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1. Introduction

When we consider some Hermitian symmetric spaces of rank 2, usually we can give examples of Rieman-
nian symmetric spaces SUm+2/S(U2Um) and SU 2,m/S(U2Um), which are said to be complex two-plane 
Grassmannians and complex hyperbolic two-plane Grassmannians respectively (see [1,2,12,13]). Those are 
said to be Hermitian symmetric spaces and quaternionic Kähler symmetric spaces equipped with the Kähler 
structure J and the quaternionic Kähler structure J on SU 2,m/S(U2Um). The rank of SU 2,m/S(U2Um) is 2
and there are exactly two types of singular tangent vectors X of SU 2,m/S(U2Um) which are characterized 
by the geometric properties JX ∈ JX and JX ⊥ JX respectively.

As another kind of Hermitian symmetric space with rank 2 of compact type different from the above 
ones, we can give an example of complex quadric Qm = SOm+2/SOmSO2, which is a complex hypersurface 
in complex projective space CPm+1 (see Berndt and Suh [3], and Smyth [10]). The complex quadric also 
can be regarded as a kind of real Grassmann manifolds of compact type with rank 2 (see Kobayashi and 
Nomizu [6]). Accordingly, the complex quadric admits both a complex conjugation structure A and a Kähler 
structure J , which anti-commute with each other, that is, AJ = −JA. Then for m ≥ 2 the triple (Qm, J, g)
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is a Hermitian symmetric space of compact type with rank 2 and its maximal sectional curvature is equal 
to 4 (see Klein [5] and Reckziegel [9]).

For the complex projective space CPm a full classification was obtained by Okumura in [7]. He proved 
that the Reeb flow on a real hypersurface in CPm = SUm+1/S(UmU1) is isometric if and only if M is an 
open part of a tube around a totally geodesic CP k ⊂ CPm for some k ∈ {0, . . . , m − 1}. For the complex 
2-plane Grassmannian G2(Cm+2) = SUm+2/S(UmU2) the classification was obtained by Berndt and Suh 
in [1]. The Reeb flow on a real hypersurface in G2(Cm+2) is isometric if and only if M is an open part of a 
tube around a totally geodesic G2(Cm+1) ⊂ G2(Cm+2). But, when we consider an isometric Reeb flow for 
real hypersurfaces in the complex quadric Qm = SOm+2/SOmSO2, the result is quite different from CPm

and G2(Cm+2). In view of the previous two results in CPm and G2(Cm+2) a natural expectation might be 
that the classification involves at least the totally geodesic Qm−1 ⊂ Qm. But, surprisingly, in [2] Berndt 
and Suh have proved the following result:

Theorem 1.1. Let M be a real hypersurface of the complex quadric Qm, m ≥ 3. The Reeb flow on M is 
isometric if and only if m is even, say m = 2k, and M is an open part of a tube around a totally geodesic 
CP k ⊂ Q2k.

In a paper due to Pérez, Santos and Suh [8], we have considered a notion of Lie ξ-parallel structure Jacobi 
operator, LξRξ = 0, for real hypersurfaces in complex projective space CPm, and in a paper [11], Suh has 
given a characterization of a tube of radius r, 0 < r < π

2 , over a totally geodesic G2(Cm+1) in G2(Cm+2) in 
terms of Lie ξ-parallel shape operator.

In this paper we consider a notion of Lie parallel shape operator S for real hypersurfaces in complex 
quadric Qm along the direction of the Reeb vector field ξ, that is, LξS = 0. In this case the shape operator 
S of M in Qm is said to be Reeb invariant. Motivated by the results mentioned above and using the notion 
of isometric Reeb flow in Theorem 1.1, we give a new characterization of real hypersurfaces in complex 
quadric Qm with Reeb invariant shape operator as follows:

Main Theorem. Let M be a real hypersurface in the complex quadric Qm, m ≥ 3 with Reeb invariant shape 
operator. Then m = 2k, and M is locally congruent to a tube over a totally geodesic complex projective 
space CP k in Q2k.

2. The complex quadric

For more details in this section we refer to [3–6,9]. The complex quadric Qm is the complex hypersurface 
in CPm+1 which is defined by the equation z2

1 + . . . + z2
m+2 = 0, where z1, . . . , zm+2 are homogeneous 

coordinates on CPm+1. We equip Qm with the Riemannian metric which is induced from the Fubini Study 
metric on CPm+1 with constant holomorphic sectional curvature 4. The Kähler structure on CPm+1 induces 
canonically a Kähler structure (J, g) on the complex quadric. For each z ∈ Qm we identify TzCP

m+1 with 
the orthogonal complement Cm+2 �Cz of Cz in Cm+2 (see Kobayashi and Nomizu [6]). The tangent space 
TzQ

m can then be identified canonically with the orthogonal complement Cm+2 � (Cz ⊕CN) of Cz ⊕CN

in Cm+2, where N ∈ νzQ
m is a normal vector of Qm in CPm+1 at the point z.

The complex projective space CPm+1 is a Hermitian symmetric space of the special unitary group 
SUm+2, namely CPm+1 = SUm+2/S(Um+1U1). We denote by o = [0, . . . , 0, 1] ∈ CPm+1 the fixed point 
of the action of the stabilizer S(Um+1U1). The special orthogonal group SOm+2 ⊂ SUm+2 acts on CPm+1

with cohomogeneity one. The orbit containing o is a totally geodesic real projective space RPm+1 ⊂ CPm+1. 
The second singular orbit of this action is the complex quadric Qm = SOm+2/SOmSO2. This homogeneous 
space model leads to the geometric interpretation of the complex quadric Qm as the Grassmann manifold 
G+

2 (Rm+2) of oriented 2-planes in Rm+2. It also gives a model of Qm as a Hermitian symmetric space of 
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rank 2. The complex quadric Q1 is isometric to a sphere S2 with constant curvature, and Q2 is isometric to 
the Riemannian product of two 2-spheres with constant curvature. For this reason we will assume m ≥ 3
from now on.

For a unit normal vector N of Qm at a point z ∈ Qm we denote by A = AN the shape operator of Qm

in CPm+1 with respect to N . The shape operator is an involution on the tangent space TzQ
m and

TzQ
m = V (A) ⊕ JV (A),

where V (A) is the +1-eigenspace and JV (A) is the (−1)-eigenspace of AN . Geometrically this means that the 
shape operator AN defines a real structure on the complex vector space TzQ

m, or equivalently, is a complex 
conjugation on TzQ

m. Since the real codimension of Qm in CPm+1 is 2, this induces an S1-subbundle A of 
the endomorphism bundle End(TQm) consisting of complex conjugations.

There is a geometric interpretation of these conjugations. The complex quadric Qm can be viewed as the 
complexification of the m-dimensional sphere Sm. Through each point z ∈ Qm there exists a one-parameter 
family of real forms of Qm which are isometric to the sphere Sm. These real forms are congruent to each 
other under action of the center SO2 of the isotropy subgroup of SOm+2 at z. The isometric reflection of 
Qm in such a real form Sm is an isometry, and the differential at z of such a reflection is a conjugation on 
TzQ

m. In this way the family A of conjugations on TzQ
m corresponds to the family of real forms Sm of Qm

containing z, and the subspaces V (A) ⊂ TzQ
m correspond to the tangent spaces TzS

m of the real forms 
Sm of Qm.

The Gauss equation for Qm ⊂ CPm+1 implies that the Riemannian curvature tensor R of Qm can be 
described in terms of the complex structure J and the complex conjugation A ∈ A:

R(X,Y )Z = g(Y,Z)X − g(X,Z)Y + g(JY, Z)JX − g(JX,Z)JY − 2g(JX, Y )JZ

+ g(AY,Z)AX − g(AX,Z)AY + g(JAY,Z)JAX − g(JAX,Z)JAY.

Note that J and each complex conjugation A anti-commute, that is, AJ = −JA for each A ∈ A.
Recall that a nonzero tangent vector W ∈ TzQ

m is called singular if it is tangent to more than one 
maximal flat in Qm. There are two types of singular tangent vectors for the complex quadric Qm:

1. If there exists a conjugation A ∈ A such that W ∈ V (A), then W is singular. Such a singular tangent 
vector is called A-principal.

2. If there exist a conjugation A ∈ A and orthonormal vectors X, Y ∈ V (A) such that W/||W || = (X +
JY )/

√
2, then W is singular. Such a singular tangent vector is called A-isotropic.

For every unit tangent vector W ∈ TzQ
m there exist a conjugation A ∈ A and orthonormal vectors 

X, Y ∈ V (A) such that

W = cos(t)X + sin(t)JY

for some t ∈ [0, π/4]. The singular tangent vectors correspond to the values t = 0 and t = π/4. If 0 < t < π/4
then the unique maximal flat containing W is RX⊕RJY . Later we will need the eigenvalues and eigenspaces 
of the Jacobi operator RW = R(·, W )W for a singular unit tangent vector W .

1. If W is an A-principal singular unit tangent vector with respect to A ∈ A, then the eigenvalues of RW

are 0 and 2 and the corresponding eigenspaces are RW ⊕ J(V (A) � RW ) and (V (A) � RW ) ⊕ RJW , 
respectively.
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2. If W is an A-isotropic singular unit tangent vector with respect to A ∈ A and X, Y ∈ V (A), then the 
eigenvalues of RW are 0, 1 and 4 and the corresponding eigenspaces are RW ⊕ C(JX + Y ), TzQ

m �
(CX ⊕ CY ) and RJW , respectively.

3. The totally geodesic CP k ⊂ Q2k

We now assume that m is even, say m = 2k. The map

CP k → Q2k ⊂ CP 2k+1, [z1, . . . , zk+1] 
→ [z1, . . . , zk+1, iz1, . . . , izk+1]

provides an embedding of CP k into Q2k as a totally geodesic complex submanifold. We define a complex 
structure j on C2k+2 by

j(z1, . . . , zk+1, zk+2, . . . , z2k+2) = (−zk+2, . . . ,−z2k+2, z1, . . . , zk+1).

Note that ij = ji. We can then identify C2k+2 with Ck+1 ⊕ jCk+1 and get

TzCP
k =

{
X + ijX | X ∈ Ck+1 � Cz

}
.

Now consider the standard embedding of Uk+1 into SO2k+2 which is determined by the Lie algebra embed-
ding

uk+1 → so2k+2, C + iD 
→
(
C −D

D C

)
,

where C, D ∈ Mk+1,k+1(R). The action of Uk+1 on Q2k is of cohomogeneity one and CP k is the orbit of this 
action containing the point z = [1, 0, . . . , 0, i, 0, . . . , 0] ∈ Q2k, where the i sits in the (k + 2)-nd component. 
We now fix a unit normal vector N of Q2k at z and denote the corresponding complex conjugation AN ∈ A

by A. Then we can write alternatively

TzCP
k =

{
X + ijX | X ∈ V (A)

}
.

Note that the complex structure i on C2m+2 corresponds to the complex structure on TzQ
2m via the obvious 

identifications.
We are now going to calculate the principal curvatures and principal curvature spaces of the tube with 

radius r around CP k in Q2k. For this we use the standard Jacobi field method as described in Section 8.2 
of [4]. Let N = (X +JY )/

√
2 be a unit normal vector of CP k in Q2k, where X, Y ∈ V (A) are orthonormal. 

The normal Jacobi operator RN leaves the tangent space TzCP
k and the normal space νzCP k invariant. 

When restricted to TzCP
k, the eigenvalues of RN are 0 and 1 with corresponding eigenspaces C(JX+Y ) and 

TzCP
k�C(JX+Y ). The corresponding principal curvatures on the tube of radius r are 0 and tan(r), and the 

corresponding principal curvature spaces are the parallel translates of C(JX +Y ) and TzCP
k�C(JX +Y )

along the geodesic γ in Q2k with γ(0) = z and γ̇(0) = N from γ(0) to γ(r). We denote the latter parallel 
translate by W1. When restricted to νzCP k � RN , the eigenvalues of RN are 1 and 4 with corresponding 
eigenspaces νzCP k�CN and RJN . We denote the first parallel translate by W2. The corresponding principal 
curvatures on the tube of radius r are − cot(r) and −2 cot(2r), and the corresponding principal curvature 
spaces are the parallel translates of νzCP k � CN and RJN along γ from γ(0) to γ(r). This shows in 
particular that the tube is a Hopf hypersurface.

For 0 < r < π/2 this process leads to real hypersurfaces in Q2k, whereas for r = π/2 we get an-
other totally geodesic CP k ⊂ Q2k. The two totally geodesic complex projective spaces are precisely the 
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two singular orbits of the Uk+1-action on Q2k, and the tubes of radius 0 < r < π/2 are the prin-
cipal orbits of this action. Using the homogeneity of the tubes we can now conclude that the tube 
M of radius 0 < r < π/2 has four distinct constant principal curvatures and the property that the 
shape operator leaves invariant the maximal complex subbundle C of TM . Moreover, all principal cur-
vature spaces in C are J-invariant. Summing up all the properties mentioned above, we have the follow-
ing

Proposition 3.1. (See [3].) Let M be the tube of radius 0 < r < π/2 around the totally geodesic CP k in Q2k. 
Then the following statements hold:

1. M is a Hopf hypersurface.
2. Every unit normal vector N of M is A-isotropic and therefore can be written in the form N = (X +

JY )/
√

2 with some orthonormal vectors X, Y ∈ V (A) and A ∈ A.
3. The principal curvatures and corresponding principal curvature spaces of M are

principal curvature eigenspace multiplicity
0 C(JX + Y ) 2
tan(r) W1 2k − 2
− cot(r) W2 2k − 2
−2 cot(2r) RJN 1

4. Each of the two focal sets of M is a totally geodesic CP k ⊂ Q2k.
5. The Reeb flow of M is an isometric flow.
6. The shape operator S and the structure tensor field φ satisfy Sφ = φS.
7. M is a homogeneous hypersurface of Q2k. More precisely, it is an orbit of the Uk+1-action on Q2k

isomorphic to Uk+1/Uk−1U1, an S2k−1-bundle over CP k.

4. Some general equations

Let M be a real hypersurface in Qm and denote by (φ, ξ, η, g) the induced almost contact metric structure. 
Note that ξ = −JN , where N is a (local) unit normal vector field of M . The tangent bundle TM of M
splits orthogonally into TM = C ⊕ Rξ, where C = ker(η) is the maximal complex subbundle of TM . 
The structure tensor field φ restricted to C coincides with the complex structure J restricted to C, and 
φξ = 0.

We now assume that M is a Hopf hypersurface. Then we have

Sξ = αξ

with the smooth function α = g(Sξ, ξ) on M . When we consider a transform JX of the Kähler structure J

on Qm for any vector field X on M in Qm, we may put

JX = φX + η(X)N

for a unit normal N to M . Then we now consider the Codazzi equation

g
(
(∇XS)Y − (∇Y S)X,Z

)
= η(X)g(φY,Z) − η(Y )g(φX,Z) − 2η(Z)g(φX, Y )

+ g(X,AN)g(AY,Z) − g(Y,AN)g(AX,Z)

+ g(X,Aξ)g(JAY,Z) − g(Y,Aξ)g(JAX,Z).
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Putting Z = ξ we get

g
(
(∇XS)Y − (∇Y S)X, ξ

)
= −2g(φX, Y )

+ g(X,AN)g(Y,Aξ) − g(Y,AN)g(X,Aξ)

− g(X,Aξ)g(JY,Aξ) + g(Y,Aξ)g(JX,Aξ).

On the other hand, we have

g
(
(∇XS)Y − (∇Y S)X, ξ

)
= g

(
(∇XS)ξ, Y

)
− g

(
(∇Y S)ξ,X

)
= (Xα)η(Y ) − (Y α)η(X) + αg

(
(Sφ + φS)X,Y

)
− 2g(SφSX, Y ).

Comparing the previous two equations and putting X = ξ yields

Y α = (ξα)η(Y ) − 2g(ξ, AN)g(Y,Aξ) + 2g(Y,AN)g(ξ, Aξ).

Reinserting this into the previous equation yields

g
(
(∇XS)Y − (∇Y S)X, ξ

)
= −2g(ξ, AN)g(X,Aξ)η(Y ) + 2g(X,AN)g(ξ, Aξ)η(Y )

+ 2g(ξ, AN)g(Y,Aξ)η(X) − 2g(Y,AN)g(ξ, Aξ)η(X)

+ αg
(
(φS + Sφ)X,Y

)
− 2g(SφSX, Y ).

Altogether this implies

0 = 2g(SφSX, Y ) − αg
(
(φS + Sφ)X,Y

)
− 2g(φX, Y )

+ g(X,AN)g(Y,Aξ) − g(Y,AN)g(X,Aξ)

− g(X,Aξ)g(JY,Aξ) + g(Y,Aξ)g(JX,Aξ)

+ 2g(ξ, AN)g(X,Aξ)η(Y ) − 2g(X,AN)g(ξ, Aξ)η(Y )

− 2g(ξ, AN)g(Y,Aξ)η(X) + 2g(Y,AN)g(ξ,Aξ)η(X).

At each point z ∈ M we can choose A ∈ Az such that

N = cos(t)Z1 + sin(t)JZ2

for some orthonormal vectors Z1, Z2 ∈ V (A) and 0 ≤ t ≤ π
4 (see Proposition 3 in [9]). Note that t is a 

function on M . First of all, since ξ = −JN , we have

N = cos(t)Z1 + sin(t)JZ2,

AN = cos(t)Z1 − sin(t)JZ2,

ξ = sin(t)Z2 − cos(t)JZ1,

Aξ = sin(t)Z2 + cos(t)JZ1.
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This implies g(ξ, AN) = 0 and hence

0 = 2g(SφSX, Y ) − αg
(
(φS + Sφ)X,Y

)
− 2g(φX, Y )

+ g(X,AN)g(Y,Aξ) − g(Y,AN)g(X,Aξ)

− g(X,Aξ)g(JY,Aξ) + g(Y,Aξ)g(JX,Aξ)

− 2g(X,AN)g(ξ, Aξ)η(Y ) + 2g(Y,AN)g(ξ, Aξ)η(X).

5. Proof of Main Theorem

Before going to prove our Main Theorem, first let us show that the shape operator of M which becomes 
the tube of radius r over a complex projective space CP k in Q2k is Reeb invariant or not; that is, LξS = 0
or not. In fact, the Lie derivative vanishing along the Reeb vector field is given as follows:

(LξS)X = Lξ(SX) − SLξX

= (∇ξS)X − φS2X + SφSX

= 0

for any vector field X on M in Q2k. Then this is equivalent to the following

(∇ξS)X = φS2X − SφSX.

In order to do this, let us mention that the shape operator S of the tube over CP k commutes with the 
structure tensor φ, that is, Sφ = φS as in Proposition 3.1. So the right side of the above equation vanishes. 
Now let us check whether the left side ∇ξS = 0 or not. Then by a paper due to Berndt and Suh (see [2], 
page 1350050-14), the expression of covariant derivative for the shape operator of M in complex quadric Qm

becomes

(∇XS)Y =
{
dα(X)η(Y ) + g

((
αSφ− S2φ

)
X,Y

)
+ δη(Y )ρ(X)

+ δg(BX,φY ) + η(BX)ρ(Y )
}
ξ

+
{
η(Y )ρ(X) + g(BX,φY )

}
Bξ + g(BX,Y )φBξ

− ρ(Y )BX − η(Y )φX − η(BY )φBX

for any vector fields X and Y on M in Qm, where we have put

AY = BY + ρ(Y )N, ρ(Y ) = g(AY,N)

for a complex conjugation A∈A. Putting X = ξ and using α constant and ρ(ξ) = 0 for the A-isotropic unit 
normal vector field N of M in Q2k, we have

(∇ξS)Y = δg(Bξ, φY ) + η(Bξ)ρ(Y )}ξ
+

{
η(Y )ρ(ξ) + g(Bξ, φY )

}
Bξ + g(Bξ, Y )φBξ

− ρ(Y )Bξ − η(Y )φξ − η(BY )φBξ

=
{
g(Bξ, φY ) − ρ(Y )

}
Bξ

=
{
−g(φBξ, Y ) + g(Y, φBξ)

}
Bξ = 0,
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where in the third equality we have used

ρ(Y ) = g(AY,N) = g(Y,AN)

= g(Y,AJξ)

= −g(Y, JAξ) = −g(Y, JBξ)

= −g(Y, φBξ).

As mentioned above, a real hypersurface M in Q2k with commuting shape operator, that is, Sφ = φS, has 
a parallel shape operator along the Reeb direction ∇ξS = 0. Accordingly, we know that the shape operator 
of the tube over CP k is Reeb invariant, that is, LξS = 0.

Now conversely, let us prove our Main Theorem in the introduction. Let us assume LξS = 0.
On the other hand, the equation of Codazzi in Section 4 can be written as follows (see Berndt and 

Suh [2]):

(∇XS)Y − (∇Y S)X = η(X)φY − η(Y )φX − 2g(φX, Y )ξ

+ ρ(X)BY − ρ(Y )BX

+ η(BX)φBY − η(BX)ρ(Y )ξ

− η(BY )φBX + η(BY )ρ(X)ξ,

where we have put AY = BY + ρ(Y )N , and ρ(X) = g(AX, N) = g(JX, Aξ) for a unit normal N of M
in Qm. Then we assert the following

Proposition 5.1. Let M be a real hypersurface in complex quadrics Qm, m ≥ 3. If the Reeb flow on M
satisfies LξS = 0, then the shape operator S commutes with the structure tensor φ, that is, Sφ = φS.

Proof. First note that

(LξS)X = Lξ(SX) −ALξX

= ∇ξ(SX) −∇SXξ − S(∇ξX −∇Xξ)

= (∇ξS)X −∇SXξ + S∇Xξ

= (∇ξS)X − φS2X + SφSX

for any vector field X on M . Then the assumption LξS = 0 holds if and only if (∇ξS)X = φS2X −SφSX. 
Now, let us take an orthonormal basis {e1, e2, · · · , e2m−1} for the tangent space TxM , x ∈ M , of a real 
hypersurface M in Qm. Then by the equation of Codazzi we may put

(∇eiS)Y − (∇Y S)ei = η(ei)φY − η(Y )φei − 2g(φei, Y )ξ

+ ρ(ei)BY − ρ(Y )Bei + η(Bei)φBY − η(BY )ρ(ei)ξ

− η(BY )φBei + η(BY )ρ(ei)ξ, (5.1)

from which, together with the fundamental formulas which is introduced in Section 2 it follows that
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2m−1∑
i=1

g
(
(∇eiS)Y, φei

)
= −(2m− 2)η(Y )

+
2m−1∑
i=1

ρ(ei)g(BY, φei) −
2m−1∑
i=1

ρ(Y )g(Bei, φei)

+
2m−1∑
i=1

η(Bei)g(φBY, φei) −
2m−1∑
i=1

η(BY )ρ(ei)g(ξ, φei)

− η(BY )
2m−1∑
i=1

g(φBei, φei). (5.2)

Now let us denote by U the vector ∇ξξ = φSξ. Then using the equation (∇Xφ)Y = η(Y )AX − g(SX, Y )ξ, 
its derivative can be given by

∇eiU = (∇eiφ)Sξ + φ(∇eiS)ξ + φS∇eiξ

= η(Sξ)Sei − g(Sei, Sξ)ξ + φ(∇eiS)ξ + φSφSei.

Then its divergence is given by

divU =
2m−1∑
i=1

g(∇eiU, ei)

= hη(Sξ) − η
(
S2ξ

)
−

2m−1∑
i=1

g
(
(∇eiS)ξ, φei

)
−

2m−1∑
i=1

g(φSei, Sφei), (5.3)

where h denotes the trace of the shape operator S of M in Qm.
Now we calculate the squared norm of the tensor Sφ − φS as follows:

‖φS − Sφ‖2 =
∑
i

g
(
(φS − Sφ)ei, (φS − Sφ)ei

)

=
∑
i,j

g
(
(φS − Sφ)ei, ej

)
g
(
(φS − Sφ)ei, ej

)

=
∑
i,j

{
g(φSej , ei) + g(φSei, ej)

}{
g(φSej , ei) + g(φSei, ej)

}

= 2
∑
i,j

g(φSej , ei)g(φSej , ei) + 2
∑

i,j
g(φSej , ei)g(φSei, ej)

= 2
∑
j

g(φSej , φSej) − 2
∑
j

g(φSej , Sφej)

= −2
∑
j

g
(
Sej , φ

2Sej
)
− 2

∑
j

g(φSej , Sφej)

= 2 TrS2 − 2η
(
S2ξ

)
+ 2 divU − 2η(Sξ) TrS

+ 2η
(
S2ξ

)
+ 2

∑
j

g
(
(∇ejS)ξ, φej

)
, (5.4)

where 
∑

i (respectively, 
∑

i,j) denotes the summation from i = 1 to 2m − 1 (respectively, from i, j = 1 to 
2m − 1) and in the final equality we have used (5.3).
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From this, together with the formula (5.2), it follows that

divU = 1
2 ‖ φS − Sφ ‖2 −TrS2

+ hη(Sξ) −
∑
i

g
(
(∇eiS)ξ, φei

)
. (5.5)

By (5.5) and the assumption of LξS = 0, let us show that the structure tensor φ commutes with the shape 
operator S, that is, φS = Sφ.

On the other hand, we know that LξS = 0 is equivalent to

(∇ξS)X = φS2X − SφSX.

Then by the equation of Codazzi, we know that

(∇XS)ξ = (∇ξS)X − φX + ρ(X)Bξ − ρ(ξ)BX + η(BX)φBξ

− η(BX)ρ(ξ)ξ − η(Bξ)φBX + η(Bξ)ρ(X)ξ

= φS2X − SφSX − φX + ρ(X)Bξ

+ η(BX)φBξ − η(Bξ)φBX + η(Bξ)ρ(X)ξ. (5.6)

Now let us take an inner product (5.6) with the Reeb vector field ξ. Then we have

g
(
(∇XS)ξ, ξ

)
= −g(SφSX, ξ) + ρ(X)g(Bξ, ξ) + η(Bξ)ρ(X)

= g(SX,U) + 2g(Bξ, ξ)ρ(X). (5.7)

On the other hand, by the almost contact structure φ we have

φU = φ2Sξ = −Sξ + η(Sξ)ξ = −Sξ + αξ,

where the function α denotes η(Sξ). From this, differentiating and using the formula (∇Xφ)Y = η(Y )AX−
g(AX, Y )ξ gives

−g(SX,U)ξ + φ∇XU = (∇Xφ)U + φ∇XU

= −(∇XS)ξ − S∇Xξ + (Xα)ξ + α∇Xξ. (5.8)

From this, taking an inner product with ξ, it follows that

−g(SX,U) = −g
(
(∇XS)ξ, ξ

)
+ g(SX,U) + Xα.

Then, together with (5.7), it follows that

g(SX,U) − 2g(Bξ, ξ)ρ(X) + Xα = 0. (5.9)

Substituting (5.6) and (5.9) into (5.8), we have the following

φ∇XU = φX − φS2X + αφSX − ρ(X)Bξ

− η(BX)φBξ + η(Bξ)φBX − η(Bξ)ρ(X)ξ.
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Now summing up with respect to 1, · · ·, m − 1 for an orthonormal basis of TxM , x∈M , we have

∑
i

g(φ∇eiU, φei) = (2m− 2) −
{
TrS2 − η

(
S2ξ

)}
+ α{TrS − α}

−
∑
i

ρ(ei)g(Bξ, φei) −
∑
i

η(Bei)g(φBξ, φei)

+
∑
i

η(Bξ)g(φBei, φei). (5.10)

On the other hand, we know that

g(φ∇eiU, φei) = −g
(
∇eiU,−ei + η(ei)ξ

)
=

∑
i

g(∇eiU, ei) − g(∇ξU, ξ)

= divU + ‖U‖2

= divU + η
(
S2ξ

)
− η(Sξ)2, (5.11)

where ‖U‖2 = g(φSξ, φSξ) = η(S2ξ) − η(Sξ)2.
Summing up (5.10) with (5.11), we get the following

divU = (2m− 2) − TrS2 + αTrS

−
∑
i

ρ(ei)g(Bξ, φei) −
∑
i

η(Bei)g(φBξ, φei)

+
∑
i

η(Bξ)g(φBei, φei), (5.12)

where we have denoted the function η(Sξ) by α = η(Sξ).
On the other hand, (5.2) for Y = ξ gives the following

∑
i

g
(
(∇eiS)ξ, φei

)
= −(2m− 2)

+
∑
i

ρ(ei)g(Bξ, φei)

+
∑
i

η(Bei)g(φBξ, φei) − η(Bξ)
∑
i

g(φBei, φei), (5.13)

where we have used 
∑

i ρ(ξ)g(Bei, φei) = 0 and 
∑

iη(Bξ)ρ(ei)g(ξ, φei) = 0. From this, together with (5.5), 
(5.10) and (5.13), it follows that

divU = 1
2 ‖ φS − Sφ ‖2 −TrS2 + hη(Sξ) −

∑
i

g
(
(∇eiS)ξ, φei

)

= 1
2 ‖ φS − Sφ ‖2 −TrS2 + hη(Sξ)

+ (2m− 2) −
∑
i

ρ(ei)g(Bξ, φei) −
∑
i

η(Bei)g(φBξ, φei)

+ η(Bξ)
∑

g(φBei, φei)

i
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= (2m− 2) − TrS2 + hη(Sξ)

−
∑
i

ρ(ei)g(Bξ, φei) −
∑
i

η(Bei)g(φBξ, φei)

+
∑
i

η(Bξ)g(φBei, φei), (5.14)

where we have used (5.13) in the second equality and (5.12) in the third equality respectively. Then com-
paring the both sides in the third equality of (5.14) gives ‖φS − Sφ‖2 = 0, that is, the shape operator S
commutes with the structure tensor φ. This means that the Reeb flow on M is an isometric flow, which 
gives a complete proof of our Proposition. �

By virtue of this proposition, together with Theorem 1.1, we give a complete proof of our Main Theorem 
in the introduction.
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