Real hypersurfaces in the complex quadric with Reeb invariant shape operator ${ }^{\text {ts }}$

Young Jin Suh
Kyungpook National University, College of Natural Sciences, Department of Mathematics, Daegu 702-701, Republic of Korea

A R T I C L E I N F O

Article history:

Received 23 March 2014
Available online xxxx
Communicated by V. Cortes
Keywords:
Isometric Reeb flow
Reeb invariant
Kähler structure
Complex conjugation
Complex quadric

Abstract

First we introduce the notion of Reeb invariant shape operator for real hypersurfaces in the complex quadric $Q^{m}=S O_{m+2} / S O_{m} S O_{2}$. Next we give a complete classification of real hypersurfaces in $Q^{m}=S O_{m+2} / S O_{m} S O_{2}$ with invariant shape operator.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

When we consider some Hermitian symmetric spaces of rank 2, usually we can give examples of Riemannian symmetric spaces $S U_{m+2} / S\left(U_{2} U_{m}\right)$ and $S U_{2, m} / S\left(U_{2} U_{m}\right)$, which are said to be complex two-plane Grassmannians and complex hyperbolic two-plane Grassmannians respectively (see [1,2,12,13]). Those are said to be Hermitian symmetric spaces and quaternionic Kähler symmetric spaces equipped with the Kähler structure J and the quaternionic Kähler structure \mathfrak{J} on $S U_{2, m} / S\left(U_{2} U_{m}\right)$. The rank of $S U_{2, m} / S\left(U_{2} U_{m}\right)$ is 2 and there are exactly two types of singular tangent vectors X of $S U_{2, m} / S\left(U_{2} U_{m}\right)$ which are characterized by the geometric properties $J X \in \mathfrak{J} X$ and $J X \perp \mathfrak{J} X$ respectively.

As another kind of Hermitian symmetric space with rank 2 of compact type different from the above ones, we can give an example of complex quadric $Q^{m}=S O_{m+2} / S O_{m} S O_{2}$, which is a complex hypersurface in complex projective space $\mathbb{C} P^{m+1}$ (see Berndt and Suh [3], and Smyth [10]). The complex quadric also can be regarded as a kind of real Grassmann manifolds of compact type with rank 2 (see Kobayashi and Nomizu [6]). Accordingly, the complex quadric admits both a complex conjugation structure A and a Kähler structure J, which anti-commute with each other, that is, $A J=-J A$. Then for $m \geq 2$ the triple $\left(Q^{m}, J, g\right)$

[^0]is a Hermitian symmetric space of compact type with rank 2 and its maximal sectional curvature is equal to 4 (see Klein [5] and Reckziegel [9]).

For the complex projective space $\mathbb{C} P^{m}$ a full classification was obtained by Okumura in [7]. He proved that the Reeb flow on a real hypersurface in $\mathbb{C} P^{m}=S U_{m+1} / S\left(U_{m} U_{1}\right)$ is isometric if and only if M is an open part of a tube around a totally geodesic $\mathbb{C} P^{k} \subset \mathbb{C} P^{m}$ for some $k \in\{0, \ldots, m-1\}$. For the complex 2-plane Grassmannian $G_{2}\left(\mathbb{C}^{m+2}\right)=S U_{m+2} / S\left(U_{m} U_{2}\right)$ the classification was obtained by Berndt and Suh in [1]. The Reeb flow on a real hypersurface in $G_{2}\left(\mathbb{C}^{m+2}\right)$ is isometric if and only if M is an open part of a tube around a totally geodesic $G_{2}\left(\mathbb{C}^{m+1}\right) \subset G_{2}\left(\mathbb{C}^{m+2}\right)$. But, when we consider an isometric Reeb flow for real hypersurfaces in the complex quadric $Q^{m}=S O_{m+2} / S O_{m} S O_{2}$, the result is quite different from $\mathbb{C} P^{m}$ and $G_{2}\left(\mathbb{C}^{m+2}\right)$. In view of the previous two results in $\mathbb{C} P^{m}$ and $G_{2}\left(\mathbb{C}^{m+2}\right)$ a natural expectation might be that the classification involves at least the totally geodesic $Q^{m-1} \subset Q^{m}$. But, surprisingly, in [2] Berndt and Suh have proved the following result:

Theorem 1.1. Let M be a real hypersurface of the complex quadric $Q^{m}, m \geq 3$. The Reeb flow on M is isometric if and only if m is even, say $m=2 k$, and M is an open part of a tube around a totally geodesic $\mathbb{C} P^{k} \subset Q^{2 k}$.

In a paper due to Pérez, Santos and Suh [8], we have considered a notion of Lie ξ-parallel structure Jacobi operator, $\mathcal{L}_{\xi} R_{\xi}=0$, for real hypersurfaces in complex projective space $\mathbb{C} P^{m}$, and in a paper [11], Suh has given a characterization of a tube of radius $r, 0<r<\frac{\pi}{2}$, over a totally geodesic $G_{2}\left(\mathbb{C}^{m+1}\right)$ in $G_{2}\left(\mathbb{C}^{m+2}\right)$ in terms of Lie ξ-parallel shape operator.

In this paper we consider a notion of Lie parallel shape operator S for real hypersurfaces in complex quadric Q^{m} along the direction of the Reeb vector field ξ, that is, $\mathcal{L}_{\xi} S=0$. In this case the shape operator S of M in Q^{m} is said to be Reeb invariant. Motivated by the results mentioned above and using the notion of isometric Reeb flow in Theorem 1.1, we give a new characterization of real hypersurfaces in complex quadric Q^{m} with Reeb invariant shape operator as follows:

Main Theorem. Let M be a real hypersurface in the complex quadric $Q^{m}, m \geq 3$ with Reeb invariant shape operator. Then $m=2 k$, and M is locally congruent to a tube over a totally geodesic complex projective space $\mathbb{C} P^{k}$ in $Q^{2 k}$.

2. The complex quadric

For more details in this section we refer to [3-6,9]. The complex quadric Q^{m} is the complex hypersurface in $\mathbb{C} P^{m+1}$ which is defined by the equation $z_{1}^{2}+\ldots+z_{m+2}^{2}=0$, where z_{1}, \ldots, z_{m+2} are homogeneous coordinates on $\mathbb{C} P^{m+1}$. We equip Q^{m} with the Riemannian metric which is induced from the Fubini Study metric on $\mathbb{C} P^{m+1}$ with constant holomorphic sectional curvature 4 . The Kähler structure on $\mathbb{C} P^{m+1}$ induces canonically a Kähler structure (J, g) on the complex quadric. For each $z \in Q^{m}$ we identify $T_{z} \mathbb{C} P^{m+1}$ with the orthogonal complement $\mathbb{C}^{m+2} \ominus \mathbb{C} z$ of $\mathbb{C} z$ in \mathbb{C}^{m+2} (see Kobayashi and Nomizu [6]). The tangent space $T_{z} Q^{m}$ can then be identified canonically with the orthogonal complement $\mathbb{C}^{m+2} \ominus(\mathbb{C} z \oplus \mathbb{C} N)$ of $\mathbb{C} z \oplus \mathbb{C} N$ in \mathbb{C}^{m+2}, where $N \in \nu_{z} Q^{m}$ is a normal vector of Q^{m} in $\mathbb{C} P^{m+1}$ at the point z.

The complex projective space $\mathbb{C} P^{m+1}$ is a Hermitian symmetric space of the special unitary group $S U_{m+2}$, namely $\mathbb{C} P^{m+1}=S U_{m+2} / S\left(U_{m+1} U_{1}\right)$. We denote by $o=[0, \ldots, 0,1] \in \mathbb{C} P^{m+1}$ the fixed point of the action of the stabilizer $S\left(U_{m+1} U_{1}\right)$. The special orthogonal group $S O_{m+2} \subset S U_{m+2}$ acts on $\mathbb{C} P^{m+1}$ with cohomogeneity one. The orbit containing o is a totally geodesic real projective space $\mathbb{R} P^{m+1} \subset \mathbb{C} P^{m+1}$. The second singular orbit of this action is the complex quadric $Q^{m}=S O_{m+2} / S O_{m} S O_{2}$. This homogeneous space model leads to the geometric interpretation of the complex quadric Q^{m} as the Grassmann manifold $G_{2}^{+}\left(\mathbb{R}^{m+2}\right)$ of oriented 2-planes in \mathbb{R}^{m+2}. It also gives a model of Q^{m} as a Hermitian symmetric space of
rank 2. The complex quadric Q^{1} is isometric to a sphere S^{2} with constant curvature, and Q^{2} is isometric to the Riemannian product of two 2 -spheres with constant curvature. For this reason we will assume $m \geq 3$ from now on.

For a unit normal vector N of Q^{m} at a point $z \in Q^{m}$ we denote by $A=A_{N}$ the shape operator of Q^{m} in $\mathbb{C} P^{m+1}$ with respect to N. The shape operator is an involution on the tangent space $T_{z} Q^{m}$ and

$$
T_{z} Q^{m}=V(A) \oplus J V(A)
$$

where $V(A)$ is the +1 -eigenspace and $J V(A)$ is the (-1)-eigenspace of A_{N}. Geometrically this means that the shape operator A_{N} defines a real structure on the complex vector space $T_{z} Q^{m}$, or equivalently, is a complex conjugation on $T_{z} Q^{m}$. Since the real codimension of Q^{m} in $\mathbb{C} P^{m+1}$ is 2 , this induces an S^{1}-subbundle \mathfrak{A} of the endomorphism bundle $\operatorname{End}\left(T Q^{m}\right)$ consisting of complex conjugations.

There is a geometric interpretation of these conjugations. The complex quadric Q^{m} can be viewed as the complexification of the m-dimensional sphere S^{m}. Through each point $z \in Q^{m}$ there exists a one-parameter family of real forms of Q^{m} which are isometric to the sphere S^{m}. These real forms are congruent to each other under action of the center SO_{2} of the isotropy subgroup of $S O_{m+2}$ at z. The isometric reflection of Q^{m} in such a real form S^{m} is an isometry, and the differential at z of such a reflection is a conjugation on $T_{z} Q^{m}$. In this way the family \mathfrak{A} of conjugations on $T_{z} Q^{m}$ corresponds to the family of real forms S^{m} of Q^{m} containing z, and the subspaces $V(A) \subset T_{z} Q^{m}$ correspond to the tangent spaces $T_{z} S^{m}$ of the real forms S^{m} of Q^{m}.

The Gauss equation for $Q^{m} \subset \mathbb{C} P^{m+1}$ implies that the Riemannian curvature tensor R of Q^{m} can be described in terms of the complex structure J and the complex conjugation $A \in \mathfrak{A}$:

$$
\begin{aligned}
R(X, Y) Z= & g(Y, Z) X-g(X, Z) Y+g(J Y, Z) J X-g(J X, Z) J Y-2 g(J X, Y) J Z \\
& +g(A Y, Z) A X-g(A X, Z) A Y+g(J A Y, Z) J A X-g(J A X, Z) J A Y .
\end{aligned}
$$

Note that J and each complex conjugation A anti-commute, that is, $A J=-J A$ for each $A \in \mathfrak{A}$.
Recall that a nonzero tangent vector $W \in T_{z} Q^{m}$ is called singular if it is tangent to more than one maximal flat in Q^{m}. There are two types of singular tangent vectors for the complex quadric Q^{m} :

1. If there exists a conjugation $A \in \mathfrak{A}$ such that $W \in V(A)$, then W is singular. Such a singular tangent vector is called \mathfrak{A}-principal.
2. If there exist a conjugation $A \in \mathfrak{A}$ and orthonormal vectors $X, Y \in V(A)$ such that $W /\|W\|=(X+$ $J Y) / \sqrt{2}$, then W is singular. Such a singular tangent vector is called \mathfrak{A}-isotropic.

For every unit tangent vector $W \in T_{z} Q^{m}$ there exist a conjugation $A \in \mathfrak{A}$ and orthonormal vectors $X, Y \in V(A)$ such that

$$
W=\cos (t) X+\sin (t) J Y
$$

for some $t \in[0, \pi / 4]$. The singular tangent vectors correspond to the values $t=0$ and $t=\pi / 4$. If $0<t<\pi / 4$ then the unique maximal flat containing W is $\mathbb{R} X \oplus \mathbb{R} J Y$. Later we will need the eigenvalues and eigenspaces of the Jacobi operator $R_{W}=R(\cdot, W) W$ for a singular unit tangent vector W.

1. If W is an \mathfrak{A}-principal singular unit tangent vector with respect to $A \in \mathfrak{A}$, then the eigenvalues of R_{W} are 0 and 2 and the corresponding eigenspaces are $\mathbb{R} W \oplus J(V(A) \ominus \mathbb{R} W)$ and $(V(A) \ominus \mathbb{R} W) \oplus \mathbb{R} J W$, respectively.
2. If W is an \mathfrak{A}-isotropic singular unit tangent vector with respect to $A \in \mathfrak{A}$ and $X, Y \in V(A)$, then the eigenvalues of R_{W} are 0,1 and 4 and the corresponding eigenspaces are $\mathbb{R} W \oplus \mathbb{C}(J X+Y), T_{z} Q^{m} \ominus$ $(\mathbb{C} X \oplus \mathbb{C} Y)$ and $\mathbb{R} J W$, respectively.

3. The totally geodesic $\mathbb{C} P^{k} \subset Q^{2 k}$

We now assume that m is even, say $m=2 k$. The map

$$
\mathbb{C} P^{k} \rightarrow Q^{2 k} \subset \mathbb{C} P^{2 k+1}, \quad\left[z_{1}, \ldots, z_{k+1}\right] \mapsto\left[z_{1}, \ldots, z_{k+1}, i z_{1}, \ldots, i z_{k+1}\right]
$$

provides an embedding of $\mathbb{C} P^{k}$ into $Q^{2 k}$ as a totally geodesic complex submanifold. We define a complex structure j on $\mathbb{C}^{2 k+2}$ by

$$
j\left(z_{1}, \ldots, z_{k+1}, z_{k+2}, \ldots, z_{2 k+2}\right)=\left(-z_{k+2}, \ldots,-z_{2 k+2}, z_{1}, \ldots, z_{k+1}\right) .
$$

Note that $i j=j i$. We can then identify $\mathbb{C}^{2 k+2}$ with $\mathbb{C}^{k+1} \oplus j \mathbb{C}^{k+1}$ and get

$$
T_{z} \mathbb{C} P^{k}=\left\{X+i j X \mid X \in \mathbb{C}^{k+1} \ominus \mathbb{C} z\right\}
$$

Now consider the standard embedding of U_{k+1} into $S_{2 k+2}$ which is determined by the Lie algebra embedding

$$
\mathfrak{u}_{k+1} \rightarrow \mathfrak{s o}_{2 k+2}, \quad C+i D \mapsto\left(\begin{array}{cc}
C & -D \\
D & C
\end{array}\right),
$$

where $C, D \in M_{k+1, k+1}(\mathbb{R})$. The action of U_{k+1} on $Q^{2 k}$ is of cohomogeneity one and $\mathbb{C} P^{k}$ is the orbit of this action containing the point $z=[1,0, \ldots, 0, i, 0, \ldots, 0] \in Q^{2 k}$, where the i sits in the ($k+2$)-nd component. We now fix a unit normal vector N of $Q^{2 k}$ at z and denote the corresponding complex conjugation $A_{N} \in \mathfrak{A}$ by A. Then we can write alternatively

$$
T_{z} \mathbb{C} P^{k}=\{X+i j X \mid X \in V(A)\} .
$$

Note that the complex structure i on $\mathbb{C}^{2 m+2}$ corresponds to the complex structure on $T_{z} Q^{2 m}$ via the obvious identifications.

We are now going to calculate the principal curvatures and principal curvature spaces of the tube with radius r around $\mathbb{C} P^{k}$ in $Q^{2 k}$. For this we use the standard Jacobi field method as described in Section 8.2 of [4]. Let $N=(X+J Y) / \sqrt{2}$ be a unit normal vector of $\mathbb{C} P^{k}$ in $Q^{2 k}$, where $X, Y \in V(A)$ are orthonormal. The normal Jacobi operator R_{N} leaves the tangent space $T_{z} \mathbb{C} P^{k}$ and the normal space $\nu_{z} \mathbb{C} P^{k}$ invariant. When restricted to $T_{z} \mathbb{C} P^{k}$, the eigenvalues of R_{N} are 0 and 1 with corresponding eigenspaces $\mathbb{C}(J X+Y)$ and $T_{z} \mathbb{C} P^{k} \ominus \mathbb{C}(J X+Y)$. The corresponding principal curvatures on the tube of radius r are 0 and $\tan (r)$, and the corresponding principal curvature spaces are the parallel translates of $\mathbb{C}(J X+Y)$ and $T_{z} \mathbb{C} P^{k} \ominus \mathbb{C}(J X+Y)$ along the geodesic γ in $Q^{2 k}$ with $\gamma(0)=z$ and $\dot{\gamma}(0)=N$ from $\gamma(0)$ to $\gamma(r)$. We denote the latter parallel translate by W_{1}. When restricted to $\nu_{z} \mathbb{C} P^{k} \ominus \mathbb{R} N$, the eigenvalues of R_{N} are 1 and 4 with corresponding eigenspaces $\nu_{z} \mathbb{C} P^{k} \ominus \mathbb{C} N$ and $\mathbb{R} J N$. We denote the first parallel translate by W_{2}. The corresponding principal curvatures on the tube of radius r are $-\cot (r)$ and $-2 \cot (2 r)$, and the corresponding principal curvature spaces are the parallel translates of $\nu_{z} \mathbb{C} P^{k} \ominus \mathbb{C} N$ and $\mathbb{R} J N$ along γ from $\gamma(0)$ to $\gamma(r)$. This shows in particular that the tube is a Hopf hypersurface.

For $0<r<\pi / 2$ this process leads to real hypersurfaces in $Q^{2 k}$, whereas for $r=\pi / 2$ we get another totally geodesic $\mathbb{C} P^{k} \subset Q^{2 k}$. The two totally geodesic complex projective spaces are precisely the
two singular orbits of the U_{k+1}-action on $Q^{2 k}$, and the tubes of radius $0<r<\pi / 2$ are the principal orbits of this action. Using the homogeneity of the tubes we can now conclude that the tube M of radius $0<r<\pi / 2$ has four distinct constant principal curvatures and the property that the shape operator leaves invariant the maximal complex subbundle \mathcal{C} of $T M$. Moreover, all principal curvature spaces in \mathcal{C} are J-invariant. Summing up all the properties mentioned above, we have the following

Proposition 3.1. (See [3].) Let M be the tube of radius $0<r<\pi / 2$ around the totally geodesic $\mathbb{C} P^{k}$ in $Q^{2 k}$. Then the following statements hold:

1. M is a Hopf hypersurface.
2. Every unit normal vector N of M is \mathfrak{A}-isotropic and therefore can be written in the form $N=(X+$ $J Y) / \sqrt{2}$ with some orthonormal vectors $X, Y \in V(A)$ and $A \in \mathfrak{A}$.
3. The principal curvatures and corresponding principal curvature spaces of M are

principal curvature	eigenspace	multiplicity
0	$\mathbb{C}(J X+Y)$	2
$\tan (r)$	W_{1}	$2 k-2$
$-\cot (r)$	W_{2}	$2 k-2$
$-2 \cot (2 r)$	$\mathbb{R} J N$	1

4. Each of the two focal sets of M is a totally geodesic $\mathbb{C} P^{k} \subset Q^{2 k}$.
5. The Reeb flow of M is an isometric flow.
6. The shape operator S and the structure tensor field ϕ satisfy $S \phi=\phi S$.
7. M is a homogeneous hypersurface of $Q^{2 k}$. More precisely, it is an orbit of the U_{k+1}-action on $Q^{2 k}$ isomorphic to $U_{k+1} / U_{k-1} U_{1}$, an $S^{2 k-1}$-bundle over $\mathbb{C} P^{k}$.

4. Some general equations

Let M be a real hypersurface in Q^{m} and denote by (ϕ, ξ, η, g) the induced almost contact metric structure. Note that $\xi=-J N$, where N is a (local) unit normal vector field of M. The tangent bundle $T M$ of M splits orthogonally into $T M=\mathcal{C} \oplus \mathbb{R} \xi$, where $\mathcal{C}=\operatorname{ker}(\eta)$ is the maximal complex subbundle of $T M$. The structure tensor field ϕ restricted to \mathcal{C} coincides with the complex structure J restricted to \mathcal{C}, and $\phi \xi=0$.

We now assume that M is a Hopf hypersurface. Then we have

$$
S \xi=\alpha \xi
$$

with the smooth function $\alpha=g(S \xi, \xi)$ on M. When we consider a transform $J X$ of the Kähler structure J on Q^{m} for any vector field X on M in Q^{m}, we may put

$$
J X=\phi X+\eta(X) N
$$

for a unit normal N to M. Then we now consider the Codazzi equation

$$
\begin{aligned}
g\left(\left(\nabla_{X} S\right) Y-\left(\nabla_{Y} S\right) X, Z\right)= & \eta(X) g(\phi Y, Z)-\eta(Y) g(\phi X, Z)-2 \eta(Z) g(\phi X, Y) \\
& +g(X, A N) g(A Y, Z)-g(Y, A N) g(A X, Z) \\
& +g(X, A \xi) g(J A Y, Z)-g(Y, A \xi) g(J A X, Z)
\end{aligned}
$$

Putting $Z=\xi$ we get

$$
\begin{aligned}
g\left(\left(\nabla_{X} S\right) Y-\left(\nabla_{Y} S\right) X, \xi\right)= & -2 g(\phi X, Y) \\
& +g(X, A N) g(Y, A \xi)-g(Y, A N) g(X, A \xi) \\
& -g(X, A \xi) g(J Y, A \xi)+g(Y, A \xi) g(J X, A \xi) .
\end{aligned}
$$

On the other hand, we have

$$
\begin{aligned}
& g\left(\left(\nabla_{X} S\right) Y-\left(\nabla_{Y} S\right) X, \xi\right) \\
& \quad=g\left(\left(\nabla_{X} S\right) \xi, Y\right)-g\left(\left(\nabla_{Y} S\right) \xi, X\right) \\
& \quad=(X \alpha) \eta(Y)-(Y \alpha) \eta(X)+\alpha g((S \phi+\phi S) X, Y)-2 g(S \phi S X, Y) .
\end{aligned}
$$

Comparing the previous two equations and putting $X=\xi$ yields

$$
Y \alpha=(\xi \alpha) \eta(Y)-2 g(\xi, A N) g(Y, A \xi)+2 g(Y, A N) g(\xi, A \xi) .
$$

Reinserting this into the previous equation yields

$$
\begin{aligned}
& g\left(\left(\nabla_{X} S\right) Y-\left(\nabla_{Y} S\right) X, \xi\right) \\
&=-2 g(\xi, A N) g(X, A \xi) \eta(Y)+2 g(X, A N) g(\xi, A \xi) \eta(Y) \\
&+2 g(\xi, A N) g(Y, A \xi) \eta(X)-2 g(Y, A N) g(\xi, A \xi) \eta(X) \\
&+\alpha g((\phi S+S \phi) X, Y)-2 g(S \phi S X, Y) .
\end{aligned}
$$

Altogether this implies

$$
\begin{aligned}
0= & 2 g(S \phi S X, Y)-\alpha g((\phi S+S \phi) X, Y)-2 g(\phi X, Y) \\
& +g(X, A N) g(Y, A \xi)-g(Y, A N) g(X, A \xi) \\
& -g(X, A \xi) g(J Y, A \xi)+g(Y, A \xi) g(J X, A \xi) \\
& +2 g(\xi, A N) g(X, A \xi) \eta(Y)-2 g(X, A N) g(\xi, A \xi) \eta(Y) \\
& -2 g(\xi, A N) g(Y, A \xi) \eta(X)+2 g(Y, A N) g(\xi, A \xi) \eta(X) .
\end{aligned}
$$

At each point $z \in M$ we can choose $A \in \mathfrak{A}_{z}$ such that

$$
N=\cos (t) Z_{1}+\sin (t) J Z_{2}
$$

for some orthonormal vectors $Z_{1}, Z_{2} \in V(A)$ and $0 \leq t \leq \frac{\pi}{4}$ (see Proposition 3 in [9]). Note that t is a function on M. First of all, since $\xi=-J N$, we have

$$
\begin{aligned}
N & =\cos (t) Z_{1}+\sin (t) J Z_{2}, \\
A N & =\cos (t) Z_{1}-\sin (t) J Z_{2}, \\
\xi & =\sin (t) Z_{2}-\cos (t) J Z_{1}, \\
A \xi & =\sin (t) Z_{2}+\cos (t) J Z_{1} .
\end{aligned}
$$

This implies $g(\xi, A N)=0$ and hence

$$
\begin{aligned}
0= & 2 g(S \phi S X, Y)-\alpha g((\phi S+S \phi) X, Y)-2 g(\phi X, Y) \\
& +g(X, A N) g(Y, A \xi)-g(Y, A N) g(X, A \xi) \\
& -g(X, A \xi) g(J Y, A \xi)+g(Y, A \xi) g(J X, A \xi) \\
& -2 g(X, A N) g(\xi, A \xi) \eta(Y)+2 g(Y, A N) g(\xi, A \xi) \eta(X) .
\end{aligned}
$$

5. Proof of Main Theorem

Before going to prove our Main Theorem, first let us show that the shape operator of M which becomes the tube of radius r over a complex projective space $C P^{k}$ in $Q^{2 k}$ is Reeb invariant or not; that is, $\mathcal{L}_{\xi} S=0$ or not. In fact, the Lie derivative vanishing along the Reeb vector field is given as follows:

$$
\begin{aligned}
\left(\mathcal{L}_{\xi} S\right) X & =\mathcal{L}_{\xi}(S X)-S \mathcal{L}_{\xi} X \\
& =\left(\nabla_{\xi} S\right) X-\phi S^{2} X+S \phi S X \\
& =0
\end{aligned}
$$

for any vector field X on M in $Q^{2 k}$. Then this is equivalent to the following

$$
\left(\nabla_{\xi} S\right) X=\phi S^{2} X-S \phi S X
$$

In order to do this, let us mention that the shape operator S of the tube over $C P^{k}$ commutes with the structure tensor ϕ, that is, $S \phi=\phi S$ as in Proposition 3.1. So the right side of the above equation vanishes. Now let us check whether the left side $\nabla_{\xi} S=0$ or not. Then by a paper due to Berndt and Suh (see [2], page 1350050-14), the expression of covariant derivative for the shape operator of M in complex quadric \mathbb{Q}^{m} becomes

$$
\begin{aligned}
\left(\nabla_{X} S\right) Y= & \left\{d \alpha(X) \eta(Y)+g\left(\left(\alpha S \phi-S^{2} \phi\right) X, Y\right)+\delta \eta(Y) \rho(X)\right. \\
& +\delta g(B X, \phi Y)+\eta(B X) \rho(Y)\} \xi \\
& +\{\eta(Y) \rho(X)+g(B X, \phi Y)\} B \xi+g(B X, Y) \phi B \xi \\
& -\rho(Y) B X-\eta(Y) \phi X-\eta(B Y) \phi B X
\end{aligned}
$$

for any vector fields X and Y on M in Q^{m}, where we have put

$$
A Y=B Y+\rho(Y) N, \quad \rho(Y)=g(A Y, N)
$$

for a complex conjugation $A \in \mathfrak{A}$. Putting $X=\xi$ and using α constant and $\rho(\xi)=0$ for the \mathfrak{A}-isotropic unit normal vector field N of M in $Q^{2 k}$, we have

$$
\begin{aligned}
\left(\nabla_{\xi} S\right) Y= & \delta g(B \xi, \phi Y)+\eta(B \xi) \rho(Y)\} \xi \\
& +\{\eta(Y) \rho(\xi)+g(B \xi, \phi Y)\} B \xi+g(B \xi, Y) \phi B \xi \\
& -\rho(Y) B \xi-\eta(Y) \phi \xi-\eta(B Y) \phi B \xi \\
= & \{g(B \xi, \phi Y)-\rho(Y)\} B \xi \\
= & \{-g(\phi B \xi, Y)+g(Y, \phi B \xi)\} B \xi=0,
\end{aligned}
$$

where in the third equality we have used

$$
\begin{aligned}
\rho(Y) & =g(A Y, N)=g(Y, A N) \\
& =g(Y, A J \xi) \\
& =-g(Y, J A \xi)=-g(Y, J B \xi) \\
& =-g(Y, \phi B \xi) .
\end{aligned}
$$

As mentioned above, a real hypersurface M in $\mathbb{Q}^{2 k}$ with commuting shape operator, that is, $S \phi=\phi S$, has a parallel shape operator along the Reeb direction $\nabla_{\xi} S=0$. Accordingly, we know that the shape operator of the tube over $C P^{k}$ is Reeb invariant, that is, $\mathcal{L}_{\xi} S=0$.

Now conversely, let us prove our Main Theorem in the introduction. Let us assume $\mathcal{L}_{\xi} S=0$.
On the other hand, the equation of Codazzi in Section 4 can be written as follows (see Berndt and Suh [2]):

$$
\begin{aligned}
\left(\nabla_{X} S\right) Y-\left(\nabla_{Y} S\right) X= & \eta(X) \phi Y-\eta(Y) \phi X-2 g(\phi X, Y) \xi \\
& +\rho(X) B Y-\rho(Y) B X \\
& +\eta(B X) \phi B Y-\eta(B X) \rho(Y) \xi \\
& -\eta(B Y) \phi B X+\eta(B Y) \rho(X) \xi,
\end{aligned}
$$

where we have put $A Y=B Y+\rho(Y) N$, and $\rho(X)=g(A X, N)=g(J X, A \xi)$ for a unit normal N of M in Q^{m}. Then we assert the following

Proposition 5.1. Let M be a real hypersurface in complex quadrics $Q^{m}, m \geq 3$. If the Reeb flow on M satisfies $\mathcal{L}_{\xi} S=0$, then the shape operator S commutes with the structure tensor ϕ, that is, $S \phi=\phi S$.

Proof. First note that

$$
\begin{aligned}
\left(\mathcal{L}_{\xi} S\right) X & =\mathcal{L}_{\xi}(S X)-A \mathcal{L}_{\xi} X \\
& =\nabla_{\xi}(S X)-\nabla_{S X} \xi-S\left(\nabla_{\xi} X-\nabla_{X} \xi\right) \\
& =\left(\nabla_{\xi} S\right) X-\nabla_{S X} \xi+S \nabla_{X} \xi \\
& =\left(\nabla_{\xi} S\right) X-\phi S^{2} X+S \phi S X
\end{aligned}
$$

for any vector field X on M. Then the assumption $\mathcal{L}_{\xi} S=0$ holds if and only if $\left(\nabla_{\xi} S\right) X=\phi S^{2} X-S \phi S X$. Now, let us take an orthonormal basis $\left\{e_{1}, e_{2}, \cdots, e_{2 m-1}\right\}$ for the tangent space $T_{x} M, x \in M$, of a real hypersurface M in Q^{m}. Then by the equation of Codazzi we may put

$$
\begin{align*}
\left(\nabla_{e_{i}} S\right) Y-\left(\nabla_{Y} S\right) e_{i}= & \eta\left(e_{i}\right) \phi Y-\eta(Y) \phi e_{i}-2 g\left(\phi e_{i}, Y\right) \xi \\
& +\rho\left(e_{i}\right) B Y-\rho(Y) B e_{i}+\eta\left(B e_{i}\right) \phi B Y-\eta(B Y) \rho\left(e_{i}\right) \xi \\
& -\eta(B Y) \phi B e_{i}+\eta(B Y) \rho\left(e_{i}\right) \xi, \tag{5.1}
\end{align*}
$$

from which, together with the fundamental formulas which is introduced in Section 2 it follows that

$$
\begin{align*}
\sum_{i=1}^{2 m-1} g\left(\left(\nabla_{e_{i}} S\right) Y, \phi e_{i}\right)= & -(2 m-2) \eta(Y) \\
& +\sum_{i=1}^{2 m-1} \rho\left(e_{i}\right) g\left(B Y, \phi e_{i}\right)-\sum_{i=1}^{2 m-1} \rho(Y) g\left(B e_{i}, \phi e_{i}\right) \\
& +\sum_{i=1}^{2 m-1} \eta\left(B e_{i}\right) g\left(\phi B Y, \phi e_{i}\right)-\sum_{i=1}^{2 m-1} \eta(B Y) \rho\left(e_{i}\right) g\left(\xi, \phi e_{i}\right) \\
& -\eta(B Y) \sum_{i=1}^{2 m-1} g\left(\phi B e_{i}, \phi e_{i}\right) . \tag{5.2}
\end{align*}
$$

Now let us denote by U the vector $\nabla_{\xi} \xi=\phi S \xi$. Then using the equation $\left(\nabla_{X} \phi\right) Y=\eta(Y) A X-g(S X, Y) \xi$, its derivative can be given by

$$
\begin{aligned}
\nabla_{e_{i}} U & =\left(\nabla_{e_{i}} \phi\right) S \xi+\phi\left(\nabla_{e_{i}} S\right) \xi+\phi S \nabla_{e_{i}} \xi \\
& =\eta(S \xi) S e_{i}-g\left(S e_{i}, S \xi\right) \xi+\phi\left(\nabla_{e_{i}} S\right) \xi+\phi S \phi S e_{i}
\end{aligned}
$$

Then its divergence is given by

$$
\begin{align*}
\operatorname{div} U & =\sum_{i=1}^{2 m-1} g\left(\nabla_{e_{i}} U, e_{i}\right) \\
& =h \eta(S \xi)-\eta\left(S^{2} \xi\right)-\sum_{i=1}^{2 m-1} g\left(\left(\nabla_{e_{i}} S\right) \xi, \phi e_{i}\right)-\sum_{i=1}^{2 m-1} g\left(\phi S e_{i}, S \phi e_{i}\right) \tag{5.3}
\end{align*}
$$

where h denotes the trace of the shape operator S of M in Q^{m}.
Now we calculate the squared norm of the tensor $S \phi-\phi S$ as follows:

$$
\begin{align*}
\|\phi S-S \phi\|^{2}= & \sum_{i} g\left((\phi S-S \phi) e_{i},(\phi S-S \phi) e_{i}\right) \\
= & \sum_{i, j} g\left((\phi S-S \phi) e_{i}, e_{j}\right) g\left((\phi S-S \phi) e_{i}, e_{j}\right) \\
= & \sum_{i, j}\left\{g\left(\phi S e_{j}, e_{i}\right)+g\left(\phi S e_{i}, e_{j}\right)\right\}\left\{g\left(\phi S e_{j}, e_{i}\right)+g\left(\phi S e_{i}, e_{j}\right)\right\} \\
= & 2 \sum_{i, j} g\left(\phi S e_{j}, e_{i}\right) g\left(\phi S e_{j}, e_{i}\right)+2 \sum_{i, j} g\left(\phi S e_{j}, e_{i}\right) g\left(\phi S e_{i}, e_{j}\right) \\
= & 2 \sum_{j} g\left(\phi S e_{j}, \phi S e_{j}\right)-2 \sum_{j} g\left(\phi S e_{j}, S \phi e_{j}\right) \\
= & -2 \sum_{j} g\left(S e_{j}, \phi^{2} S e_{j}\right)-2 \sum_{j} g\left(\phi S e_{j}, S \phi e_{j}\right) \\
= & 2 \operatorname{Tr} S^{2}-2 \eta\left(S^{2} \xi\right)+2 \operatorname{div} U-2 \eta(S \xi) \operatorname{Tr} S \\
& +2 \eta\left(S^{2} \xi\right)+2 \sum_{j} g\left(\left(\nabla_{e_{j}} S\right) \xi, \phi e_{j}\right), \tag{5.4}
\end{align*}
$$

where \sum_{i} (respectively, $\sum_{i, j}$) denotes the summation from $i=1$ to $2 m-1$ (respectively, from $i, j=1$ to $2 m-1$) and in the final equality we have used (5.3).

From this, together with the formula (5.2), it follows that

$$
\begin{align*}
\operatorname{div} U= & \frac{1}{2}\|\phi S-S \phi\|^{2}-\operatorname{Tr} S^{2} \\
& +h \eta(S \xi)-\sum_{i} g\left(\left(\nabla_{e_{i}} S\right) \xi, \phi e_{i}\right) . \tag{5.5}
\end{align*}
$$

By (5.5) and the assumption of $\mathcal{L}_{\xi} S=0$, let us show that the structure tensor ϕ commutes with the shape operator S, that is, $\phi S=S \phi$.

On the other hand, we know that $\mathcal{L}_{\xi} S=0$ is equivalent to

$$
\left(\nabla_{\xi} S\right) X=\phi S^{2} X-S \phi S X
$$

Then by the equation of Codazzi, we know that

$$
\begin{align*}
\left(\nabla_{X} S\right) \xi= & \left(\nabla_{\xi} S\right) X-\phi X+\rho(X) B \xi-\rho(\xi) B X+\eta(B X) \phi B \xi \\
& -\eta(B X) \rho(\xi) \xi-\eta(B \xi) \phi B X+\eta(B \xi) \rho(X) \xi \\
= & \phi S^{2} X-S \phi S X-\phi X+\rho(X) B \xi \\
& +\eta(B X) \phi B \xi-\eta(B \xi) \phi B X+\eta(B \xi) \rho(X) \xi . \tag{5.6}
\end{align*}
$$

Now let us take an inner product (5.6) with the Reeb vector field ξ. Then we have

$$
\begin{align*}
g\left(\left(\nabla_{X} S\right) \xi, \xi\right) & =-g(S \phi S X, \xi)+\rho(X) g(B \xi, \xi)+\eta(B \xi) \rho(X) \\
& =g(S X, U)+2 g(B \xi, \xi) \rho(X) . \tag{5.7}
\end{align*}
$$

On the other hand, by the almost contact structure ϕ we have

$$
\phi U=\phi^{2} S \xi=-S \xi+\eta(S \xi) \xi=-S \xi+\alpha \xi
$$

where the function α denotes $\eta(S \xi)$. From this, differentiating and using the formula $\left(\nabla_{X} \phi\right) Y=\eta(Y) A X-$ $g(A X, Y) \xi$ gives

$$
\begin{align*}
-g(S X, U) \xi+\phi \nabla_{X} U & =\left(\nabla_{X} \phi\right) U+\phi \nabla_{X} U \\
& =-\left(\nabla_{X} S\right) \xi-S \nabla_{X} \xi+(X \alpha) \xi+\alpha \nabla_{X} \xi \tag{5.8}
\end{align*}
$$

From this, taking an inner product with ξ, it follows that

$$
-g(S X, U)=-g\left(\left(\nabla_{X} S\right) \xi, \xi\right)+g(S X, U)+X \alpha
$$

Then, together with (5.7), it follows that

$$
\begin{equation*}
g(S X, U)-2 g(B \xi, \xi) \rho(X)+X \alpha=0 \tag{5.9}
\end{equation*}
$$

Substituting (5.6) and (5.9) into (5.8), we have the following

$$
\begin{aligned}
\phi \nabla_{X} U= & \phi X-\phi S^{2} X+\alpha \phi S X-\rho(X) B \xi \\
& -\eta(B X) \phi B \xi+\eta(B \xi) \phi B X-\eta(B \xi) \rho(X) \xi .
\end{aligned}
$$

Now summing up with respect to $1, \cdots, m-1$ for an orthonormal basis of $T_{x} M, x \in M$, we have

$$
\begin{align*}
\sum_{i} g\left(\phi \nabla_{e_{i}} U, \phi e_{i}\right)= & (2 m-2)-\left\{\operatorname{Tr} S^{2}-\eta\left(S^{2} \xi\right)\right\}+\alpha\{\operatorname{Tr} S-\alpha\} \\
& -\sum_{i} \rho\left(e_{i}\right) g\left(B \xi, \phi e_{i}\right)-\sum_{i} \eta\left(B e_{i}\right) g\left(\phi B \xi, \phi e_{i}\right) \\
& +\sum_{i} \eta(B \xi) g\left(\phi B e_{i}, \phi e_{i}\right) . \tag{5.10}
\end{align*}
$$

On the other hand, we know that

$$
\begin{align*}
g\left(\phi \nabla_{e_{i}} U, \phi e_{i}\right) & =-g\left(\nabla_{e_{i}} U,-e_{i}+\eta\left(e_{i}\right) \xi\right) \\
& =\sum_{i} g\left(\nabla_{e_{i}} U, e_{i}\right)-g\left(\nabla_{\xi} U, \xi\right) \\
& =\operatorname{div} U+\|U\|^{2} \\
& =\operatorname{div} U+\eta\left(S^{2} \xi\right)-\eta(S \xi)^{2}, \tag{5.11}
\end{align*}
$$

where $\|U\|^{2}=g(\phi S \xi, \phi S \xi)=\eta\left(S^{2} \xi\right)-\eta(S \xi)^{2}$.
Summing up (5.10) with (5.11), we get the following

$$
\begin{align*}
\operatorname{div} U= & (2 m-2)-\operatorname{Tr} S^{2}+\alpha \operatorname{Tr} S \\
& -\sum_{i} \rho\left(e_{i}\right) g\left(B \xi, \phi e_{i}\right)-\sum_{i} \eta\left(B e_{i}\right) g\left(\phi B \xi, \phi e_{i}\right) \\
& +\sum_{i} \eta(B \xi) g\left(\phi B e_{i}, \phi e_{i}\right) \tag{5.12}
\end{align*}
$$

where we have denoted the function $\eta(S \xi)$ by $\alpha=\eta(S \xi)$.
On the other hand, (5.2) for $Y=\xi$ gives the following

$$
\begin{align*}
\sum_{i} g\left(\left(\nabla_{e_{i}} S\right) \xi, \phi e_{i}\right)= & -(2 m-2) \\
& +\sum_{i} \rho\left(e_{i}\right) g\left(B \xi, \phi e_{i}\right) \\
& +\sum_{i} \eta\left(B e_{i}\right) g\left(\phi B \xi, \phi e_{i}\right)-\eta(B \xi) \sum_{i} g\left(\phi B e_{i}, \phi e_{i}\right) \tag{5.13}
\end{align*}
$$

where we have used $\sum_{i} \rho(\xi) g\left(B e_{i}, \phi e_{i}\right)=0$ and $\sum_{i} \eta(B \xi) \rho\left(e_{i}\right) g\left(\xi, \phi e_{i}\right)=0$. From this, together with (5.5), (5.10) and (5.13), it follows that

$$
\begin{aligned}
\operatorname{div} U= & \frac{1}{2}\|\phi S-S \phi\|^{2}-\operatorname{Tr} S^{2}+h \eta(S \xi)-\sum_{i} g\left(\left(\nabla_{e_{i}} S\right) \xi, \phi e_{i}\right) \\
= & \frac{1}{2}\|\phi S-S \phi\|^{2}-\operatorname{Tr} S^{2}+h \eta(S \xi) \\
& +(2 m-2)-\sum_{i} \rho\left(e_{i}\right) g\left(B \xi, \phi e_{i}\right)-\sum_{i} \eta\left(B e_{i}\right) g\left(\phi B \xi, \phi e_{i}\right) \\
& +\eta(B \xi) \sum_{i} g\left(\phi B e_{i}, \phi e_{i}\right)
\end{aligned}
$$

$$
\begin{align*}
= & (2 m-2)-\operatorname{Tr} S^{2}+h \eta(S \xi) \\
& -\sum_{i} \rho\left(e_{i}\right) g\left(B \xi, \phi e_{i}\right)-\sum_{i} \eta\left(B e_{i}\right) g\left(\phi B \xi, \phi e_{i}\right) \\
& +\sum_{i} \eta(B \xi) g\left(\phi B e_{i}, \phi e_{i}\right), \tag{5.14}
\end{align*}
$$

where we have used (5.13) in the second equality and (5.12) in the third equality respectively. Then comparing the both sides in the third equality of (5.14) gives $\|\phi S-S \phi\|^{2}=0$, that is, the shape operator S commutes with the structure tensor ϕ. This means that the Reeb flow on M is an isometric flow, which gives a complete proof of our Proposition.

By virtue of this proposition, together with Theorem 1.1, we give a complete proof of our Main Theorem in the introduction.

References

[1] J. Berndt, Y.J. Suh, Real hypersurfaces with isometric Reeb flow in complex two-plane Grassmannians, Monatshefte Math. 137 (2002) 87-98.
[2] J. Berndt, Y.J. Suh, Hypersurfaces in noncompact complex Grassmannians of rank two, Int. J. Math. 23 (2012) 1250103, 35 pp .
[3] J. Berndt, Y.J. Suh, Real hypersurfaces with isometric Reeb flow in complex quadrics, Int. J. Math. 24 (2013) 1350050, 18 pp .
[4] J. Berndt, S. Console, C. Olmos, Submanifolds and Holonomy, Chapman \& Hall/CRC, Boca Raton, FL, 2003.
[5] S. Klein, Totally geodesic submanifolds in the complex quadric, Differ. Geom. Appl. 26 (2008) 79-96.
[6] S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, vol. II, A Wiley-Interscience Publ., Wiley Classics Library Ed., 1996.
[7] M. Okumura, On some real hypersurfaces of a complex projective space, Trans. Am. Math. Soc. 212 (1975) $355-364$.
[8] J.D. Pérez, F.G. Santos, Y.J. Suh, Real hypersurfaces in complex projective space whose structure Jacobi operator is Lie ξ-parallel, Differ. Geom. Appl. 22 (2005) 181-188.
[9] H. Reckziegel, On the geometry of the complex quadric, in: Geometry and Topology of Submanifolds VIII, Brussels/Nordfjordeid, 1995, World Sci. Publ., River Edge, NJ, 1995, pp. 302-315.
[10] B. Smyth, Differential geometry of complex hypersurfaces, Ann. Math. 85 (1967) 246-266.
[11] Y.J. Suh, Real hypersurfaces in complex two-plane Grassmannians with vanishing Lie derivatives, Can. Math. Bull. 49 (2006) 131-143.
[12] Y.J. Suh, Real hypersurfaces with isometric Reeb flow in complex hyperbolic two-plane Grassmannians, Adv. Appl. Math. 50 (2013) 645-659.
[13] Y.J. Suh, Real hypersurfaces in complex hyperbolic two-plane Grassmannians with Reeb vector field, Adv. Appl. Math. 55 (2014) 131-145.

[^0]: th This work was supported by grant Proj. No. NRF-2012-R1A2A2A-01043023 from National Research Foundation of Korea. E-mail address: yjsuh@knu.ac.kr.

