Contents lists available at ScienceDirect

Journal of Geometry and Physics

journal homepage: www.elsevier.com/locate/jgp

^a The Center for Geometry and its Applications, Pohang University of Science & Technology, Pohang 790-784, Republic of Korea ^b Department of Mathematics, Kyungpook National University, Taegu 702-701, Republic of Korea

ARTICLE INFO

Article history: Received 28 April 2013 Received in revised form 12 May 2014 Accepted 13 May 2014 Available online 6 June 2014

MSC: primary 53C40 secondary 53C15

Keywords: Complex two-plane Grassmannians Hopf hypersurface Ricci tensor Lie-vanishing Ricci tensor Reeb invariant Ricci tensor \mathcal{F} -invariant Ricci tensor

0. Introduction

In [1] Suh proved the following theorem:

Theorem A. Let *M* be a connected orientable Hopf hypersurface in complex two-plane Grassmannians $G_2(\mathbb{C}^{m+2})$, $m \ge 3$, with ξ -invariant Ricci tensor. Then *M* is locally congruent to an open part of a tube around a totally geodesic $G_2(\mathbb{C}^{m+1})$ in $G_2(\mathbb{C}^{m+2})$.

From this theorem we can obtain corollaries whose proof is not trivial from the theorem. It needs some calculations that we present in this addendum. Consider the distribution $\mathcal{F} = \text{Span}\{\xi\} \cup \mathfrak{D}^{\perp}$ on *M*. We will prove:

Corollary 1. Let *M* be a Hopf hypersurface in complex two-plane Grassmannians $G_2(\mathbb{C}^{m+2})$, $m \ge 3$. Then its Ricci tensor is \mathcal{F} -invariant if and only if *M* is locally congruent to an open part of a tube around a totally geodesic $G_2(\mathbb{C}^{m+1})$ in $G_2(\mathbb{C}^{m+2})$ satisfying $\tan^2(\sqrt{2}r) = 2/(m-1)$ and whose one-form q_1 vanishes on the distribution \mathfrak{D} .

 $http://dx.doi.org/10.1016/j.geomphys.2014.05.013\\0393-0440/ © 2014 Elsevier B.V. All rights reserved.$

ABSTRACT

In this paper, we introduce some notions of invariancy for the Ricci tensor on real hypersurfaces in complex two-plane Grassmannians $G_2(\mathbb{C}^{m+2})$, namely, \mathcal{F} -invariant and invariant Ricci tensor. Using these notions, we give non-existence theorem and characterization for the special case among the real hypersurfaces of Type (A) in $G_2(\mathbb{C}^{m+2})$, respectively. Here the distribution \mathcal{F} is defined by $\mathcal{F} = [\xi] \cup \mathfrak{D}^{\perp}$ where $\mathfrak{D}^{\perp} = \text{Span}\{\xi_1, \xi_2, \xi_3\}$ and $[\xi] = \text{Span}\{\xi\}$.

© 2014 Elsevier B.V. All rights reserved.

DOI of original article: http://dx.doi.org/10.1016/j.geomphys.2012.10.005.

^{*} Corresponding author. Tel.: +82 1029710409.

E-mail addresses: lhjibis@hanmail.net, lhjibis@knu.ac.kr (H. Lee), hb2107@naver.com (G.J. Kim), yjsuh@knu.ac.kr (Y.J. Suh).

Moreover, as a consequence of this result we obtain:

Corollary 2. There does not exist a Hopf hypersurface in $G_2(\mathbb{C}^{m+2})$, $m \ge 3$, with Lie-vanishing (or invariant) Ricci tensor.

We use some references [2–4,1] to recall the Riemannian geometry of complex two-plane Grassmannians $G_2(\mathbb{C}^{m+2})$ and some fundamental formulas including the Codazzi and Gauss equations for a real hypersurface in $G_2(\mathbb{C}^{m+2})$. In particular, the formula for the Ricci tensor *S* and its covariant derivative ∇S was shown explicitly in [5–7]. In Sections 1 and 2 respectively we will give a proof of Corollaries 1 and 2.

1. The proof of Corollary 1

From [1] a new condition, namely the \mathcal{F} -invariant Ricci tensor, yields M is locally congruent to an open part of a type (A) real hypersurface in a complex two-plane Grassmannian $G_2(\mathbb{C}^{m+2})$. Now let us take $\xi = \xi_1$ (which is possible for a type (A) real hypersurface M_A). Then it follows that

$$q_2(Y) = 2g(AY, \xi_2), \qquad q_3(Y) = 2g(AY, \xi_3)$$
(1.1)

for any tangent vector field Y on M_A . From this, the covariant derivatives of ξ_2 and ξ_3 with respect to an arbitrary tangent vector field $Y \in TM_A$ are

$$\nabla_{Y}\xi_{2} = q_{1}(Y)\xi_{3} - q_{3}(Y)\xi_{1} + \phi_{2}AY$$

= $q_{1}(Y)\xi_{3} - 2g(AY,\xi_{3})\xi_{1} + \phi_{2}AY$ (1.2-(i))

and

7

$$\nabla_{Y}\xi_{3} = 2g(AY,\xi_{2})\xi_{1} - q_{1}(Y)\xi_{2} + \phi_{3}AY$$
, respectively. (1.2-(ii))

On the other hand, from the equation of Ricci tensor S (see (3.12) in [7]) the Ricci tensor S of M_A is given as follows:

$$SY = \kappa Y \quad \text{where } \kappa = \begin{cases} 4m + h\alpha - \alpha^2 (:=\delta) & \text{if } Y \in T_\alpha \\ 4m + 6 + h\beta - \beta^2 (:=\rho) & \text{if } Y \in T_\beta \\ 4m + 6 + h\lambda - \lambda^2 (:=\sigma) & \text{if } Y \in T_\lambda \\ 4m + 8 (:=\tau) & \text{if } Y \in T_\mu, \end{cases}$$
(1.3)

where the tangent bundle TM_A is composed of four eigenspaces T_α , T_β , T_λ and T_μ , that is, $TM_A = T_\alpha \oplus T_\beta \oplus T_\lambda \oplus T_\mu$ (see Proposition B in [7]). Since κ is constant, we obtain

$$\begin{aligned} (\mathcal{L}_{\xi_{2}}S)Y &= \mathcal{L}_{\xi_{2}}(SY) - S(\mathcal{L}_{\xi_{2}}Y) \\ &= [\xi_{2}, SY] - S([\xi_{2}, Y]) \\ &= \nabla_{\xi_{2}}(SY) - \nabla_{SY}\xi_{2} - S(\nabla_{\xi_{2}}Y) + S(\nabla_{Y}\xi_{2}) \\ &= \kappa(\nabla_{\xi_{2}}Y - \nabla_{Y}\xi_{2}) - S(\nabla_{\xi_{2}}Y - \nabla_{Y}\xi_{2}) \end{aligned}$$
(1.4)

for all $Y \in T_x M_A$ and $x \in M_A$. Using (1.3), let us calculate (1.4) with respect to the eigenspaces T_α , T_β , T_λ and T_μ on $T_x M_A$. **Case A-I.** $Y \in T_\alpha$, that is, $Y = \xi (=\xi_1)$.

From (1.2-(i)) and (1.3), Eq. (1.4) becomes

$$\begin{aligned} (\mathcal{L}_{\xi_2}S)\xi &= \kappa (\nabla_{\xi_2}\xi - \nabla_{\xi}\xi_2) - S(\nabla_{\xi_2}\xi - \nabla_{\xi}\xi_2) \\ &= \delta \big(\phi A\xi_2 - (q_1(\xi) - \alpha)\xi_3\big) - S\big(\phi A\xi_2 - (q_1(\xi) - \alpha)\xi_3\big). \end{aligned}$$

Since $A\xi_2 = \beta \xi_2$ and $S\xi_3 = \rho \xi_3$, it follows that

$$(\mathcal{L}_{\xi_2}S)\xi = -\delta\beta\xi_3 - \delta q_1(\xi)\xi_3 + \delta\alpha\xi_3 + \beta\rho\xi_2 + \rho q_1(\xi)\xi_3 - \alpha\rho\xi_3 = (\rho - \delta)(\beta + q_1(\xi) - \alpha)\xi_3.$$
 (1.5)

Case A-II. $Y \in T_{\beta}$, that is, $Y = \xi_2$ or $Y = \xi_3$. If $Y = \xi_2$, then $[\xi_2, S\xi_2] = \rho[\xi_2, \xi_2] = 0$. Thus we have

$$(\mathcal{L}_{\xi_2}S)\xi_2=0.$$

Now, put
$$Y = \xi_3$$
. Since $\nabla_{\xi_2}\xi_3 - \nabla_{\xi_3}\xi_2 = 2\beta\xi_1 - q_1(\xi_2)\xi_2 - q_1(\xi_3)\xi_3$ from (1.2-(i)) to (1.2-(ii)), Eq. (1.4) can be written as

(1.6-(i))

$$\begin{aligned} (\mathcal{L}_{\xi_2}S)\xi_3 &= \rho(\nabla_{\xi_2}\xi_3 - \nabla_{\xi_3}\xi_2) - S(\nabla_{\xi_2}\xi_3 - \nabla_{\xi_3}\xi_2) \\ &= \rho(2\beta\xi_1 - q_1(\xi_2)\xi_2 - q_1(\xi_3)\xi_3) - S(2\beta\xi_1 - q_1(\xi_2)\xi_2 - q_1(\xi_3)\xi_3) \\ &= 2\beta(\rho\xi_1 - S\xi_1) - q_1(\xi_2)(\rho\xi_2 - S\xi_2) - q_1(\xi_3)(\rho\xi_3 - S\xi_3) \\ &= 2\beta(\rho - \delta)\xi_1, \end{aligned}$$
(1.6-(ii))

where $S\xi_1 = \delta\xi_1$, $\delta = (4m + h\alpha - \alpha^2)$ and $S\xi_\nu = \rho\xi_\nu$, $\rho = (4m + 6 + h\beta - \beta^2)$ for $\nu = 2, 3$.

Case A-III. $Y \in T_{\lambda}$, where $T_{\lambda} = \{Y \in \mathfrak{D} \mid \phi Y = \phi_1 Y\}$.

By (1.2-(i)) we obtain $\nabla_Y \xi_2 = q_1(Y)\xi_3 + \lambda \phi_2 Y$. Moreover, we see that if any vector field Y belongs to the eigenspace T_{λ} , then the vector field $\phi_2 Y$ belongs to T_{μ} , that is, it satisfies the properties $g(\phi_2 Y, \xi_l) = 0$ and $\phi \phi_2 Y = -\phi_1 \phi_2 Y$ for $Y \in T_{\lambda}$ and $\iota = 1, 2, 3$. It implies that $S\phi_2 Y = \tau \phi_2 Y$ where $\tau = (4m + 8)$.

From these facts, we get

$$(\mathcal{L}_{\xi_2}S)Y = \sigma (\nabla_{\xi_2}Y - \nabla_Y\xi_2) - S(\nabla_{\xi_2}Y - \nabla_Y\xi_2) = \sigma (\nabla_{\xi_2}Y - q_1(Y)\xi_3 - \lambda\phi_2Y) - S(\nabla_{\xi_2}Y - q_1(Y)\xi_3 - \lambda\phi_2Y)$$
(1.7)

for any tangent vector $Y \in T_{\lambda}$.

On the other hand, for any $Y \in \mathfrak{D}$ the vector field $\nabla_{\xi_2} Y$ belongs to the distribution \mathfrak{D} , because

$$g(\nabla_{\xi_2} Y, \xi_i) = -g(Y, \nabla_{\xi_2} \xi_i)$$

= $-g(Y, q_{i+2}(\xi_2)\xi_{i+1} - q_{i+1}(\xi_2)\xi_{i+2} + \phi_i A\xi_2)$
= $-g(Y, q_{i+2}(\xi_2)\xi_{i+1} - q_{i+1}(\xi_2)\xi_{i+2} + \beta\phi_i\xi_2)$
= 0

for any $\iota = 1, 2, 3$. By virtue of Proposition B given in [7], we know that the distribution \mathfrak{D} of $T_x M_A$ at $x \in M_A$ is composed of two eigenspaces T_{λ} and T_{μ} , that is, $\mathfrak{D} = T_{\lambda} \oplus T_{\mu}$. Thus there exist unique $U \in T_{\lambda}$ and $W \in T_{\mu}$ such that

$$\nabla_{\xi_2} Y = U + W$$

= $\sum_{i=1}^{2m-2} a_i^{\lambda} e_i^{\lambda} + \sum_{j=1}^{2m-2} a_j^{\mu} e_j^{\mu}$

for an orthonormal basis $\{e_i^{\lambda}, e_j^{\mu} \mid i, j = 1, 2, ..., 2m - 2\}$ of \mathfrak{D} . In general, from this we can consider the following three subcases:

- Subcase 1. ∇_{ξ2} Y ∈ T_λ, that is, a^μ_j = 0 for any j = 1, 2, ..., 2m 2,
 Subcase 2. ∇_{ξ2} Y ∈ T_μ, that is, a^μ_i = 0 for any i = 1, 2, ..., 2m 2,
- Subcase 3. $\nabla_{s_2}^{\lambda} Y \in T_{\lambda} + T_{\mu}$, that is, there exist some non-vanishing components a_s^{λ} and a_t^{μ} for some s, t = 1, 2, ..., 2m-2, given as $\nabla_{\xi_2} Y = a_s^{\lambda} e_s^{\lambda} + a_t^{\mu} e_t^{\mu}$.

By the way, if $Y \in T_{\lambda}$, then $\phi Y = \phi_1 Y$. Differentiating this equation along the direction ξ_2 , we have

$$\phi(\nabla_{\xi_2} Y) = -2\beta\phi_3 Y + \phi_1(\nabla_{\xi_2} Y),$$

together with (1.1). For a model space of Type (A) in $G_2(\mathbb{C}^{m+2})$ the eigenvalue β is non-vanishing. Thus we see that $\nabla_{\xi_2} Y$ does not belong to T_{λ} , and hence we must consider the following two subcases in the above ones: Firstly, let us consider that $\nabla_{\xi_2} Y \in T_{\mu}$. That is, we can put $\nabla_{\xi_2} Y = \sum_{j=1}^{2m-2} a_j^{\mu} e_j^{\mu}$ for an orthonormal basis $\{e_j^{\mu}\}$ of T_{μ} . It

follows that

$$S(\nabla_{\xi_2} Y) = S\left(\sum_{j=1}^{2m-2} a_j^{\mu} e_j^{\mu}\right) = \sum_{j=1}^{2m-2} a_j^{\mu} (Se_j^{\mu})$$
$$= \sum_{j=1}^{2m-2} a_j^{\mu} (\tau e_j^{\mu}) = \tau \sum_{j=1}^{2m-2} a_j^{\mu} e_j^{\mu} = \tau \nabla_{\xi_2} Y$$

where $\tau = (4m + 8)$. Hence for the case $Y \in T_{\lambda}$ and $\nabla_{\xi_2} Y \in T_{\mu}$ Eq. (1.7) becomes

$$\begin{aligned} (\mathcal{L}_{\xi_2}S)Y &= \sigma \left(\nabla_{\xi_2} Y - q_1(Y)\xi_3 - \lambda \phi_2 Y \right) - S(\nabla_{\xi_2} Y - q_1(Y)\xi_3 - \lambda \phi_2 Y) \\ &= (\sigma - \tau)\nabla_{\xi_2} Y + q_1(Y)(\rho - \sigma)\xi_3 + \lambda(\tau - \sigma)\phi_2 Y \end{aligned}$$
(1.8-(i))

where $\sigma = (4m + 6 + h\lambda - \lambda^2)$, $\rho = (4m + 6 + h\beta - \beta^2)$ and $\tau = (4m + 8)$.

Secondly, let us find the formula related to $(\mathcal{L}_{\xi_2}S)Y$ with respect to $Y \in T_{\lambda}$ and $\nabla_{\xi_2}Y \in T_{\lambda} + T_{\mu}$. For the sake of convenience we may put $\nabla_{\xi_2} Y = a_s^{\lambda} e_s^{\lambda} + a_t^{\mu} e_t^{\mu}$ satisfying $a_s^{\lambda} a_t^{\mu} \neq 0$ for some s, t = 1, 2, ..., 2m - 2. From this notation, (1.7) can be changed into

$$(\mathcal{L}_{\xi_{2}}S)Y = \sigma(\nabla_{\xi_{2}}Y - q_{1}(Y)\xi_{3} - \lambda\phi_{2}Y) - S(\nabla_{\xi_{2}}Y - q_{1}(Y)\xi_{3} - \lambda\phi_{2}Y) = \sigma(a_{s}^{\lambda}e_{s}^{\lambda} + a_{t}^{\mu}e_{t}^{\mu} - q_{1}(Y)\xi_{3} - \lambda\phi_{2}Y) - S(a_{s}^{\lambda}e_{s}^{\lambda} + a_{t}^{\mu}e_{t}^{\mu} - q_{1}(Y)\xi_{3} - \lambda\phi_{2}Y) = (\sigma - \tau)a_{t}^{\mu}e_{t}^{\mu} - q_{1}(Y)(\sigma - \rho)\xi_{3} - \lambda(\sigma - \tau)\phi_{2}Y,$$
(1.8-(ii))
because $Se_{s}^{\lambda} = \sigma e_{s}^{\lambda}$ and $Se_{t}^{\mu} = \tau e_{t}^{\mu}$.

Case A-IV. $Y \in T_{\mu}$, where $T_{\mu} = \{Y \in \mathfrak{D} \mid \phi Y = -\phi_1 Y\}$. Since $\mu = 0$, Eq. (1.2-(i)) implies that $\nabla_Y \xi_2 = q_1(Y)\xi_3$. From (1.3) and (1.4), we have

$$\begin{aligned} (\mathcal{L}_{\xi_2}S)Y &= \tau \left(\nabla_{\xi_2}Y - \nabla_Y \xi_2 \right) - S(\nabla_{\xi_2}Y - \nabla_Y \xi_2) \\ &= \tau \left(\nabla_{\xi_2}Y - q_1(Y)\xi_3 \right) - S(\nabla_{\xi_2}Y - q_1(Y)\xi_3) \\ &= \tau \left(\nabla_{\xi_2}Y \right) - q_1(Y)(\tau - \rho)\xi_3 - S(\nabla_{\xi_2}Y) \end{aligned}$$
(1.9)

where $\rho = (4m + 6 + h\beta - \beta^2)$ and $\tau = (4m + 8)$.

As mentioned in the Case A-III, we know that $\nabla_{\xi_2} Y$ belongs to the distribution $\mathfrak{D} = T_\lambda \oplus T_\mu$ for $Y \in \mathfrak{D}$. In addition, since $Y \in T_\mu$, we get $\phi(\nabla_{\xi_2} Y) = 2\beta\phi_3 Y - \phi_1(\nabla_{\xi_2} Y)$ from the property $\phi Y = -\phi_1 Y$. It means that the vector field $\nabla_{\xi_2} Y$ does not belong to the eigenspace T_μ . Thus we have only two subcases given by $\nabla_{\xi_2} Y \in T_\lambda$ and $\nabla_{\xi_2} Y \in T_\lambda + T_\mu$. For such subcases Eq. (1.9) becomes respectively

$$(\mathcal{L}_{\xi_2}S)Y = (\tau - \sigma)(\nabla_{\xi_2}Y) - q_1(Y)(\tau - \rho)\xi_3 \quad \text{for } \nabla_{\xi_2}Y \in T_\lambda$$
(1.10-(i))

and

$$(\mathcal{L}_{\xi_2}S)Y = (\tau - \sigma)a_s^{\lambda}e_s^{\lambda} - q_1(Y)(\tau - \rho)\xi_3 \quad \text{for } \nabla_{\xi_2}Y \in T_{\lambda} + T_{\mu}$$

$$(1.10-(ii))$$

where we put $\nabla_{\xi_2} Y = a_s^{\lambda} e_s^{\lambda} + a_t^{\mu} e_t^{\mu} \in T_{\lambda} + T_{\mu}$ satisfying $a_s^{\lambda} a_t^{\mu} \neq 0$ for some s, t = 1, 2, ..., 2m - 2. Summing up these calculations, we have the following equation for $X = \xi_2$.

$$(\mathcal{L}_{\xi_{2}}S)Y = \begin{cases} (\rho - \delta)(\beta + q_{1}(\xi) - \alpha)\xi_{3} & \text{if } Y = \xi \in T_{\alpha} \\ 0 & \text{if } Y = \xi_{2} \in T_{\beta} \\ 2\beta(\rho - \delta)\xi_{1} & \text{if } Y = \xi_{3} \in T_{\beta} \\ (\sigma - \tau)(\nabla_{\xi_{2}}Y) - q_{1}(Y)(\sigma - \rho)\xi_{3} - \lambda(\sigma - \tau)\phi_{2}Y & \text{if } Y \in T_{\lambda}, \nabla_{\xi_{2}}Y \in T_{\mu} \\ (\sigma - \tau)a_{t}^{\mu}e_{t}^{\mu} - q_{1}(Y)(\sigma - \rho)\xi_{3} - \lambda(\sigma - \tau)\phi_{2}Y & \text{if } Y \in T_{\lambda}, \nabla_{\xi_{2}}Y \in T_{\lambda} + T_{\mu} \\ -(\sigma - \tau)(\nabla_{\xi_{2}}Y) - q_{1}(Y)(\tau - \rho)\xi_{3} & \text{if } Y \in T_{\mu}, \nabla_{\xi_{2}}Y \in T_{\lambda} \\ (\tau - \sigma)a_{s}^{\lambda}e_{s}^{\lambda} - q_{1}(Y)(\tau - \rho)\xi_{3} & \text{if } \nabla_{\xi_{2}}Y \in T_{\lambda} + T_{\mu}. \end{cases}$$

$$(1.11)$$

Moreover, by the similar consideration for $X = \xi_3$ we obtain also:

$$(\mathcal{L}_{\xi_{3}}S)Y = \begin{cases} -(\rho - \delta)(\beta + q_{1}(\xi) - \alpha)\xi_{2} & \text{if } Y = \xi \in T_{\alpha} \\ -2\beta(\rho - \delta)\xi_{1} & \text{if } Y = \xi_{2} \in T_{\beta} \\ 0 & \text{if } Y = \xi_{3} \in T_{\beta} \\ (\sigma - \tau)(\nabla_{\xi_{3}}Y) + q_{1}(Y)(\sigma - \rho)\xi_{2} - \lambda(\sigma - \tau)\phi_{3}Y & \text{if } Y \in T_{\lambda}, \nabla_{\xi_{3}}Y \in T_{\mu} \\ (\sigma - \tau)a_{t}^{\mu}e_{t}^{\mu} + q_{1}(Y)(\sigma - \rho)\xi_{2} - \lambda(\sigma - \tau)\phi_{3}Y & \text{if } Y \in T_{\lambda}, \nabla_{\xi_{3}}Y \in T_{\lambda} + T_{\mu} \\ -(\sigma - \tau)(\nabla_{\xi_{3}}Y) + q_{1}(Y)(\tau - \rho)\xi_{2} & \text{if } Y \in T_{\mu}, \nabla_{\xi_{3}}Y \in T_{\lambda} \\ -(\sigma - \tau)a_{s}^{\lambda}e_{s}^{\lambda} + q_{1}(Y)(\tau - \rho)\xi_{2} & \text{if } Y \in T_{\mu}, \nabla_{\xi_{3}}Y \in T_{\lambda} + T_{\mu}. \end{cases}$$
(1.12)

For the Ricci tensor *S* of M_A , the definition of \mathcal{F} -invariant Ricci tensor gives that the vector fields ($\mathcal{L}_{\xi_{\nu}}S$) $Y(\nu = 1, 2, 3)$ must vanish for each case mentioned above. So, from (1.6-(ii)), we have

$$\rho - \delta = 0, \tag{1.13}$$

together with $\beta = \sqrt{2} \cot(\sqrt{2}r) \neq 0$ for the radius $r \in (0, \pi/\sqrt{8})$. Moreover, it follows

$$\tan^2(\sqrt{2}r) = \frac{2}{m-1},\tag{1.14}$$

because $h = \text{Tr}A = \alpha + 2\beta + (2m - 2)\lambda$ and $m \ge 3$. In addition, by using (1.3) it follows that

$$\sigma - \tau = -2 + h\lambda - \lambda^2 = -8 + 4(m-1)\tan^2(\sqrt{2}r) = 0$$

and

0

$$\tau - \rho = 2 - h\beta + \beta^2 = 4m - 4\cot^2(\sqrt{2}r) = 2(m+1) = \tau - \rho.$$

From these and Eqs. (1.11) and (1.12), we obtain

$$\begin{cases} (\mathcal{L}_{\xi_2}S)Y = -2(m+1)q_1(Y)\xi_3, \\ (\mathcal{L}_{\xi_3}S)Y = 2(m+1)q_1(Y)\xi_2 \end{cases}$$
(1.15)

for any tangent vector field $Y \in \mathfrak{D}$. Since $m \ge 3$, the one form q_1 must vanish for $Y \in \mathfrak{D}$, that is, $q_1(Y) = 0$. It gives us a complete proof of our Corollary 1 in the introduction. \Box

102

2. The proof of Corollary 2

We only have to check if real hypersurfaces appearing in our Corollary 1 do or do not satisfy the condition, $(\mathcal{L}_X S)Y = 0$ for any tangent X, $Y \in TM$. In order to do this, putting $X \in T_{\mu}$ and $Y = \xi_3 \in T_{\beta}$, it implies

$$(\mathcal{L}_X S)\xi_3 = \rho(\nabla_X \xi_3 - \nabla_{\xi_3} X) - S(\nabla_X \xi_3 - \nabla_{\xi_3} X) = 0$$

by Eq. (1.3) in Section 1. On the other hand, from (1.1), (1.2-(ii)) and $q_1(X) = 0$ for any $X \in \mathfrak{D}$ it follows that the vector field $\nabla_{X}\xi_{3} = \phi_{3}AX = 0$ for any $X \in T_{\mu}, \mu = 0$. Thus we obtain

$$(\mathcal{L}_X S)\xi_3 = -\rho \nabla_{\xi_3} X + S(\nabla_{\xi_3} X) = 0.$$
(2.1)

On the other hand, since $g(\nabla_{\xi_3}X, \xi_\iota) = 0$ for any $X \in T_\mu$ and $\iota = 1, 2, 3$, we see that $\nabla_{\xi_3}X \in \mathfrak{D} = T_\lambda \oplus T_\mu$. It is well known that $\phi X = -\phi_1 X$ for $X \in T_\mu$. Taking the covariant derivative along the direction ξ_3 , we obtain

$$\phi(\nabla_{\xi_3} X) = -2\beta\phi_2 X - \phi_1(\nabla_{\xi_3} X),$$

together with the basic formulas (see Section 2 in [1]) and (1.1). It follows that for any $X \in T_{\mu}$ the vector field $\nabla_{\xi_3} X$ does not belong to T_{μ} , because β is non-vanishing. Therefore for the vector field $\nabla_{\xi_3} X$ we have the following two subcases:

- Subcase 1. ∇_{ξ3}Y ∈ T_λ, that is, ∇_{ξ3}Y = ∑_{i=1}^{2m-2} a^λ_ie^λ_i for an orthonormal basis {e^λ_i} of T_λ,
 Subcase 2. ∇_{ξ3}Y ∈ T_λ+T_μ, that is, there exist some non-vanishing components a^λ_s and a^μ_t for some s, t = 1, 2, ..., 2m-2, given as follows:

$$\nabla_{\xi_3} Y = a_s^{\lambda} e_s^{\lambda} + a_t^{\mu} e_t^{\mu}$$

From this, we first assume that $\nabla_{\xi_3} Y \in T_{\lambda}$. Then Eq. (2.1) becomes

$$-\rho \sum_{i=1}^{2m-2} a_i^{\lambda} e_i^{\lambda} + S\left(\sum_{i=1}^{2m-2} a_i^{\lambda} e_i^{\lambda}\right) = (\sigma - \rho) \sum_{i=1}^{2m-2} a_i^{\lambda} e_i^{\lambda} = (\sigma - \rho) \nabla_{\xi_3} X = 0,$$
(2.2)

where $Se_i^{\lambda} = \sigma e_i^{\lambda}$ for i = 1, 2, ..., 2m - 2. By our assumption that M_A has the invariant Ricci tensor, we already knew that $\tan^2(\sqrt{2}r) = 2/(m-1)$. From this and $m \ge 3$, $(\sigma - \rho)$ is non-vanishing. So, Eq. (2.2) implies that

$$Y_{\xi_3}X = 0.$$
 (2.3)

Since AX = 0 for any $X \in T_{\mu}$, we get $(\nabla_{\xi_3}A)X = 0$, together with (2.3). From this, the Codazzi equation given in [1] becomes $(\nabla A) \xi = 2 \phi Y$

$$-(v_{\chi}\Lambda)\varsigma_3=2\psi_3\Lambda,$$

where we have used $\phi X = -\phi_1 X$ for any $X \in T_\mu$. On the other hand, for $X \in T_\mu$ we get $(\nabla_X A)\xi_3 = 0$ by using $A\xi_3 = \beta\xi_3$ and $\nabla_X \xi_3 = 0$. Hence we have $\phi_3 X = 0$ from the previous two equations. It follows that X = 0 for any $X \in T_\mu$, that is, dim $T_\mu = 0$. It gives us a contradiction. In fact, the dimension of the eigenspace T_{μ} is 2m - 2.

Next we consider the Subcase 2 mentioned above. For the sake of convenience we may put $\nabla_{\xi_3} Y = a_s^{\lambda} e_s^{\lambda} + a_t^{\mu} e_t^{\mu}$ such that $a_s^{\lambda} a_t^{\mu} \neq 0$ for some *s*, *t* = 1, 2, ..., 2*m* - 2.

Then Eq. (2.1) becomes

$$a_s^{\lambda}(\sigma-\rho)e_s^{\lambda}+(\tau-\rho)a_t^{\mu}e_t^{\mu}=0.$$

Taking the inner product with $e_s^{\lambda} \in T_{\lambda}$ to this equation, we have $(\sigma - \rho) = 0$, together with $a_s^{\lambda} \neq 0$ for some $s = 1, 2, \ldots, 2m-2$. It gives us a contradiction with $m \ge 3$. In fact, by virtue of Proposition B in [7] we get $(\sigma - \rho) = 2(m+1)$ where $h = \text{Tr}A = \alpha + 2\beta + (2m - 2)\lambda$.

Hence this gives the complete proof of Corollary 2 in the introduction. \Box

Acknowledgments

This work was supported by grant Proj. No. NRF-2011-220-C00002 from National Research Foundation of Korea. The first author by NRF Grant Nos. 2012-R1A1A3002031 and 2011-0030044 (SRC-GAIA) and the third by grant Proj. No. NRF-2012-R1A2A2A01043023.

References

- [1] Y.J. Suh, Real hypersurfaces in complex two-plane Grassmannians with ξ -invariant Ricci tensor, J. Geom. Phys. 61 (2011) 808–814.
- [2] J.D. Pérez, Y.J. Suh, The Ricci tensor of real hypersurfaces in complex two-plane Grassmannians, J. Korean Math. Soc. 44 (2007) 211–235.
 [3] J.D. Pérez, Y.J. Suh, Y. Watanabe, Generalized Einstein hypersurfaces in complex two-plane Grassmannians, J. Geom. Phys. 60-11 (2010) 1806–1818.
- [4] Y.J. Suh, Real hypersurfaces in complex two-plane Grassmannians with commuting Ricci tensor, J. Geom. Phys. 60-11 (2010) 1792–1805. Y.J. Suh, Real hypersurfaces in complex two-plane Grassmannians with parallel Ricci tensor, Proc. Roy. Soc. Edinburgh Sect. A 142 (6) (2012) 1309–1324.
- [6] Y.J. Suh, Real hypersurfaces in complex two-plane Grassmannians with ξ-parallel Ricci tensor, J. Geom. Phys. 64 (2013) 1–11.
- [7] Y.J. Suh, Real hypersurfaces in complex two-plane Grassmannians with harmonic curvature, J. Math. Pures Appl. 100 (2013) 16–33.