1} \subset \mathbb{C}P^{m+1}$. The second singular orbit of this action is the complex quadric $Q^m = SO_{m+2}/SO_mSO_2$. This homogeneous space model leads to the geometric interpretation of the complex quadric Q^m as the Grassmann manifold $G_2^+(\mathbb{R}^{m+2})$ of oriented 2-planes in \mathbb{R}^{m+2} . It also gives a model of Q^m as a Hermitian symmetric space of

rank 2. The complex quadric Q^1 is isometric to a sphere S^2 with constant curvature, and Q^2 is isometric to the Riemannian product of two 2-spheres with constant curvature. For this reason we will assume $m \ge 3$ from now on.

For a unit normal vector N of Q^m at a point $z \in Q^m$ we denote by $A = A_N$ the shape operator of Q^m in $\mathbb{C}P^{m+1}$ with respect to N. The shape operator is an involution on the tangent space $T_z Q^m$ and

$$T_z Q^m = V(A) \oplus JV(A),$$

where V(A) is the +1-eigenspace and JV(A) is the (-1)-eigenspace of A_N . Geometrically this means that the shape operator A_N defines a real structure on the complex vector space T_zQ^m , or equivalently, is a complex conjugation on T_zQ^m . Since the real codimension of Q^m in $\mathbb{C}P^{m+1}$ is 2, this induces an S^1 -subbundle \mathfrak{A} of the endomorphism bundle $\mathrm{End}(TQ^m)$ consisting of complex conjugations.

There is a geometric interpretation of these conjugations. The complex quadric Q^m can be viewed as the complexification of the *m*-dimensional sphere S^m . Through each point $z \in Q^m$ there exists a one-parameter family of real forms of Q^m which are isometric to the sphere S^m . These real forms are congruent to each other under action of the center SO_2 of the isotropy subgroup of SO_{m+2} at z. The isometric reflection of Q^m in such a real form S^m is an isometry, and the differential at z of such a reflection is a conjugation on T_zQ^m . In this way the family \mathfrak{A} of conjugations on T_zQ^m corresponds to the family of real forms S^m of Q^m corresponds to the tangent spaces T_zS^m of the real forms S^m of Q^m .

The Gauss equation for $Q^m \subset \mathbb{C}P^{m+1}$ implies that the Riemannian curvature tensor R of Q^m can be described in terms of the complex structure J and the complex conjugation $A \in \mathfrak{A}$:

$$R(X,Y)Z = g(Y,Z)X - g(X,Z)Y + g(JY,Z)JX - g(JX,Z)JY - 2g(JX,Y)JZ + g(AY,Z)AX - g(AX,Z)AY + g(JAY,Z)JAX - g(JAX,Z)JAY.$$

Note that J and each complex conjugation A anti-commute, that is, AJ = -JA for each $A \in \mathfrak{A}$.

Recall that a nonzero tangent vector $W \in T_z Q^m$ is called singular if it is tangent to more than one maximal flat in Q^m . There are two types of singular tangent vectors for the complex quadric Q^m :

- 1. If there exists a conjugation $A \in \mathfrak{A}$ such that $W \in V(A)$, then W is singular. Such a singular tangent vector is called \mathfrak{A} -principal.
- 2. If there exist a conjugation $A \in \mathfrak{A}$ and orthonormal vectors $X, Y \in V(A)$ such that $W/||W|| = (X + JY)/\sqrt{2}$, then W is singular. Such a singular tangent vector is called \mathfrak{A} -isotropic.

For every unit tangent vector $W \in T_z Q^m$ there exist a conjugation $A \in \mathfrak{A}$ and orthonormal vectors $X, Y \in V(A)$ such that

$$W = \cos(t)X + \sin(t)JY$$

for some $t \in [0, \pi/4]$. The singular tangent vectors correspond to the values t = 0 and $t = \pi/4$. If $0 < t < \pi/4$ then the unique maximal flat containing W is $\mathbb{R}X \oplus \mathbb{R}JY$. Later we will need the eigenvalues and eigenspaces of the Jacobi operator $R_W = R(\cdot, W)W$ for a singular unit tangent vector W.

1. If W is an \mathfrak{A} -principal singular unit tangent vector with respect to $A \in \mathfrak{A}$, then the eigenvalues of R_W are 0 and 2 and the corresponding eigenspaces are $\mathbb{R}W \oplus J(V(A) \oplus \mathbb{R}W)$ and $(V(A) \oplus \mathbb{R}W) \oplus \mathbb{R}JW$, respectively.

2. If W is an \mathfrak{A} -isotropic singular unit tangent vector with respect to $A \in \mathfrak{A}$ and $X, Y \in V(A)$, then the eigenvalues of R_W are 0, 1 and 4 and the corresponding eigenspaces are $\mathbb{R}W \oplus \mathbb{C}(JX + Y)$, $T_z Q^m \oplus (\mathbb{C}X \oplus \mathbb{C}Y)$ and $\mathbb{R}JW$, respectively.

3. The totally geodesic $\mathbb{C}P^k \subset Q^{2k}$

We now assume that m is even, say m = 2k. The map

$$\mathbb{C}P^k \to Q^{2k} \subset \mathbb{C}P^{2k+1}, \quad [z_1, \dots, z_{k+1}] \mapsto [z_1, \dots, z_{k+1}, iz_1, \dots, iz_{k+1}]$$

provides an embedding of $\mathbb{C}P^k$ into Q^{2k} as a totally geodesic complex submanifold. We define a complex structure j on \mathbb{C}^{2k+2} by

$$j(z_1,\ldots,z_{k+1},z_{k+2},\ldots,z_{2k+2}) = (-z_{k+2},\ldots,-z_{2k+2},z_1,\ldots,z_{k+1}).$$

Note that ij = ji. We can then identify \mathbb{C}^{2k+2} with $\mathbb{C}^{k+1} \oplus j\mathbb{C}^{k+1}$ and get

$$T_z \mathbb{C}P^k = \{ X + ijX \mid X \in \mathbb{C}^{k+1} \ominus \mathbb{C}z \}.$$

Now consider the standard embedding of U_{k+1} into SO_{2k+2} which is determined by the Lie algebra embedding

$$\mathfrak{u}_{k+1} \to \mathfrak{so}_{2k+2}, \quad C+iD \mapsto \begin{pmatrix} C & -D \\ D & C \end{pmatrix},$$

where $C, D \in M_{k+1,k+1}(\mathbb{R})$. The action of U_{k+1} on Q^{2k} is of cohomogeneity one and $\mathbb{C}P^k$ is the orbit of this action containing the point $z = [1, 0, ..., 0, i, 0, ..., 0] \in Q^{2k}$, where the *i* sits in the (k + 2)-nd component. We now fix a unit normal vector N of Q^{2k} at z and denote the corresponding complex conjugation $A_N \in \mathfrak{A}$ by A. Then we can write alternatively

$$T_z \mathbb{C}P^k = \{ X + ijX \mid X \in V(A) \}.$$

Note that the complex structure i on \mathbb{C}^{2m+2} corresponds to the complex structure on $T_z Q^{2m}$ via the obvious identifications.

We are now going to calculate the principal curvatures and principal curvature spaces of the tube with radius r around $\mathbb{C}P^k$ in Q^{2k} . For this we use the standard Jacobi field method as described in Section 8.2 of [4]. Let $N = (X + JY)/\sqrt{2}$ be a unit normal vector of $\mathbb{C}P^k$ in Q^{2k} , where $X, Y \in V(A)$ are orthonormal. The normal Jacobi operator R_N leaves the tangent space $T_z\mathbb{C}P^k$ and the normal space $\nu_z\mathbb{C}P^k$ invariant. When restricted to $T_z\mathbb{C}P^k$, the eigenvalues of R_N are 0 and 1 with corresponding eigenspaces $\mathbb{C}(JX+Y)$ and $T_z\mathbb{C}P^k\ominus\mathbb{C}(JX+Y)$. The corresponding principal curvatures on the tube of radius r are 0 and $\tan(r)$, and the corresponding principal curvature spaces are the parallel translates of $\mathbb{C}(JX+Y)$ and $T_z\mathbb{C}P^k\ominus\mathbb{C}(JX+Y)$ along the geodesic γ in Q^{2k} with $\gamma(0) = z$ and $\dot{\gamma}(0) = N$ from $\gamma(0)$ to $\gamma(r)$. We denote the latter parallel translate by W_1 . When restricted to $\nu_z\mathbb{C}P^k\ominus\mathbb{R}N$, the eigenvalues of R_N are 1 and 4 with corresponding eigenspaces $\nu_z\mathbb{C}P^k\ominus\mathbb{C}N$ and $\mathbb{R}JN$. We denote the first parallel translate by W_2 . The corresponding principal curvatures on the tube of radius r are $-\cot(r)$ and $-2\cot(2r)$, and the corresponding principal curvature spaces are the parallel translates of $\nu_z\mathbb{C}P^k\ominus\mathbb{C}N$ and $\mathbb{R}JN$ along γ from $\gamma(0)$ to $\gamma(r)$. This shows in particular that the tube is a Hopf hypersurface.

For $0 < r < \pi/2$ this process leads to real hypersurfaces in Q^{2k} , whereas for $r = \pi/2$ we get another totally geodesic $\mathbb{C}P^k \subset Q^{2k}$. The two totally geodesic complex projective spaces are precisely the

two singular orbits of the U_{k+1} -action on Q^{2k} , and the tubes of radius $0 < r < \pi/2$ are the principal orbits of this action. Using the homogeneity of the tubes we can now conclude that the tube M of radius $0 < r < \pi/2$ has four distinct constant principal curvatures and the property that the shape operator leaves invariant the maximal complex subbundle C of TM. Moreover, all principal curvature spaces in C are J-invariant. Summing up all the properties mentioned above, we have the following

Proposition 3.1. (See [3].) Let M be the tube of radius $0 < r < \pi/2$ around the totally geodesic $\mathbb{C}P^k$ in Q^{2k} . Then the following statements hold:

- 1. *M* is a Hopf hypersurface.
- 2. Every unit normal vector N of M is \mathfrak{A} -isotropic and therefore can be written in the form $N = (X + JY)/\sqrt{2}$ with some orthonormal vectors $X, Y \in V(A)$ and $A \in \mathfrak{A}$.
- 3. The principal curvatures and corresponding principal curvature spaces of M are

principal curvature	eigenspace	multiplicity
0	$\mathbb{C}(JX+Y)$	2
$\tan(r)$	W_1	2k - 2
$-\cot(r)$	W_2	2k - 2
$-2\cot(2r)$	$\mathbb{R}JN$	1

- 4. Each of the two focal sets of M is a totally geodesic $\mathbb{C}P^k \subset Q^{2k}$.
- 5. The Reeb flow of M is an isometric flow.
- 6. The shape operator S and the structure tensor field ϕ satisfy $S\phi = \phi S$.
- M is a homogeneous hypersurface of Q^{2k}. More precisely, it is an orbit of the U_{k+1}-action on Q^{2k} isomorphic to U_{k+1}/U_{k-1}U₁, an S^{2k-1}-bundle over ℂP^k.

4. Some general equations

Let M be a real hypersurface in Q^m and denote by (ϕ, ξ, η, g) the induced almost contact metric structure. Note that $\xi = -JN$, where N is a (local) unit normal vector field of M. The tangent bundle TM of M splits orthogonally into $TM = \mathcal{C} \oplus \mathbb{R}\xi$, where $\mathcal{C} = \ker(\eta)$ is the maximal complex subbundle of TM. The structure tensor field ϕ restricted to \mathcal{C} coincides with the complex structure J restricted to \mathcal{C} , and $\phi\xi = 0$.

We now assume that M is a Hopf hypersurface. Then we have

$$S\xi = \alpha\xi$$

with the smooth function $\alpha = g(S\xi, \xi)$ on M. When we consider a transform JX of the Kähler structure Jon Q^m for any vector field X on M in Q^m , we may put

$$JX = \phi X + \eta(X)N$$

for a unit normal N to M. Then we now consider the Codazzi equation

$$g((\nabla_X S)Y - (\nabla_Y S)X, Z) = \eta(X)g(\phi Y, Z) - \eta(Y)g(\phi X, Z) - 2\eta(Z)g(\phi X, Y)$$
$$+ g(X, AN)g(AY, Z) - g(Y, AN)g(AX, Z)$$
$$+ g(X, A\xi)g(JAY, Z) - g(Y, A\xi)g(JAX, Z).$$

Putting $Z = \xi$ we get

$$g((\nabla_X S)Y - (\nabla_Y S)X, \xi) = -2g(\phi X, Y)$$

+ $g(X, AN)g(Y, A\xi) - g(Y, AN)g(X, A\xi)$
- $g(X, A\xi)g(JY, A\xi) + g(Y, A\xi)g(JX, A\xi).$

On the other hand, we have

$$g((\nabla_X S)Y - (\nabla_Y S)X, \xi)$$

= $g((\nabla_X S)\xi, Y) - g((\nabla_Y S)\xi, X)$
= $(X\alpha)\eta(Y) - (Y\alpha)\eta(X) + \alpha g((S\phi + \phi S)X, Y) - 2g(S\phi SX, Y).$

Comparing the previous two equations and putting $X = \xi$ yields

$$Y\alpha = (\xi\alpha)\eta(Y) - 2g(\xi, AN)g(Y, A\xi) + 2g(Y, AN)g(\xi, A\xi).$$

Reinserting this into the previous equation yields

$$g((\nabla_X S)Y - (\nabla_Y S)X, \xi)$$

= $-2g(\xi, AN)g(X, A\xi)\eta(Y) + 2g(X, AN)g(\xi, A\xi)\eta(Y)$
+ $2g(\xi, AN)g(Y, A\xi)\eta(X) - 2g(Y, AN)g(\xi, A\xi)\eta(X)$
+ $\alpha g((\phi S + S\phi)X, Y) - 2g(S\phi SX, Y).$

Altogether this implies

$$0 = 2g(S\phi SX, Y) - \alpha g((\phi S + S\phi)X, Y) - 2g(\phi X, Y)$$

+ $g(X, AN)g(Y, A\xi) - g(Y, AN)g(X, A\xi)$
- $g(X, A\xi)g(JY, A\xi) + g(Y, A\xi)g(JX, A\xi)$
+ $2g(\xi, AN)g(X, A\xi)\eta(Y) - 2g(X, AN)g(\xi, A\xi)\eta(Y)$
- $2g(\xi, AN)g(Y, A\xi)\eta(X) + 2g(Y, AN)g(\xi, A\xi)\eta(X).$

At each point $z \in M$ we can choose $A \in \mathfrak{A}_z$ such that

$$N = \cos(t)Z_1 + \sin(t)JZ_2$$

for some orthonormal vectors $Z_1, Z_2 \in V(A)$ and $0 \leq t \leq \frac{\pi}{4}$ (see Proposition 3 in [9]). Note that t is a function on M. First of all, since $\xi = -JN$, we have

$$N = \cos(t)Z_1 + \sin(t)JZ_2,$$

$$AN = \cos(t)Z_1 - \sin(t)JZ_2,$$

$$\xi = \sin(t)Z_2 - \cos(t)JZ_1,$$

$$A\xi = \sin(t)Z_2 + \cos(t)JZ_1.$$

This implies $g(\xi, AN) = 0$ and hence

$$0 = 2g(S\phi SX, Y) - \alpha g((\phi S + S\phi)X, Y) - 2g(\phi X, Y)$$

+ $g(X, AN)g(Y, A\xi) - g(Y, AN)g(X, A\xi)$
- $g(X, A\xi)g(JY, A\xi) + g(Y, A\xi)g(JX, A\xi)$
- $2g(X, AN)g(\xi, A\xi)\eta(Y) + 2g(Y, AN)g(\xi, A\xi)\eta(X).$

5. Proof of Main Theorem

Before going to prove our Main Theorem, first let us show that the shape operator of M which becomes the tube of radius r over a complex projective space CP^k in Q^{2k} is Reeb invariant or not; that is, $\mathcal{L}_{\xi}S = 0$ or not. In fact, the Lie derivative vanishing along the Reeb vector field is given as follows:

$$(\mathcal{L}_{\xi}S)X = \mathcal{L}_{\xi}(SX) - S\mathcal{L}_{\xi}X$$
$$= (\nabla_{\xi}S)X - \phi S^{2}X + S\phi SX$$
$$= 0$$

for any vector field X on M in Q^{2k} . Then this is equivalent to the following

$$(\nabla_{\xi}S)X = \phi S^2 X - S\phi S X.$$

In order to do this, let us mention that the shape operator S of the tube over CP^k commutes with the structure tensor ϕ , that is, $S\phi = \phi S$ as in Proposition 3.1. So the right side of the above equation vanishes. Now let us check whether the left side $\nabla_{\xi}S = 0$ or not. Then by a paper due to Berndt and Suh (see [2], page 1350050-14), the expression of covariant derivative for the shape operator of M in complex quadric \mathbb{Q}^m becomes

$$(\nabla_X S)Y = \left\{ d\alpha(X)\eta(Y) + g((\alpha S\phi - S^2\phi)X, Y) + \delta\eta(Y)\rho(X) \right. \\ \left. + \delta g(BX, \phi Y) + \eta(BX)\rho(Y) \right\} \xi \\ \left. + \left\{ \eta(Y)\rho(X) + g(BX, \phi Y) \right\} B\xi + g(BX, Y)\phi B\xi \right. \\ \left. - \rho(Y)BX - \eta(Y)\phi X - \eta(BY)\phi BX \right]$$

for any vector fields X and Y on M in Q^m , where we have put

$$AY = BY + \rho(Y)N, \quad \rho(Y) = g(AY, N)$$

for a complex conjugation $A \in \mathfrak{A}$. Putting $X = \xi$ and using α constant and $\rho(\xi) = 0$ for the \mathfrak{A} -isotropic unit normal vector field N of M in Q^{2k} , we have

$$\begin{aligned} (\nabla_{\xi}S)Y &= \delta g(B\xi,\phi Y) + \eta(B\xi)\rho(Y) \}\xi \\ &+ \left\{ \eta(Y)\rho(\xi) + g(B\xi,\phi Y) \right\} B\xi + g(B\xi,Y)\phi B\xi \\ &- \rho(Y)B\xi - \eta(Y)\phi\xi - \eta(BY)\phi B\xi \\ &= \left\{ g(B\xi,\phi Y) - \rho(Y) \right\} B\xi \\ &= \left\{ -g(\phi B\xi,Y) + g(Y,\phi B\xi) \right\} B\xi = 0, \end{aligned}$$

where in the third equality we have used

$$\begin{split} \rho(Y) &= g(AY,N) = g(Y,AN) \\ &= g(Y,AJ\xi) \\ &= -g(Y,JA\xi) = -g(Y,JB\xi) \\ &= -g(Y,\phi B\xi). \end{split}$$

As mentioned above, a real hypersurface M in \mathbb{Q}^{2k} with commuting shape operator, that is, $S\phi = \phi S$, has a parallel shape operator along the Reeb direction $\nabla_{\xi}S = 0$. Accordingly, we know that the shape operator of the tube over CP^k is Reeb invariant, that is, $\mathcal{L}_{\xi}S = 0$.

Now conversely, let us prove our Main Theorem in the introduction. Let us assume $\mathcal{L}_{\xi}S = 0$.

On the other hand, the equation of Codazzi in Section 4 can be written as follows (see Berndt and Suh [2]):

$$(\nabla_X S)Y - (\nabla_Y S)X = \eta(X)\phi Y - \eta(Y)\phi X - 2g(\phi X, Y)\xi$$
$$+ \rho(X)BY - \rho(Y)BX$$
$$+ \eta(BX)\phi BY - \eta(BX)\rho(Y)\xi$$
$$- \eta(BY)\phi BX + \eta(BY)\rho(X)\xi,$$

where we have put $AY = BY + \rho(Y)N$, and $\rho(X) = g(AX, N) = g(JX, A\xi)$ for a unit normal N of M in Q^m . Then we assert the following

Proposition 5.1. Let M be a real hypersurface in complex quadrics Q^m , $m \ge 3$. If the Reeb flow on M satisfies $\mathcal{L}_{\xi}S = 0$, then the shape operator S commutes with the structure tensor ϕ , that is, $S\phi = \phi S$.

Proof. First note that

$$\begin{aligned} (\mathcal{L}_{\xi}S)X &= \mathcal{L}_{\xi}(SX) - A\mathcal{L}_{\xi}X \\ &= \nabla_{\xi}(SX) - \nabla_{SX}\xi - S(\nabla_{\xi}X - \nabla_{X}\xi) \\ &= (\nabla_{\xi}S)X - \nabla_{SX}\xi + S\nabla_{X}\xi \\ &= (\nabla_{\xi}S)X - \phi S^{2}X + S\phi SX \end{aligned}$$

for any vector field X on M. Then the assumption $\mathcal{L}_{\xi}S = 0$ holds if and only if $(\nabla_{\xi}S)X = \phi S^2 X - S\phi S X$. Now, let us take an orthonormal basis $\{e_1, e_2, \dots, e_{2m-1}\}$ for the tangent space $T_x M$, $x \in M$, of a real hypersurface M in Q^m . Then by the equation of Codazzi we may put

$$(\nabla_{e_i}S)Y - (\nabla_YS)e_i = \eta(e_i)\phi Y - \eta(Y)\phi e_i - 2g(\phi e_i, Y)\xi$$
$$+ \rho(e_i)BY - \rho(Y)Be_i + \eta(Be_i)\phi BY - \eta(BY)\rho(e_i)\xi$$
$$- \eta(BY)\phi Be_i + \eta(BY)\rho(e_i)\xi, \tag{5.1}$$

from which, together with the fundamental formulas which is introduced in Section 2 it follows that

$$\sum_{i=1}^{2m-1} g((\nabla_{e_i}S)Y, \phi e_i) = -(2m-2)\eta(Y) + \sum_{i=1}^{2m-1} \rho(e_i)g(BY, \phi e_i) - \sum_{i=1}^{2m-1} \rho(Y)g(Be_i, \phi e_i) + \sum_{i=1}^{2m-1} \eta(Be_i)g(\phi BY, \phi e_i) - \sum_{i=1}^{2m-1} \eta(BY)\rho(e_i)g(\xi, \phi e_i) - \eta(BY) \sum_{i=1}^{2m-1} g(\phi Be_i, \phi e_i).$$
(5.2)

Now let us denote by U the vector $\nabla_{\xi}\xi = \phi S\xi$. Then using the equation $(\nabla_X \phi)Y = \eta(Y)AX - g(SX,Y)\xi$, its derivative can be given by

$$\begin{aligned} \nabla_{e_i} U &= (\nabla_{e_i} \phi) S\xi + \phi (\nabla_{e_i} S) \xi + \phi S \nabla_{e_i} \xi \\ &= \eta (S\xi) Se_i - g (Se_i, S\xi) \xi + \phi (\nabla_{e_i} S) \xi + \phi S \phi Se_i. \end{aligned}$$

Then its divergence is given by

$$\operatorname{div} U = \sum_{i=1}^{2m-1} g(\nabla_{e_i} U, e_i)$$
$$= h\eta(S\xi) - \eta(S^2\xi) - \sum_{i=1}^{2m-1} g((\nabla_{e_i} S)\xi, \phi e_i) - \sum_{i=1}^{2m-1} g(\phi Se_i, S\phi e_i),$$
(5.3)

where h denotes the trace of the shape operator S of M in Q^m .

Now we calculate the squared norm of the tensor $S\phi-\phi S$ as follows:

$$\begin{split} \|\phi S - S\phi\|^{2} &= \sum_{i} g\left((\phi S - S\phi)e_{i}, (\phi S - S\phi)e_{i}\right) \\ &= \sum_{i,j} g\left((\phi S - S\phi)e_{i}, e_{j}\right)g\left((\phi S - S\phi)e_{i}, e_{j}\right) \\ &= \sum_{i,j} \left\{g(\phi Se_{j}, e_{i}) + g(\phi Se_{i}, e_{j})\right\} \left\{g(\phi Se_{j}, e_{i}) + g(\phi Se_{i}, e_{j})\right\} \\ &= 2\sum_{i,j} g(\phi Se_{j}, e_{i})g(\phi Se_{j}, e_{i}) + 2\sum_{i,j} g(\phi Se_{j}, e_{i})g(\phi Se_{i}, e_{j}) \\ &= 2\sum_{j} g(\phi Se_{j}, \phi Se_{j}) - 2\sum_{j} g(\phi Se_{j}, S\phi e_{j}) \\ &= -2\sum_{j} g(Se_{j}, \phi^{2}Se_{j}) - 2\sum_{j} g(\phi Se_{j}, S\phi e_{j}) \\ &= 2\operatorname{Tr} S^{2} - 2\eta \left(S^{2}\xi\right) + 2\operatorname{div} U - 2\eta (S\xi) \operatorname{Tr} S \\ &+ 2\eta \left(S^{2}\xi\right) + 2\sum_{j} g\left((\nabla_{e_{j}}S)\xi, \phi e_{j}\right), \end{split}$$
(5.4)

where \sum_{i} (respectively, $\sum_{i,j}$) denotes the summation from i = 1 to 2m - 1 (respectively, from i, j = 1 to 2m - 1) and in the final equality we have used (5.3).

From this, together with the formula (5.2), it follows that

$$\operatorname{div} U = \frac{1}{2} \| \phi S - S\phi \|^2 - \operatorname{Tr} S^2 + h\eta(S\xi) - \sum_i g((\nabla_{e_i} S)\xi, \phi e_i).$$
(5.5)

By (5.5) and the assumption of $\mathcal{L}_{\xi}S = 0$, let us show that the structure tensor ϕ commutes with the shape operator S, that is, $\phi S = S\phi$.

On the other hand, we know that $\mathcal{L}_{\xi}S = 0$ is equivalent to

$$(\nabla_{\xi}S)X = \phi S^2 X - S\phi S X.$$

Then by the equation of Codazzi, we know that

$$(\nabla_X S)\xi = (\nabla_\xi S)X - \phi X + \rho(X)B\xi - \rho(\xi)BX + \eta(BX)\phi B\xi$$

- $\eta(BX)\rho(\xi)\xi - \eta(B\xi)\phi BX + \eta(B\xi)\rho(X)\xi$
= $\phi S^2 X - S\phi SX - \phi X + \rho(X)B\xi$
+ $\eta(BX)\phi B\xi - \eta(B\xi)\phi BX + \eta(B\xi)\rho(X)\xi.$ (5.6)

Now let us take an inner product (5.6) with the Reeb vector field ξ . Then we have

$$g((\nabla_X S)\xi,\xi) = -g(S\phi SX,\xi) + \rho(X)g(B\xi,\xi) + \eta(B\xi)\rho(X) = g(SX,U) + 2g(B\xi,\xi)\rho(X).$$
(5.7)

On the other hand, by the almost contact structure ϕ we have

$$\phi U = \phi^2 S \xi = -S \xi + \eta (S \xi) \xi = -S \xi + \alpha \xi,$$

where the function α denotes $\eta(S\xi)$. From this, differentiating and using the formula $(\nabla_X \phi)Y = \eta(Y)AX - g(AX, Y)\xi$ gives

$$-g(SX,U)\xi + \phi \nabla_X U = (\nabla_X \phi)U + \phi \nabla_X U$$
$$= -(\nabla_X S)\xi - S \nabla_X \xi + (X\alpha)\xi + \alpha \nabla_X \xi.$$
(5.8)

From this, taking an inner product with ξ , it follows that

$$-g(SX,U) = -g((\nabla_X S)\xi,\xi) + g(SX,U) + X\alpha.$$

Then, together with (5.7), it follows that

$$g(SX, U) - 2g(B\xi, \xi)\rho(X) + X\alpha = 0.$$
(5.9)

Substituting (5.6) and (5.9) into (5.8), we have the following

$$\phi \nabla_X U = \phi X - \phi S^2 X + \alpha \phi S X - \rho(X) B \xi$$
$$- \eta(BX) \phi B \xi + \eta(B\xi) \phi B X - \eta(B\xi) \rho(X) \xi.$$

Now summing up with respect to $1, \dots, m-1$ for an orthonormal basis of $T_xM, x \in M$, we have

$$\sum_{i} g(\phi \nabla_{e_i} U, \phi e_i) = (2m - 2) - \left\{ \operatorname{Tr} S^2 - \eta \left(S^2 \xi \right) \right\} + \alpha \{ \operatorname{Tr} S - \alpha \}$$
$$- \sum_{i} \rho(e_i) g(B\xi, \phi e_i) - \sum_{i} \eta(Be_i) g(\phi B\xi, \phi e_i)$$
$$+ \sum_{i} \eta(B\xi) g(\phi Be_i, \phi e_i).$$
(5.10)

On the other hand, we know that

$$g(\phi \nabla_{e_i} U, \phi e_i) = -g(\nabla_{e_i} U, -e_i + \eta(e_i)\xi)$$

$$= \sum_i g(\nabla_{e_i} U, e_i) - g(\nabla_{\xi} U, \xi)$$

$$= \operatorname{div} U + \|U\|^2$$

$$= \operatorname{div} U + \eta (S^2 \xi) - \eta (S\xi)^2, \qquad (5.11)$$

where $||U||^2 = g(\phi S\xi, \phi S\xi) = \eta(S^2\xi) - \eta(S\xi)^2$.

Summing up (5.10) with (5.11), we get the following

$$\operatorname{div} U = (2m - 2) - \operatorname{Tr} S^{2} + \alpha \operatorname{Tr} S$$
$$-\sum_{i} \rho(e_{i})g(B\xi, \phi e_{i}) - \sum_{i} \eta(Be_{i})g(\phi B\xi, \phi e_{i})$$
$$+\sum_{i} \eta(B\xi)g(\phi Be_{i}, \phi e_{i}), \qquad (5.12)$$

where we have denoted the function $\eta(S\xi)$ by $\alpha = \eta(S\xi)$.

On the other hand, (5.2) for $Y = \xi$ gives the following

$$\sum_{i} g((\nabla_{e_i} S)\xi, \phi e_i) = -(2m - 2)$$

$$+ \sum_{i} \rho(e_i)g(B\xi, \phi e_i)$$

$$+ \sum_{i} \eta(Be_i)g(\phi B\xi, \phi e_i) - \eta(B\xi) \sum_{i} g(\phi Be_i, \phi e_i), \qquad (5.13)$$

where we have used $\sum_{i} \rho(\xi) g(Be_i, \phi e_i) = 0$ and $\sum_{i} \eta(B\xi) \rho(e_i) g(\xi, \phi e_i) = 0$. From this, together with (5.5), (5.10) and (5.13), it follows that

$$div U = \frac{1}{2} \| \phi S - S\phi \|^2 - \text{Tr} S^2 + h\eta(S\xi) - \sum_i g((\nabla_{e_i}S)\xi, \phi e_i)$$

= $\frac{1}{2} \| \phi S - S\phi \|^2 - \text{Tr} S^2 + h\eta(S\xi)$
+ $(2m - 2) - \sum_i \rho(e_i)g(B\xi, \phi e_i) - \sum_i \eta(Be_i)g(\phi B\xi, \phi e_i)$
+ $\eta(B\xi) \sum_i g(\phi Be_i, \phi e_i)$

$$= (2m - 2) - \operatorname{Tr} S^{2} + h\eta(S\xi)$$

$$- \sum_{i} \rho(e_{i})g(B\xi, \phi e_{i}) - \sum_{i} \eta(Be_{i})g(\phi B\xi, \phi e_{i})$$

$$+ \sum_{i} \eta(B\xi)g(\phi Be_{i}, \phi e_{i}), \qquad (5.14)$$

where we have used (5.13) in the second equality and (5.12) in the third equality respectively. Then comparing the both sides in the third equality of (5.14) gives $\|\phi S - S\phi\|^2 = 0$, that is, the shape operator Scommutes with the structure tensor ϕ . This means that the Reeb flow on M is an isometric flow, which gives a complete proof of our Proposition. \Box

By virtue of this proposition, together with Theorem 1.1, we give a complete proof of our Main Theorem in the introduction.

References

- J. Berndt, Y.J. Suh, Real hypersurfaces with isometric Reeb flow in complex two-plane Grassmannians, Monatshefte Math. 137 (2002) 87–98.
- [2] J. Berndt, Y.J. Suh, Hypersurfaces in noncompact complex Grassmannians of rank two, Int. J. Math. 23 (2012) 1250103, 35 pp.
- [3] J. Berndt, Y.J. Suh, Real hypersurfaces with isometric Reeb flow in complex quadrics, Int. J. Math. 24 (2013) 1350050, 18 pp.
- [4] J. Berndt, S. Console, C. Olmos, Submanifolds and Holonomy, Chapman & Hall/CRC, Boca Raton, FL, 2003.
- [5] S. Klein, Totally geodesic submanifolds in the complex quadric, Differ. Geom. Appl. 26 (2008) 79–96.
- [6] S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, vol. II, A Wiley-Interscience Publ., Wiley Classics Library Ed., 1996.
- [7] M. Okumura, On some real hypersurfaces of a complex projective space, Trans. Am. Math. Soc. 212 (1975) 355–364.
- [8] J.D. Pérez, F.G. Santos, Y.J. Suh, Real hypersurfaces in complex projective space whose structure Jacobi operator is Lie ξ-parallel, Differ. Geom. Appl. 22 (2005) 181–188.
- [9] H. Reckziegel, On the geometry of the complex quadric, in: Geometry and Topology of Submanifolds VIII, Brussels/Nordfjordeid, 1995, World Sci. Publ., River Edge, NJ, 1995, pp. 302–315.
- [10] B. Smyth, Differential geometry of complex hypersurfaces, Ann. Math. 85 (1967) 246–266.
- [11] Y.J. Suh, Real hypersurfaces in complex two-plane Grassmannians with vanishing Lie derivatives, Can. Math. Bull. 49 (2006) 131–143.
- [12] Y.J. Suh, Real hypersurfaces with isometric Reeb flow in complex hyperbolic two-plane Grassmannians, Adv. Appl. Math. 50 (2013) 645–659.
- [13] Y.J. Suh, Real hypersurfaces in complex hyperbolic two-plane Grassmannians with Reeb vector field, Adv. Appl. Math. 55 (2014) 131–145.