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0. Introduction
In [1] Suh proved the following theorem:

Theorem A. Let M be a connected orientable Hopf hypersurface in complex two-plane Grassmannians G,(C™*?), m > 3, with
£-invariant Ricci tensor. Then M is locally congruent to an open part of a tube around a totally geodesic G,(C™1) in G,(C™+2).

From this theorem we can obtain corollaries whose proof is not trivial from the theorem. It needs some calculations that we
present in this addendum. Consider the distribution ¥ = Span{£} U ©' on M. We will prove:

Corollary 1. Let M be a Hopf hypersurface in complex two-plane Grassmannians G,(C™2), m > 3. Then its Ricci tensor is -
invariant if and only if M is locally congruent to an open part of a tube around a totally geodesic G, (C™1) in G, (C™*+?) satisfying
tan2(+/2r) = 2/(m — 1) and whose one-form q; vanishes on the distribution .
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Moreover, as a consequence of this result we obtain:

Corollary 2. There does not exist a Hopf hypersurface in G,(C™*2), m > 3, with Lie-vanishing (or invariant) Ricci tensor.

We use some references [2-4,1] to recall the Riemannian geometry of complex two-plane Grassmannians G,(C™*?) and
some fundamental formulas including the Codazzi and Gauss equations for a real hypersurface in G, (C™+?). In particular, the
formula for the Ricci tensor S and its covariant derivative VS was shown explicitly in [5-7]. In Sections 1 and 2 respectively
we will give a proof of Corollaries 1 and 2.

1. The proof of Corollary 1

From [1] a new condition, namely the ¥ -invariant Ricci tensor, yields M is locally congruent to an open part of a type (A)
real hypersurface in a complex two-plane Grassmannian G, (C™+?). Now let us take £ = &; (which is possible for a type (A)
real hypersurface My). Then it follows that

q2(Y) = 28(AY, &),  qs(Y) = 2g(AY, &) (1.1)

for any tangent vector field Y on M,. From this, the covariant derivatives of & and &3 with respect to an arbitrary tangent
vector field Y € TMy are

Vv&r = q1(Y)&3 — q3(Y)&1 + gAY
= q1(Y)& — 2g8(AY, §3)&1 + AY (1.2-(1))
and
Vy&s3 = 28(AY, §)&1 — q1(Y)&2 + ¢3AY, respectively. (1.2-(ii))
On the other hand, from the equation of Ricci tensor S (see (3.12) in [7]) the Ricci tensor S of M, is given as follows:
4m + ha — o (:=8) ify e T,
4am+6+hp — B* (:=p) ifY €Ty

Am+6+hr— A2 (=0) ifY €T,
4m + 8 (:=1) ifYeT,,

SY = kY wherex = (1.3)

where the tangent bundle TM, is composed of four eigenspaces Ty, Tg, T, and T,,, thatis, TMy = T, ® Tg @ T, ® T, (see
Proposition B in [7]). Since « is constant, we obtain

(L,S)Y = L&, (SY) — S(L5,Y)
[£2,SY] —S([&, YD

= Vg (SY) — Vsy&s — S(Vg,Y) + 5(Vyv§)

= k(Vg,Y — Vy&) — S(Vg,Y — Vy&r) (1.4)

forall Y € TyMs and x € M,. Using (1.3), let us calculate (1.4) with respect to the eigenspaces T, Tg, T and T, on TyMj.
Case A-L Y € T,, thatis, Y = £(=£&;).
From (1.2-(i)) and (1.3), Eq. (1.4) becomes

(L£,5)§ = k(Ve,§ — V&) — S(Vg,§ — Vi)
= 8(pA& — (q1(§) — @)&3) — S(PAE, — (q1(§) — @)&3).
Since A&; = B&; and S&; = p&s, it follows that
(L&,5)6 = —0B&3 — 8q1(8)E3 + Sads + Bp&r + pqi1(§)Es — apés
= (p =B+ q1(§) —a)és. (1.5)

Case A-IL Y € Tg, thatis,Y =& 0orY = &.
IfY = &, then [&,, S&] = p[&,, &1 = 0. Thus we have

(L&)€ = 0. (1.6-(1))
Now, put Y = &3.Since Vg, &3 — Ve, & = 28&1 — q1(52)62 — q1(§3)&3 from (1.2-(i)) to (1.2-(ii)), Eq. (1.4) can be written as
(L£,5)63 = p(Vgy§3 — Vs §2) — S(Vg, 63 — Ve 62)
= p(2B& — q1(E)E — q1(63)&3) — S(2B& — q1(E)6 — q1(63)&3)
= 2B(p&1 — S&1) — q1(52) (p§2 — S&2) — q1(53) (p§3 — S&3)
= 2B(p — 8)&1, (1.6-(ii))
where S&; = §&,8 = (4m + ha — o?) and S&, = p&,, p = (4m + 6 + hB — ) forv = 2, 3.
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CaseA-lIl.Y € T,,where T, = {Y € D | ¢Y = ¢1Y}.

By (1.2-(i)) we obtain Vy&;, = q1(Y)&3 4+ A¢,Y. Moreover, we see that if any vector field Y belongs to the eigenspace T;,
then the vector field ¢,Y belongs to T, that is, it satisfies the properties g(¢,Y, &) = 0 and ¢¢,Y = —¢1¢,Y forY € T,
and ¢ = 1, 2, 3. It implies that S¢,Y = 7¢,Y where 7 = (4m + 8).

From these facts, we get

(£L5,S)Y = 0(Ve,Y — Vy&) — S(Ve,Y — Vy&)
= 0(Ve,Y —q1(Y)&3 — AaY) — S(V,Y — q1(Y)&3 — 1Y) (1.7)
for any tangent vector Y € T,.
On the other hand, for any Y € © the vector field V¢, Y belongs to the distribution D, because
gV Y, &) = —g(Y, Vg, §)
=&Y, q12(52)641 — 441(82)642 + BAS)

-2, 252841 — Q152812 + BdE2)
=0

for any ¢ = 1, 2, 3. By virtue of Proposition B given in [7], we know that the distribution © of T,M, at x € M, is composed
of two eigenspaces T, and T, that is, © = T, @ T,,. Thus there exist unique U € T, and W € T, such that

Ve,Y =U+W
2m—2 2m—2
LIS
i=1 j=1
for an orthonormal basis {ei*, e]’»‘ |i,j =1,2,...,2m — 2} of ®. In general, from this we can consider the following three
subcases:

e Subcase 1. V., Y € T, that is, aJ’-‘ =0foranyj=1,2,...,2m—2,

e Subcase 2. V;,Y € T, thatis,a/ =0foranyi=1,2,...,2m — 2,

e Subcase3.V.,Y € T,+T,, thatis, there exist some non-vanishing components ag\ anda)’ forsomes, t =1,2,...,2m-2,
givenas Vi, Y = alet + al'el’.

By the way, if Y € Ty, then ¢Y = ¢,Y. Differentiating this equation along the direction &,, we have

together with (1.1). For a model space of Type (A) in G,(C™?) the eigenvalue 8 is non-vanishing. Thus we see that Ve, Y
does not belong to Ty, and hence we must consider the following two subcases in the above ones:

Firstly, let us consider that VY € T,. That is, we can put Vi, Y = Y2""* a/'e!" for an orthonormal basis {e/'} of T,. It
follows that

2m—2 2m—2

S(Ve,Y) =S (Z aj‘ej‘) = Z a}‘(SeJ’f)
j=1 j=1
2m—2 2m—2

— M My P
= Zaj (rej)_r Zajej =TVY
j=1 j=1

where T = (4m + 8). Hence for the case Y € T, and Vg, Y € T, Eq.(1.7) becomes
(L&Y = 0 (VY —q1(Y)§3 — Ad2Y) — S(Ve, Y — q1(Y)E3 — AgrY)
= (0 —D)VgY +q1(Y)(p — 0)&3 + ATt — 0)2Y (1.8-(1))

whereo = (4m+ 6+ hi — A?), p = (4m+ 6+ hB — B%) and T = (4m + 8).

Secondly, let us find the formula related to (£¢,S)Y with respectto Y € T, and Vg, Y € T), + T,,. For the sake of conve-

nience we may put Ve, Y = alel + a; e} satisfying a*a}’ # 0 for somes, t = 1,2, ..., 2m — 2. From this notation, (1.7) can

be changed into
(L&;,5)Y = 0(Ve,Y — q1(Y)53 — A2Y) — S(V,Y — q1(Y)&3 — Agh2Y)
= o(ase; +aj'ef’ —q1(Y)Es — AdoY)
—S(ale +at'e} — qi(Y)Es — AgoY)
= (0 —)atel’ = qi(Y)(0 = p)&s — Ao — T)gnY, (1.8(ii)

because Se} = oe* and Se’ = e}
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Case A-IV.Y € T, whereT, ={Y € D | ¢Y = —¢1Y}.
Since 1 = 0, Eq. (1.2-(i)) implies that Vy& = q1(Y)&s. From (1.3) and (1.4), we have

T(Ve,Y — Vy&) = S(V,Y — Vv§y)
T(Ve,Y = qi(Y)&3) = S(Vg, Y — q1(Y)&3)
T(Ve,Y) — 1 (V)(t — p)é3 — S(Vg,Y)
where p = (4m + 6 + hB — %) and T = (4m + 8).

As mentioned in the Case A-III, we know that V¢, Y belongs to the distribution ® = T, @ T,, for Y € ©. In addition, since
Y eT,,wegetp(VsY) =2B¢3Y — ¢1(Vg,Y) from the property ¢Y = —¢,Y. It means that the vector field Vg, Y does not

belong to the eigenspace T,,. Thus we have only two subcases given by V., Y € T, and VY € T, + T,. For such subcases
Eq. (1.9) becomes respectively

(Le,S)Y =

(1.9)

(LeySY = (1 — ) (Ve,Y) — (V) (z — p)s for Ve,Y €Ty

and

(Le,S)Y = (r —o)alel —qi(Y)(x — p)é; for Ve, Y € Ty + T,

(1.10-(i))

(1.10-(ii))

where we put Ve, Y = ale* + ai'e;’ € T, + T, satisfying a’a;’ # O for somes, t = 1,2,...,2m — 2.
Summing up these calculations, we have the following equation for X = &,.

(b =3B+ q() —a)és ify =§ €T,
0 ifY=%§ €Ty
2B(0 — 8)& ifY =& €T,

(Le,S)Y = (0 —D)(VY) —q1(Y)(o — p)é3s — Ao —T)pY ifY €T, V,Y €T, (1.11)
(c —varel —qi(Y)(o —p)&s — Ao — )Y  ifY €T, Ve,Y €T, + T,
—(0 = 1)(Vg,Y) — 1 (V) (T — p)&3 ifY €T, Ve,Y €T,
(t —o)alel — qi(Y)(t — p)&s ifVe,Y € T, + T,.

Moreover, by the similar consideration for X = &; we obtain also:

—(p =B+ q1) —)é; ify=£§¢€T,
—2B(p — )& ifY =& €Ty
0 ifY = 53 € Tﬁ

(L)Y = (0 = )(Ve,Y) +q1(Y) (0 — p)62 — Ao —T)¢5Y ifY €T, Vi,Y €T, (1.12)
(c —vatef +q1(Y)(o — p)é —A(oc —T)psY Y €T, Ve,Y €T + T,
—(0 —1)(Ve,Y) + 1 (V) (Tt — p)&2 ifY eT,, Vg,Y €T,
—(0 —v)de, + (V) (r — p)&, ifY €Ty, Ve, Y € Ty + Ty,

For the Ricci tensor S of My, the definition of #-invariant Ricci tensor gives that the vector fields (£¢,S)Y (v = 1, 2, 3) must
vanish for each case mentioned above. So, from (1.6-(ii)), we have

p—6=0, (1.13)
together with § = \/icot(ﬁr) # 0 for the radius r € (0, n/\/g). Moreover, it follows

tanz(\/ir) = i (1.14)

m—1

because h = TrA = a + 28 4+ (2m — 2)A and m > 3. In addition, by using (1.3) it follows that

6 —1=-2+hh—2*=—-8+4(m— 1) tan’(v/2r) =0
and

c—p=2—hB+pB*=4m—4cot*W2r)=2(m+1) =1 —p.
From these and Egs. (1.11) and (1.12), we obtain

(L&,S)Y = =2(m+ D1 (V) (115)

(L&;S)Y = 2(m + 1)q1(Y)&2

for any tangent vector field Y € ©. Since m > 3, the one form g; must vanish for Y € 9, that is, g;(Y) = 0.
It gives us a complete proof of our Corollary 1 in the introduction. O
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2. The proof of Corollary 2
We only have to check if real hypersurfaces appearing in our Corollary 1 do or do not satisfy the condition, (£LxS)Y = 0
for any tangent X, Y € TM. In order to do this, putting X € T, and Y = &3 € Tg, it implies

(£LxS)e3 = p(Vx€3 — Ve, X) — S(Vxé3 — Vg X) =0

by Eq. (1.3) in Section 1. On the other hand, from (1.1), (1.2-(ii)) and g, (X) = 0 for any X € ® it follows that the vector field
Vxé&3 = ¢3AX = 0 forany X € T,, u = 0. Thus we obtain

(£LxS)s3 = —pVe, X + S(Ve,X) = 0. (2.1)
On the other hand, since g(Vg,X,§) = OforanyX € T,and: = 1,2, 3, we see that Ve, X € © =T, ® T,,. It is well
known that X = —¢X for X € T,,. Taking the covariant derivative along the direction &3, we obtain

¢(Ve;X) = =2BhaX — ¢1(VesX),
together with the basic formulas (see Section 2 in [1]) and (1.1). It follows that for any X € T, the vector field V¢, X does not
belong to T,,, because B is non-vanishing. Therefore for the vector field Vg, X we have the following two subcases:

e Subcase 1. VY € Ty, thatis, V,Y = Y_2"> a’e} for an orthonormal basis {e} of T,
e Subcase2.V.. Y € T,+T,, thatis, there exist some non-vanishing components asA and a’t* forsomes,t =1,2,...,2m—2,
given as follows:

— ot Pl
Ve, Y =age; +a; e .

From this, we first assume that Vi, Y € T,. Then Eq. (2.1) becomes

2m—2 2m—2 2m—2
—p Yy atet+S(Ddel) =0 —p) Y dlel = (0~ pVeX =0, (2.2)
i=1 i=1 i=1
where SeiA = ae,-A fori=1,2,...,2m — 2. By our assumption that M, has the invariant Ricci tensor, we already knew that
tanz(ﬁr) = 2/(m — 1). From this and m > 3, (o — p) is non-vanishing. So, Eq. (2.2) implies that
Ve, X = 0. (2.3)

Since AX = Oforany X € T,,, we get (Vg A)X = 0, together with (2.3). From this, the Codazzi equation given in [1] becomes
—(VxA)§3 = 23X,

where we have used X = —¢X forany X e T,.On the other hand, for X € T, we get (VxA)&3 = 0 by using Aé; = B&; and
Vx&3 = 0.Hence we have ¢3X = 0 from the previous two equations. It follows thatX = Oforany X € T, thatis,dimT, = 0.
It gives us a contradiction. In fact, the dimension of the eigenspace T, is 2m — 2.

Next we consider the Subcase 2 mentioned above. For the sake of convenience we may put VY = a‘e} + af'e} such
that a’al’ # O for somes,t = 1,2,...,2m — 2.

Then Eq. (2.1) becomes
at(oc — p)et + (r — p)al'el = 0.

Taking the inner product with eg\ € T, to this equation, we have (o — p) = 0, together with a? # 0 for some
s=1,2,...,2m—2.Itgives us a contradiction with m > 3.In fact, by virtue of Proposition Bin [7] we get (c —p) = 2(m+1)
whereh =TrA =« + 28 + (2m — 2)A.

Hence this gives the complete proof of Corollary 2 in the introduction. O
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