Differential Geometry and its Applications 38 (2015) 10-21

Contents lists available at ScienceDirect

Differential Geometry and its Applications

www.elsevier.com/locate/difgeo

Real hypersurfaces in the complex quadric with Reeb invariant @ CossMark
shape operator

Young Jin Suh

Kyungpook National University, College of Natural Sciences, Department of Mathematics, Daegu
702-701, Republic of Korea

ARTICLE INFO ABSTRACT

Article history: First we introduce the notion of Reeb invariant shape operator for real hypersurfaces
Received 23 March 2014 in the complex quadric Q™ = SO,,4+2/50,,502. Next we give a complete
Available online xxxx classification of real hypersurfaces in Q™ = SOy+2/50, SOz with invariant shape
Communicated by V. Cortes operator

1% . © 2014 Elsevier B.V. All rights reserved.
eywords:

Isometric Reeb flow
Reeb invariant
Kahler structure
Complex conjugation
Complex quadric

1. Introduction

When we consider some Hermitian symmetric spaces of rank 2, usually we can give examples of Rieman-
nian symmetric spaces SU,,42/S(U2Uy,) and SUs ., /S(UsU,,), which are said to be complex two-plane
Grassmannians and complex hyperbolic two-plane Grassmannians respectively (see [1,2,12,13]). Those are
said to be Hermitian symmetric spaces and quaternionic Kahler symmetric spaces equipped with the Kéhler
structure J and the quaternionic Kéhler structure J on SUs ,,/S(U2U,, ). The rank of SUs ., /S(U2Upy,) is 2
and there are exactly two types of singular tangent vectors X of SUs ,,/S(UaU,,) which are characterized
by the geometric properties JX € JX and JX L JX respectively.

As another kind of Hermitian symmetric space with rank 2 of compact type different from the above
ones, we can give an example of complex quadric @™ = SO, 42/50,,S503, which is a complex hypersurface
in complex projective space CP™*! (see Berndt and Suh [3], and Smyth [10]). The complex quadric also
can be regarded as a kind of real Grassmann manifolds of compact type with rank 2 (see Kobayashi and
Nomizu [6]). Accordingly, the complex quadric admits both a complex conjugation structure A and a Kédhler
structure J, which anti-commute with each other, that is, AJ = —JA. Then for m > 2 the triple (Q™, J, g)
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is a Hermitian symmetric space of compact type with rank 2 and its maximal sectional curvature is equal
to 4 (see Klein [5] and Reckziegel [9]).

For the complex projective space CP™ a full classification was obtained by Okumura in [7]. He proved
that the Reeb flow on a real hypersurface in CP™ = SU,,,+1/5(U,,U1) is isometric if and only if M is an
open part of a tube around a totally geodesic CP*¥ ¢ CP™ for some k € {0,...,m — 1}. For the complex
2-plane Grassmannian G5(C™2) = SU,,.2/S(U,,Us) the classification was obtained by Berndt and Suh
in [1]. The Reeb flow on a real hypersurface in Go(C™%2) is isometric if and only if M is an open part of a
tube around a totally geodesic Go(C™*1) C G2(C™*2). But, when we consider an isometric Reeb flow for
real hypersurfaces in the complex quadric Q™ = SOy, 42/50,,503, the result is quite different from CP™
and G2(C™*2). In view of the previous two results in CP™ and G2(C™%2) a natural expectation might be
that the classification involves at least the totally geodesic Q™' C Q™. But, surprisingly, in [2] Berndt
and Suh have proved the following result:

Theorem 1.1. Let M be a real hypersurface of the complex quadric Q™, m > 3. The Reeb flow on M 1is
isometric if and only if m is even, say m = 2k, and M s an open part of a tube around a totally geodesic

CP* c Q% .

In a paper due to Pérez, Santos and Suh [8], we have considered a notion of Lie &-parallel structure Jacobi
operator, L¢Re = 0, for real hypersurfaces in complex projective space CP™, and in a paper [11], Suh has
given a characterization of a tube of radius r, 0 < r < J, over a totally geodesic G2(C™*!) in G5(C™*?) in
terms of Lie &-parallel shape operator.

In this paper we consider a notion of Lie parallel shape operator S for real hypersurfaces in complex
quadric Q™ along the direction of the Reeb vector field &, that is, £¢S = 0. In this case the shape operator
S of M in Q™ is said to be Reeb invariant. Motivated by the results mentioned above and using the notion
of isometric Reeb flow in Theorem 1.1, we give a new characterization of real hypersurfaces in complex
quadric Q™ with Reeb invariant shape operator as follows:

Main Theorem. Let M be a real hypersurface in the complex quadric Q™, m > 3 with Reeb invariant shape
operator. Then m = 2k, and M is locally congruent to a tube over a totally geodesic complex projective
space CP* in Q%*.

2. The complex quadric

For more details in this section we refer to [3-6,9]. The complex quadric Q™ is the complex hypersurface
in CP™*! which is defined by the equation z? + ... + Z%H_Q = 0, where zq,...,2mn+2 are homogeneous
coordinates on CP™*!. We equip Q™ with the Riemannian metric which is induced from the Fubini Study
metric on CP™*! with constant holomorphic sectional curvature 4. The Kéhler structure on CP™*! induces
canonically a Kihler structure (.J, g) on the complex quadric. For each z € Q™ we identify T,CP™*! with
the orthogonal complement C™*2 & Cz of Cz in C™*2 (see Kobayashi and Nomizu [6]). The tangent space
T.Q™ can then be identified canonically with the orthogonal complement C™*+2 & (Cz ® CN) of Cz ® CN
in C™*2, where N € v,Q™ is a normal vector of Q™ in CP™*! at the point z.

The complex projective space CP™*! is a Hermitian symmetric space of the special unitary group
SUpv2, namely CP™ ™ = SU,,12/S(U11U7). We denote by o = [0,...,0,1] € CP™*! the fixed point
of the action of the stabilizer S(U,,,1U;). The special orthogonal group SO,, 12 C SU,, 2 acts on CP™+!
with cohomogeneity one. The orbit containing o is a totally geodesic real projective space RP™+1 ¢ CP™ 1,
The second singular orbit of this action is the complex quadric Q™ = SO, 42/50,,505. This homogeneous
space model leads to the geometric interpretation of the complex quadric @™ as the Grassmann manifold
GF (R™*2) of oriented 2-planes in R™*2. It also gives a model of Q™ as a Hermitian symmetric space of
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rank 2. The complex quadric Q! is isometric to a sphere S? with constant curvature, and Q2 is isometric to
the Riemannian product of two 2-spheres with constant curvature. For this reason we will assume m > 3
from now on.

For a unit normal vector NV of Q™ at a point z € Q™ we denote by A = Ay the shape operator of Q™
in CP™*! with respect to N. The shape operator is an involution on the tangent space 7,Q™ and

T.Qm =V(A) & JV(4),

where V(A) is the +1-eigenspace and JV (A) is the (—1)-eigenspace of Ay . Geometrically this means that the
shape operator Ay defines a real structure on the complex vector space T,Q™, or equivalently, is a complex
conjugation on T,Q™. Since the real codimension of @™ in CP™*! is 2, this induces an S'-subbundle 2 of
the endomorphism bundle End(T'Q™) consisting of complex conjugations.

There is a geometric interpretation of these conjugations. The complex quadric Q™ can be viewed as the
complexification of the m-dimensional sphere S™. Through each point z € @™ there exists a one-parameter
family of real forms of @™ which are isometric to the sphere S™. These real forms are congruent to each
other under action of the center SOy of the isotropy subgroup of SO,, 2 at z. The isometric reflection of
Q™ in such a real form S™ is an isometry, and the differential at z of such a reflection is a conjugation on
T.Q™. In this way the family 2 of conjugations on T,Q™ corresponds to the family of real forms S™ of Q™
containing z, and the subspaces V(A) C T,Q™ correspond to the tangent spaces T,S5™ of the real forms
S™ of Q™.

The Gauss equation for Q™ C CP™*! implies that the Riemannian curvature tensor R of Q™ can be
described in terms of the complex structure J and the complex conjugation A € 2:

R(X,Y)Z =g(Y,2)X — g(X, 2)Y + g(JY, 2)JX — g(JX,Z)JY —29(JX,Y)JZ
+ g(AY, Z)AX — g(AX, Z)AY + g(JAY, Z)JAX — g(JAX, Z)JAY.

Note that J and each complex conjugation A anti-commute, that is, AJ = —JA for each A € 2.
Recall that a nonzero tangent vector W € T,Q™ is called singular if it is tangent to more than one
maximal flat in Q™. There are two types of singular tangent vectors for the complex quadric Q™:

1. If there exists a conjugation A € 2 such that W € V(A), then W is singular. Such a singular tangent
vector is called 2-principal.

2. If there exist a conjugation A € 2 and orthonormal vectors X,Y € V(A) such that W/||W|| = (X +
JY)/v/2, then W is singular. Such a singular tangent vector is called 2f-isotropic.

For every unit tangent vector W € T,Q™ there exist a conjugation A € 2 and orthonormal vectors
X,Y € V(A) such that

W = cos(t) X +sin(t)JY

for some t € [0, w/4]. The singular tangent vectors correspond to the valuest = 0and t = /4. If 0 < t < 7 /4
then the unique maximal flat containing W is RX ®RJY . Later we will need the eigenvalues and eigenspaces
of the Jacobi operator Ry = R(-, W)W for a singular unit tangent vector W.

1. If W is an -principal singular unit tangent vector with respect to A € 2, then the eigenvalues of Ry,
are 0 and 2 and the corresponding eigenspaces are RW @ J(V(A) © RW) and (V(A) © RW) @ RJW,
respectively.
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2. If W is an 2-isotropic singular unit tangent vector with respect to A € 2 and X,Y € V(A), then the
eigenvalues of Ry are 0, 1 and 4 and the corresponding eigenspaces are RW & C(JX +Y), T.Q™ &
(CX @ CY) and RJW, respectively.

3. The totally geodesic CP* C QZ%*
We now assume that m is even, say m = 2k. The map
(CPk — QQk C CP2k+1, [Zl, ceey Zk+l] — [21, ey Rhg1, 021, - - ,izk+1]

provides an embedding of CP* into Q%* as a totally geodesic complex submanifold. We define a complex
structure j on C2*2 by

j(zla vy Rkl RE42 - -,22k+2) = (*Zk+27 ceey TR2E42,%15 - -,Zk+1)-

Note that ij = ji. We can then identify C?**2 with C**1 @ jC**! and get
T.CP* = {X +ijX | X e C**' © Cz}.

Now consider the standard embedding of Uy into SO2j42 which is determined by the Lie algebra embed-
ding

C -D
D
Upr1 — §00k10, C+i %—>(D C)’

where C, D € M1 k+1(R). The action of Uy4q on Q?F is of cohomogeneity one and CP¥ is the orbit of this
action containing the point z = [1,0,...,0,4,0,...,0] € Q**, where the i sits in the (k + 2)-nd component.
We now fix a unit normal vector N of Q?* at z and denote the corresponding complex conjugation Ay € A
by A. Then we can write alternatively

T.CP* = {X +ijX | X e V(A)}.

Note that the complex structure 4 on C>™*+2 corresponds to the complex structure on T,Q>™ via the obvious
identifications.

We are now going to calculate the principal curvatures and principal curvature spaces of the tube with
radius r around CP* in Q2. For this we use the standard Jacobi field method as described in Section 8.2
of [4]. Let N = (X 4 JY)/+/2 be a unit normal vector of CP* in Q%*, where X,Y € V(A) are orthonormal.
The normal Jacobi operator Ry leaves the tangent space T,CP* and the normal space v,CP* invariant.
When restricted to T,CP*, the eigenvalues of Ry are 0 and 1 with corresponding eigenspaces C(JX +Y') and
T,CP*SC(JX+Y). The corresponding principal curvatures on the tube of radius 7 are 0 and tan(r), and the
corresponding principal curvature spaces are the parallel translates of C(JX +Y) and T,CP*©C(JX +Y)
along the geodesic v in Q% with v(0) = 2 and 4(0) = N from ~(0) to v(r). We denote the latter parallel
translate by W;. When restricted to v,CP* © RN, the eigenvalues of Ry are 1 and 4 with corresponding
eigenspaces v,CP*SCN and RJN. We denote the first parallel translate by Ws. The corresponding principal
curvatures on the tube of radius r are — cot(r) and —2cot(2r), and the corresponding principal curvature
spaces are the parallel translates of v,CP* © CN and RJN along v from 7(0) to v(r). This shows in
particular that the tube is a Hopf hypersurface.

For 0 < r < 7/2 this process leads to real hypersurfaces in Q2*, whereas for » = 7/2 we get an-
other totally geodesic CP* C Q%F. The two totally geodesic complex projective spaces are precisely the
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two singular orbits of the Ujpij-action on Q2¥  and the tubes of radius 0 < r < 7/2 are the prin-
cipal orbits of this action. Using the homogeneity of the tubes we can now conclude that the tube
M of radius 0 < r < 7/2 has four distinct constant principal curvatures and the property that the
shape operator leaves invariant the maximal complex subbundle C of T'M. Moreover, all principal cur-
vature spaces in C are J-invariant. Summing up all the properties mentioned above, we have the follow-
ing

Proposition 3.1. (See [3].) Let M be the tube of radius 0 < r < 7/2 around the totally geodesic CP* in Q%*.
Then the following statements hold:

1. M is a Hopf hypersurface.

2. Every unit normal vector N of M is 2-isotropic and therefore can be written in the form N = (X +
JY)/\/2 with some orthonormal vectors X,Y € V(A) and A € 2.

3. The principal curvatures and corresponding principal curvature spaces of M are

principal curvature eigenspace multiplicity
0 C(JX+Y) | 2

tan(r) Wi 2k — 2

— cot(r) Wo 2k — 2
—2cot(2r) RJN 1

FEach of the two focal sets of M is a totally geodesic CP* C Q2F.

The Reeb flow of M is an isometric flow.

The shape operator S and the structure tensor field ¢ satisfy S¢ = ¢S.

M is a homogeneous hypersurface of Q**. More precisely, it is an orbit of the Uy, i-action on Q%*
isomorphic to Uygy1/Uk—1U1, an S2k=1_pundle over CP*.

N o Ot

4. Some general equations

Let M be a real hypersurface in @™ and denote by (¢, &, n, g) the induced almost contact metric structure.
Note that & = —JN, where N is a (local) unit normal vector field of M. The tangent bundle TM of M
splits orthogonally into TM = C ® R, where C = ker(n) is the maximal complex subbundle of TM.
The structure tensor field ¢ restricted to C coincides with the complex structure J restricted to C, and

¢€ = 0.

We now assume that M is a Hopf hypersurface. Then we have

S¢=af

with the smooth function o = g(S¢, &) on M. When we consider a transform JX of the Kéhler structure .J
on Q™ for any vector field X on M in Q™, we may put

JX = ¢X +n(X)N

for a unit normal N to M. Then we now consider the Codazzi equation

g(Vx9)Y — (Vy9)X, Z) =n(X)g(¢Y, Z) —n(Y)g(¢X, Z) — 21(Z)g(¢X,Y)
+ g(X, AN)g(AY, Z) — g(Y, AN)g(AX, Z)
+9(X, A8 g(JAY, Z) — g(Y, A)g(JAX, Z).
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Putting Z = £ we get

+ g(X’ AN)g(Y7 A&) - g(Y7 AN)g(Xv Ag)
—g(X, Af)g(JY7A§) +9<KA§>9(JX’ Af)

On the other hand, we have

g((VxS)Y — (Vy9)X,¢)
=g((Vx9)EY) —g((VyS)E, X)
= (Xa)n(Y) = (Ya)n(X) + ag((So + ¢S)X,Y) — 29(S¢SX,Y).

Comparing the previous two equations and putting X = ¢ yields
Reinserting this into the previous equation yields

9((Vx8)Y — (Vy9)X,¢)
= —29(¢, AN)g(X, An(Y) + 29(X, AN)g(§, An(Y')
+2g(&§, AN)g(Y, An(X) — 29(Y, AN)g(&, A)n(X)
+ag((¢S + S¢)X,Y) — 29(SpSX,Y).

Altogether this implies

0=29(S¢SX,Y) — ag((¢pS + S6)X,Y) — 29(6X,Y)
+ g(X, AN)g(Y, AS) — g(Y, AN)g(X, AE)
— 9(X, AQg(JY, AL) + g(Y, A )g(J X, AE)
+29(€, AN)g(X, AOn(Y) — 29(X, AN)g(&, AGn(Y')
—29(§ AN)g(Y, AOn(X) +29(Y, AN)g(§, AGn(X).

At each point z € M we can choose A € 2, such that
N = cos(t)Z1 + sin(t)J Z3

for some orthonormal vectors Z1,Z> € V(A) and 0 <t < T (see Proposition 3 in [9]). Note that ¢ is a

function on M. First of all, since £ = —JN, we have
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This implies g(§, AN) = 0 and hence

0=29(5¢5X,Y) — ag((¢S + S¢)X,Y) — 2g(¢X,Y)
+ g(X, AN)g(Y, AS) — g(Y, AN)g(X, AE)
— 9(X, AQ)g(JY, AL) + g(Y, A&)g(J X, AL)
—29(X, AN)g(&, AOn(Y) + 29(Y, AN)g(&, A n(X).

5. Proof of Main Theorem

Before going to prove our Main Theorem, first let us show that the shape operator of M which becomes
the tube of radius r over a complex projective space CP* in Q?* is Reeb invariant or not; that is, LS =0
or not. In fact, the Lie derivative vanishing along the Reeb vector field is given as follows:

(LeS)X = Le(SX) — SLeX
= (VeS)X — ¢S?X + SpSX
=0

for any vector field X on M in Q2. Then this is equivalent to the following
(VeS)X = ¢S*X — S¢S X.

In order to do this, let us mention that the shape operator S of the tube over C P* commutes with the
structure tensor ¢, that is, S¢ = ¢S as in Proposition 3.1. So the right side of the above equation vanishes.
Now let us check whether the left side V¢S = 0 or not. Then by a paper due to Berndt and Suh (see [2],
page 1350050-14), the expression of covariant derivative for the shape operator of M in complex quadric Q™
becomes

(VxS)Y = {da(X)n(Y) + g((aS¢ — S2¢>)X Y) +6én(Y)p(X)
+89(BX,¢Y) +n(BX)p(Y)}¢
+ {n(Y)p(X) + g(BX, ¢>Y } B¢+ g(BX,Y)$B¢
—p(Y)BX —n(Y)¢X —n(BY)¢BX

for any vector fields X and Y on M in Q™, where we have put
AY =BY +p(Y)N, p(Y)=g(AY,N)

for a complex conjugation A€2l. Putting X = £ and using « constant and p(§) = 0 for the -isotropic unit
normal vector field N of M in Q2%*, we have

(VeS)Y = dg(BE, ¢Y) +n(BE)p(Y)}E
+ {n(Y)p(€) + g(BE, ¢Y) } BE + g(BE, Y ) BE
p(Y)BE — ?7(Y)¢£ —n(BY)¢B¢
= {g(B& oY) — p(Y)} B¢
= {—g(¢BE,Y) +9(Y7 ¢B&)}BE =0,
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where in the third equality we have used

p(Y) = g(AY,N) = g(Y, AN)
= g(Y, AJ¢)
= —g(Y, JAE) = —g(Y, JBE)

= —g(Y, ¢B9).

As mentioned above, a real hypersurface M in Q?* with commuting shape operator, that is, S¢) = ¢S, has
a parallel shape operator along the Reeb direction V¢S = 0. Accordingly, we know that the shape operator
of the tube over C'P* is Reeb invariant, that is, £¢S = 0.

Now conversely, let us prove our Main Theorem in the introduction. Let us assume L¢S = 0.
On the other hand, the equation of Codazzi in Section 4 can be written as follows (see Berndt and

Suh [2]):
(VxS)Y — (VyS)X =n(X)pY —n(Y)pX —29(¢X,Y)E
+ p(X)BY — p(Y)BX
+n(BX)¢pBY —n(BX)p(Y)§
—n(

n(BY)¢pBX +n(BY )p(X)¢,

where we have put AY = BY + p(Y)N, and p(X) = g(AX,N) = g(JX, Af) for a unit normal N of M
in Q™. Then we assert the following

Proposition 5.1. Let M be a real hypersurface in complex quadrics Q™, m > 3. If the Reeb flow on M
satisfies L¢S = 0, then the shape operator S commutes with the structure tensor ¢, that is, S¢ = @S.

Proof. First note that

(LeS)X = Le(SX) — ALX

=Ve(SX) - Vgx{ — S(VeX — Vx)

- (VgS)X - stf + SVX§

= (Ve9)X — ¢S?X + SpSX
for any vector field X on M. Then the assumption £¢S = 0 holds if and only if (V¢S)X = ¢S%2X — S¢SX.
Now, let us take an orthonormal basis {ej,es,- -, ean_1} for the tangent space T, M, x € M, of a real
hypersurface M in Q™. Then by the equation of Codazzi we may put

(Ve,8)Y = (VyS)e; =n(ei)oY —n(Y)ge; — 2g(¢es, Y)E
+ p(ei) BY — p(Y)Be; +n(Be;)pBY —n(BY )p(e;)§

—n(BY)¢Be; +n(BY )p(e;)E, (5.1)

from which, together with the fundamental formulas which is introduced in Section 2 it follows that
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2m—1

; 9((Ve,S)Y, dei) = —(2m —2)n(Y)
" i o(e)a(BY, oe) — mg oV )g(Ber, )
¥ ni D(Be)g(OBY, des) — m; HBY ) plen)g(E, des)
—n(BY) 2219((15361» pe;). (5.2)

Now let us denote by U the vector V¢§ = ¢SE. Then using the equation (Vx¢)Y = n(Y)AX — g(SX,Y)E,
its derivative can be given by

Ve, U= (Ve;0)SE+ (Ve 5)E + ¢SV e, &
=n(58)Se; — g(Sei, SE)E + ¢(Ve,5)€ + ¢S¢Se.

Then its divergence is given by

divU = > g(Ve,U,e)
=1
2m—1 2m—1
= hn(S) —n(S%€) = Y 9((Ve, )¢ dei) — > g(¢Ses, Soes), (5.3)
=1 =1

where h denotes the trace of the shape operator S of M in Q™.
Now we calculate the squared norm of the tensor S¢ — ¢S as follows:

¢S — Sg||* = Z ((6S — So)ei, (¢S — So)e;)
= Z (¢S — S¢) el,e]) ((cZ)S — S(b)ei,ej)
= Z{g(¢Sej, ei) + g(pSei, e;) }{g(dSe;, €i) + g(¢Ses, e;) }

2

—QZg ¢Sej,e;)g(pSe;, e;) +QZ g(@Sej,e;)g(dSe;, e;)

4,J

=2 g(¢Se;,65e;) =2 g(¢Se;, Soe)
J J
= —2Zg(Sej, ¢256j) - 22:9(@5”(2]»7 Soe;)
J J

=2TrS% — 29(S%¢) + 2divU — 2n(S¢) Tr S
+21(5%) +2>_g((Ve, )8, ¢e;), (5.4)

J

where }_, (respectively, >, ;) denotes the summation from i =1 to 2m — 1 (respectively, from é,j =1 to
2m — 1) and in the final equahty we have used (5.3).
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From this, together with the formula (5.2), it follows that

1
divl = 5 | ¢S — S¢ ||* — Tr S?

+hn(S€) =Y g((Ve, S)E, des).

%

19

(5.5)

By (5.5) and the assumption of LS = 0, let us show that the structure tensor ¢ commutes with the shape

operator S, that is, 5 = S¢.
On the other hand, we know that £:5 = 0 is equivalent to

(VeS)X = ¢S*X — SpSX.
Then by the equation of Codazzi, we know that

(VxS8)E = (VeS)X — X + p(X)BE — p(§) BX + n(BX)pBE
—n(BX)p(§)§ —n(BE)$BX + n(BE)p(X)E
= ¢S2X — S¢pSX — X + p(X)B¢
+n(BX)¢BE — n(BE)$BX + n(BE)p(X)§.

Now let us take an inner product (5.6) with the Reeb vector field £. Then we have

9((Vx9)E, &) = —g(SpSX, &) + p(X)g(BE, &) 4+ n(BE)p(X)
= g(SX,U) +29(BE,&)p(X).

On the other hand, by the almost contact structure ¢ we have

¢U = ¢°S€ = —SE +1(SE)E = —SE + ag,

where the function o denotes n(S€). From this, differentiating and using the formula (Vx¢)Y

g(AX,Y)E gives

—g(SX,U)é+ ¢VxU = (Vxp)U + ¢V xU
=—(Vx5) - SVxé+ (Xa) +aVxE.

From this, taking an inner product with &, it follows that
—9(SX,U) = —g((Vx9)&,€) + 9(SX,U) + Xov.
Then, together with (5.7), it follows that
9(SX,U) —29(BE, §)p(X) + Xa = 0.
Substituting (5.6) and (5.9) into (5.8), we have the following

dVxU = ¢pX — $S?X 4+ apSX — p(X)BE
—n(BX)¢BE + n(BE)¢BX — n(BE)p(X)E.

=n(Y)AX —

(5.8)
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Now summing up with respect to 1,---,m — 1 for an orthonormal basis of T,, M, z€M , we have
Zg(qbveiU, pe;) = (2m —2) — {Tr % — n(52%¢) } + o{Tr S — a}
i
— Zp (e)9(BE, oes) Zn Be;)g(¢ B¢, de;)
+ 2 n(BEg(9Bei, dei). (5.10)
On the other hand, we know that

g(d)vﬁ U7 (2581') = _g(v% U7 —e; + 77(61)5)
= Zg(ver7 ei) - g(va7 f)

=divU + ||U|?
=divU + n(S%¢) — n(5¢)?, (5.11)

where |U||* = g(¢S¢, ¢S¢) = 1(S%¢) — n(S¢)*.
Summing up (5.10) with (5.11), we get the following

divU = (2m —2) - TrS* +aTr S
-~ Zp 9(BE, ¢e;) Zn (Bei)g(¢BE, de;)

where we have denoted the function n(S¢) by a = n(SE).
On the other hand, (5.2) for Y = £ gives the following

> 9((Ve, )¢, de;) = —(2m — 2)

+Zp e1)g(BE, pe;)
+Zn Be:)g(6BE, de;) — n(BE) Zg 6Be:, des), (5.13)

where we have used ), p(§)g(Be;, ¢e;) = 0 and > ;n(BE)p(e;)g(&, pe;) = 0. From this, together with (5.5),
(5.10) and (5.13), it follows that

AivU = 1 |65~ 56 |7~ Tr8% + hn(SE) — 3 ((Ve, 8)6, 6c:)

= 2165~ 56 P ~Tr S + h(s¢)

(2m — 2) Zpel (BE, gei) ZnBez (¢B¢, gei)

+ 1(B¢) Zg(¢Bei,¢ei>



Y.J. Suh / Differential Geometry and its Applications 38 (2015) 10-21 21

= (2m —2) — Tr §% + hn(S¢)
- Zp(ei)g(Bfa de;) — Z n(Be;)g(¢BE, de;)

+ Z n(B&)g(pBe, de;), (5.14)

where we have used (5.13) in the second equality and (5.12) in the third equality respectively. Then com-
paring the both sides in the third equality of (5.14) gives ||¢S — S¢||> = 0, that is, the shape operator S
commutes with the structure tensor ¢. This means that the Reeb flow on M is an isometric flow, which
gives a complete proof of our Proposition. 0O

By virtue of this proposition, together with Theorem 1.1, we give a complete proof of our Main Theorem
in the introduction.
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