Addendum

Addendum to the paper "Real hypersurfaces in complex two-plane Grassmannians with ξ-invariant Ricci tensor"

Hyunjin Lee ${ }^{\text {a,*, }}$, Gyu Jong Kim ${ }^{\text {b }}$, Young Jin Suh ${ }^{\text {b }}$
${ }^{\text {a }}$ The Center for Geometry and its Applications, Pohang University of Science \& Technology, Pohang 790-784, Republic of Korea
${ }^{\mathrm{b}}$ Department of Mathematics, Kyungpook National University, Taegu 702-701, Republic of Korea

ARTICLE INFO

Article history:

Received 28 April 2013
Received in revised form 12 May 2014
Accepted 13 May 2014
Available online 6 June 2014

MSC:

primary 53C40
secondary 53C15
Keywords:
Complex two-plane Grassmannians
Hopf hypersurface
Ricci tensor
Lie-vanishing Ricci tensor
Reeb invariant Ricci tensor
\mathcal{F}-invariant Ricci tensor

Abstract

In this paper, we introduce some notions of invariancy for the Ricci tensor on real hypersurfaces in complex two-plane Grassmannians $G_{2}\left(\mathbb{C}^{m+2}\right)$, namely, \mathcal{F}-invariant and invariant Ricci tensor. Using these notions, we give non-existence theorem and characterization for the special case among the real hypersurfaces of Type (A) in $G_{2}\left(\mathbb{C}^{m+2}\right)$, respectively. Here the distribution \mathcal{F} is defined by $\mathcal{F}=[\xi] \cup \mathfrak{D}^{\perp}$ where $\mathfrak{D}^{\perp}=\operatorname{Span}\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}$ and $[\xi]=\operatorname{Span}\{\xi\}$.

© 2014 Elsevier B.V. All rights reserved.

0. Introduction

In [1] Suh proved the following theorem:

Theorem A. Let M be a connected orientable Hopf hypersurface in complex two-plane Grassmannians $G_{2}\left(\mathbb{C}^{m+2}\right), m \geq 3$, with ξ-invariant Ricci tensor. Then M is locally congruent to an open part of a tube around a totally geodesic $G_{2}\left(\mathbb{C}^{m+1}\right)$ in $G_{2}\left(\mathbb{C}^{m+2}\right)$.

From this theorem we can obtain corollaries whose proof is not trivial from the theorem. It needs some calculations that we present in this addendum. Consider the distribution $\mathcal{F}=\operatorname{Span}\{\xi\} \cup \mathfrak{D}^{\perp}$ on M. We will prove:

Corollary 1. Let M be a Hopf hypersurface in complex two-plane Grassmannians $G_{2}\left(\mathbb{C}^{m+2}\right), m \geq 3$. Then its Ricci tensor is \mathcal{F} invariant if and only if M is locally congruent to an open part of a tube around a totally geodesic $G_{2}\left(\mathbb{C}^{m+1}\right)$ in $G_{2}\left(\mathbb{C}^{m+2}\right)$ satisfying $\tan ^{2}(\sqrt{2} r)=2 /(m-1)$ and whose one-form q_{1} vanishes on the distribution \mathfrak{D}.

[^0]Moreover, as a consequence of this result we obtain:
Corollary 2. There does not exist a Hopf hypersurface in $G_{2}\left(\mathbb{C}^{m+2}\right), m \geq 3$, with Lie-vanishing (or invariant) Ricci tensor.
We use some references $[2-4,1]$ to recall the Riemannian geometry of complex two-plane Grassmannians $G_{2}\left(\mathbb{C}^{m+2}\right)$ and some fundamental formulas including the Codazzi and Gauss equations for a real hypersurface in $G_{2}\left(\mathbb{C}^{m+2}\right)$. In particular, the formula for the Ricci tensor S and its covariant derivative ∇S was shown explicitly in [5-7]. In Sections 1 and 2 respectively we will give a proof of Corollaries 1 and 2 .

1. The proof of Corollary 1

From [1] a new condition, namely the \mathcal{F}-invariant Ricci tensor, yields M is locally congruent to an open part of a type (A) real hypersurface in a complex two-plane Grassmannian $G_{2}\left(\mathbb{C}^{m+2}\right)$. Now let us take $\xi=\xi_{1}$ (which is possible for a type (A) real hypersurface M_{A}). Then it follows that

$$
\begin{equation*}
q_{2}(Y)=2 g\left(A Y, \xi_{2}\right), \quad q_{3}(Y)=2 g\left(A Y, \xi_{3}\right) \tag{1.1}
\end{equation*}
$$

for any tangent vector field Y on M_{A}. From this, the covariant derivatives of ξ_{2} and ξ_{3} with respect to an arbitrary tangent vector field $Y \in T M_{A}$ are

$$
\begin{align*}
\nabla_{Y} \xi_{2} & =q_{1}(Y) \xi_{3}-q_{3}(Y) \xi_{1}+\phi_{2} A Y \\
& =q_{1}(Y) \xi_{3}-2 g\left(A Y, \xi_{3}\right) \xi_{1}+\phi_{2} A Y \tag{i}
\end{align*}
$$

and

$$
\begin{equation*}
\nabla_{Y} \xi_{3}=2 g\left(A Y, \xi_{2}\right) \xi_{1}-q_{1}(Y) \xi_{2}+\phi_{3} A Y, \text { respectively. } \tag{ii}
\end{equation*}
$$

On the other hand, from the equation of Ricci tensor S (see (3.12) in [7]) the Ricci tensor S of M_{A} is given as follows:

$$
S Y=\kappa Y \quad \text { where } \kappa= \begin{cases}4 m+h \alpha-\alpha^{2}(:=\delta) & \text { if } Y \in T_{\alpha} \tag{1.3}\\ 4 m+6+h \beta-\beta^{2}(:=\rho) & \text { if } Y \in T_{\beta} \\ 4 m+6+h \lambda-\lambda^{2}(:=\sigma) & \text { if } Y \in T_{\lambda} \\ 4 m+8(:=\tau) & \text { if } Y \in T_{\mu}\end{cases}
$$

where the tangent bundle $T M_{A}$ is composed of four eigenspaces $T_{\alpha}, T_{\beta}, T_{\lambda}$ and T_{μ}, that is, $T M_{A}=T_{\alpha} \oplus T_{\beta} \oplus T_{\lambda} \oplus T_{\mu}$ (see Proposition B in [7]). Since κ is constant, we obtain

$$
\begin{align*}
\left(\mathcal{L}_{\xi_{2}} S\right) Y & =\mathcal{L}_{\xi_{2}}(S Y)-S\left(\mathscr{L}_{\xi_{2}} Y\right) \\
& =\left[\xi_{2}, S Y\right]-S\left(\left[\xi_{2}, Y\right]\right) \\
& =\nabla_{\xi_{2}}(S Y)-\nabla_{S Y} \xi_{2}-S\left(\nabla_{\xi_{2}} Y\right)+S\left(\nabla_{Y} \xi_{2}\right) \\
& =\kappa\left(\nabla_{\xi_{2}} Y-\nabla_{Y} \xi_{2}\right)-S\left(\nabla_{\xi_{2}} Y-\nabla_{Y} \xi_{2}\right) \tag{1.4}
\end{align*}
$$

for all $Y \in T_{\chi} M_{A}$ and $x \in M_{A}$. Using (1.3), let us calculate (1.4) with respect to the eigenspaces $T_{\alpha}, T_{\beta}, T_{\lambda}$ and T_{μ} on $T_{\chi} M_{A}$.
Case A-I. $Y \in T_{\alpha}$, that is, $Y=\xi\left(=\xi_{1}\right)$.
From (1.2-(i)) and (1.3), Eq. (1.4) becomes

$$
\begin{aligned}
\left(\mathcal{L}_{\xi_{2}} S\right) \xi & =\kappa\left(\nabla_{\xi_{2}} \xi-\nabla_{\xi} \xi_{2}\right)-S\left(\nabla_{\xi_{2}} \xi-\nabla_{\xi} \xi_{2}\right) \\
& =\delta\left(\phi A \xi_{2}-\left(q_{1}(\xi)-\alpha\right) \xi_{3}\right)-S\left(\phi A \xi_{2}-\left(q_{1}(\xi)-\alpha\right) \xi_{3}\right)
\end{aligned}
$$

Since $A \xi_{2}=\beta \xi_{2}$ and $S \xi_{3}=\rho \xi_{3}$, it follows that

$$
\begin{align*}
\left(\mathscr{L}_{\xi_{2}} S\right) \xi & =-\delta \beta \xi_{3}-\delta q_{1}(\xi) \xi_{3}+\delta \alpha \xi_{3}+\beta \rho \xi_{2}+\rho q_{1}(\xi) \xi_{3}-\alpha \rho \xi_{3} \\
& =(\rho-\delta)\left(\beta+q_{1}(\xi)-\alpha\right) \xi_{3} . \tag{1.5}
\end{align*}
$$

Case A-II. $Y \in T_{\beta}$, that is, $Y=\xi_{2}$ or $Y=\xi_{3}$.
If $Y=\xi_{2}$, then $\left[\xi_{2}, S \xi_{2}\right]=\rho\left[\xi_{2}, \xi_{2}\right]=0$. Thus we have

$$
\begin{equation*}
\left(\mathcal{L}_{\xi_{2}} S\right) \xi_{2}=0 \tag{i}
\end{equation*}
$$

Now, put $Y=\xi_{3}$. Since $\nabla_{\xi_{2}} \xi_{3}-\nabla_{\xi_{3}} \xi_{2}=2 \beta \xi_{1}-q_{1}\left(\xi_{2}\right) \xi_{2}-q_{1}\left(\xi_{3}\right) \xi_{3}$ from (1.2-(i)) to (1.2-(ii)), Eq. (1.4) can be written as

$$
\begin{align*}
\left(\mathscr{L}_{\xi_{2}} S\right) \xi_{3} & =\rho\left(\nabla_{\xi_{2}} \xi_{3}-\nabla_{\xi_{3}} \xi_{2}\right)-S\left(\nabla_{\xi_{2}} \xi_{3}-\nabla_{\xi_{3}} \xi_{2}\right) \\
& =\rho\left(2 \beta \xi_{1}-q_{1}\left(\xi_{2}\right) \xi_{2}-q_{1}\left(\xi_{3}\right) \xi_{3}\right)-S\left(2 \beta \xi_{1}-q_{1}\left(\xi_{2}\right) \xi_{2}-q_{1}\left(\xi_{3}\right) \xi_{3}\right) \\
& =2 \beta\left(\rho \xi_{1}-S \xi_{1}\right)-q_{1}\left(\xi_{2}\right)\left(\rho \xi_{2}-S \xi_{2}\right)-q_{1}\left(\xi_{3}\right)\left(\rho \xi_{3}-S \xi_{3}\right) \\
& =2 \beta(\rho-\delta) \xi_{1}, \tag{ii}
\end{align*}
$$

where $S \xi_{1}=\delta \xi_{1}, \delta=\left(4 m+h \alpha-\alpha^{2}\right)$ and $S \xi_{v}=\rho \xi_{v}, \rho=\left(4 m+6+h \beta-\beta^{2}\right)$ for $v=2,3$.

Case A-III. $Y \in T_{\lambda}$, where $T_{\lambda}=\left\{Y \in \mathfrak{D} \mid \phi Y=\phi_{1} Y\right\}$.
By (1.2-(i)) we obtain $\nabla_{Y} \xi_{2}=q_{1}(Y) \xi_{3}+\lambda \phi_{2} Y$. Moreover, we see that if any vector field Y belongs to the eigenspace T_{λ}, then the vector field $\phi_{2} Y$ belongs to T_{μ}, that is, it satisfies the properties $g\left(\phi_{2} Y, \xi_{l}\right)=0$ and $\phi \phi_{2} Y=-\phi_{1} \phi_{2} Y$ for $Y \in T_{\lambda}$ and $\iota=1,2$, 3 . It implies that $S \phi_{2} Y=\tau \phi_{2} Y$ where $\tau=(4 m+8)$.

From these facts, we get

$$
\begin{align*}
\left(\mathcal{L}_{\xi_{2}} S\right) Y & =\sigma\left(\nabla_{\xi_{2}} Y-\nabla_{Y} \xi_{2}\right)-S\left(\nabla_{\xi_{2}} Y-\nabla_{Y} \xi_{2}\right) \\
& =\sigma\left(\nabla_{\xi_{2}} Y-q_{1}(Y) \xi_{3}-\lambda \phi_{2} Y\right)-S\left(\nabla_{\xi_{2}} Y-q_{1}(Y) \xi_{3}-\lambda \phi_{2} Y\right) \tag{1.7}
\end{align*}
$$

for any tangent vector $Y \in T_{\lambda}$.
On the other hand, for any $Y \in \mathfrak{D}$ the vector field $\nabla_{\xi_{2}} Y$ belongs to the distribution \mathfrak{D}, because

$$
\begin{aligned}
g\left(\nabla_{\xi_{2}} Y, \xi_{l}\right) & =-g\left(Y, \nabla_{\xi_{2}} \xi_{l}\right) \\
& =-g\left(Y, q_{l+2}\left(\xi_{2}\right) \xi_{\imath+1}-q_{\iota+1}\left(\xi_{2}\right) \xi_{l+2}+\phi_{l} A \xi_{2}\right) \\
& =-g\left(Y, q_{\iota+2}\left(\xi_{2}\right) \xi_{l+1}-q_{\iota+1}\left(\xi_{2}\right) \xi_{l+2}+\beta \phi_{l} \xi_{2}\right) \\
& =0
\end{aligned}
$$

for any $\iota=1,2,3$. By virtue of Proposition B given in [7], we know that the distribution \mathfrak{D} of $T_{x} M_{A}$ at $x \in M_{A}$ is composed of two eigenspaces T_{λ} and T_{μ}, that is, $\mathfrak{D}=T_{\lambda} \oplus T_{\mu}$. Thus there exist unique $U \in T_{\lambda}$ and $W \in T_{\mu}$ such that

$$
\begin{aligned}
\nabla_{\xi_{2}} Y & =U+W \\
& =\sum_{i=1}^{2 m-2} a_{i}^{\lambda} e_{i}^{\lambda}+\sum_{j=1}^{2 m-2} a_{j}^{\mu} e_{j}^{\mu}
\end{aligned}
$$

for an orthonormal basis $\left\{e_{i}^{\lambda}, e_{j}^{\mu} \mid i, j=1,2, \ldots, 2 m-2\right\}$ of \mathfrak{D}. In general, from this we can consider the following three subcases:

- Subcase 1. $\nabla_{\xi_{2}} Y \in T_{\lambda}$, that is, $a_{j}^{\mu}=0$ for any $j=1,2, \ldots, 2 m-2$,
- Subcase 2. $\nabla_{\xi_{2}} Y \in T_{\mu}$, that is, $a_{i}^{\mu}=0$ for any $i=1,2, \ldots, 2 m-2$,
- Subcase 3. $\nabla_{\xi_{2}} Y \in T_{\lambda}+T_{\mu}$, that is, there exist some non-vanishing components a_{s}^{λ} and a_{t}^{μ} for some $s, t=1,2, \ldots, 2 m-2$, given as $\nabla_{\xi_{2}} Y=a_{s}^{\lambda} e_{s}^{\lambda}+a_{t}^{\mu} e_{t}^{\mu}$.
By the way, if $Y \in T_{\lambda}$, then $\phi Y=\phi_{1} Y$. Differentiating this equation along the direction ξ_{2}, we have

$$
\phi\left(\nabla_{\xi_{2}} Y\right)=-2 \beta \phi_{3} Y+\phi_{1}\left(\nabla_{\xi_{2}} Y\right),
$$

together with (1.1). For a model space of Type (A) in $G_{2}\left(\mathbb{C}^{m+2}\right)$ the eigenvalue β is non-vanishing. Thus we see that $\nabla_{\xi_{2}} Y$ does not belong to T_{λ}, and hence we must consider the following two subcases in the above ones:

Firstly, let us consider that $\nabla_{\xi_{2}} Y \in T_{\mu}$. That is, we can put $\nabla_{\xi_{2}} Y=\sum_{j=1}^{2 m-2} a_{j}^{\mu} e_{j}^{\mu}$ for an orthonormal basis $\left\{e_{j}^{\mu}\right\}$ of T_{μ}. It follows that

$$
\begin{aligned}
S\left(\nabla_{\xi_{2}} Y\right) & =S\left(\sum_{j=1}^{2 m-2} a_{j}^{\mu} e_{j}^{\mu}\right)=\sum_{j=1}^{2 m-2} a_{j}^{\mu}\left(S e_{j}^{\mu}\right) \\
& =\sum_{j=1}^{2 m-2} a_{j}^{\mu}\left(\tau e_{j}^{\mu}\right)=\tau \sum_{j=1}^{2 m-2} a_{j}^{\mu} e_{j}^{\mu}=\tau \nabla_{\xi_{2}} Y
\end{aligned}
$$

where $\tau=(4 m+8)$. Hence for the case $Y \in T_{\lambda}$ and $\nabla_{\xi_{2}} Y \in T_{\mu}$ Eq. (1.7) becomes

$$
\begin{align*}
\left(\mathscr{L}_{\xi_{2}} S\right) Y & =\sigma\left(\nabla_{\xi_{2}} Y-q_{1}(Y) \xi_{3}-\lambda \phi_{2} Y\right)-S\left(\nabla_{\xi_{2}} Y-q_{1}(Y) \xi_{3}-\lambda \phi_{2} Y\right) \\
& =(\sigma-\tau) \nabla_{\xi_{2}} Y+q_{1}(Y)(\rho-\sigma) \xi_{3}+\lambda(\tau-\sigma) \phi_{2} Y \tag{i}
\end{align*}
$$

where $\sigma=\left(4 m+6+h \lambda-\lambda^{2}\right), \rho=\left(4 m+6+h \beta-\beta^{2}\right)$ and $\tau=(4 m+8)$.
Secondly, let us find the formula related to $\left(\mathscr{L}_{\xi_{2}} S\right) Y$ with respect to $Y \in T_{\lambda}$ and $\nabla_{\xi_{2}} Y \in T_{\lambda}+T_{\mu}$. For the sake of convenience we may put $\nabla_{\xi_{2}} Y=a_{s}^{\lambda} e_{s}^{\lambda}+a_{t}^{\mu} e_{t}^{\mu}$ satisfying $a_{s}^{\lambda} a_{t}^{\mu} \neq 0$ for some $s, t=1,2, \ldots, 2 m-2$. From this notation, (1.7) can be changed into

$$
\begin{align*}
\left(\mathcal{L}_{\xi_{2}} S\right) Y= & \sigma\left(\nabla_{\xi_{2}} Y-q_{1}(Y) \xi_{3}-\lambda \phi_{2} Y\right)-S\left(\nabla_{\xi_{2}} Y-q_{1}(Y) \xi_{3}-\lambda \phi_{2} Y\right) \\
= & \sigma\left(a_{s}^{\lambda} e_{s}^{\lambda}+a_{t}^{\mu} e_{t}^{\mu}-q_{1}(Y) \xi_{3}-\lambda \phi_{2} Y\right) \\
& -S\left(a_{s}^{\lambda} e_{s}^{\lambda}+a_{t}^{\mu} e_{t}^{\mu}-q_{1}(Y) \xi_{3}-\lambda \phi_{2} Y\right) \\
= & (\sigma-\tau) a_{t}^{\mu} e_{t}^{\mu}-q_{1}(Y)(\sigma-\rho) \xi_{3}-\lambda(\sigma-\tau) \phi_{2} Y \tag{ii}
\end{align*}
$$

because $S e_{s}^{\lambda}=\sigma e_{s}^{\lambda}$ and $S e_{t}^{\mu}=\tau e_{t}^{\mu}$.

Case A-IV. $Y \in T_{\mu}$, where $T_{\mu}=\left\{Y \in \mathfrak{D} \mid \phi Y=-\phi_{1} Y\right\}$.
Since $\mu=0$, Eq. (1.2-(i)) implies that $\nabla_{Y} \xi_{2}=q_{1}(Y) \xi_{3}$. From (1.3) and (1.4), we have

$$
\begin{align*}
\left(\mathscr{L}_{\xi_{2}} S\right) Y & =\tau\left(\nabla_{\xi_{2}} Y-\nabla_{Y} \xi_{2}\right)-S\left(\nabla_{\xi_{2}} Y-\nabla_{Y} \xi_{2}\right) \\
& =\tau\left(\nabla_{\xi_{2}} Y-q_{1}(Y) \xi_{3}\right)-S\left(\nabla_{\xi_{2}} Y-q_{1}(Y) \xi_{3}\right) \\
& =\tau\left(\nabla_{\xi_{2}} Y\right)-q_{1}(Y)(\tau-\rho) \xi_{3}-S\left(\nabla_{\xi_{2}} Y\right) \tag{1.9}
\end{align*}
$$

where $\rho=\left(4 m+6+h \beta-\beta^{2}\right)$ and $\tau=(4 m+8)$.
As mentioned in the Case A-III, we know that $\nabla_{\xi_{2}} Y$ belongs to the distribution $\mathfrak{D}=T_{\lambda} \oplus T_{\mu}$ for $Y \in \mathfrak{D}$. In addition, since $Y \in T_{\mu}$, we get $\phi\left(\nabla_{\xi_{2}} Y\right)=2 \beta \phi_{3} Y-\phi_{1}\left(\nabla_{\xi_{2}} Y\right)$ from the property $\phi Y=-\phi_{1} Y$. It means that the vector field $\nabla_{\xi_{2}} Y$ does not belong to the eigenspace T_{μ}. Thus we have only two subcases given by $\nabla_{\xi_{2}} Y \in T_{\lambda}$ and $\nabla_{\xi_{2}} Y \in T_{\lambda}+T_{\mu}$. For such subcases Eq. (1.9) becomes respectively

$$
\begin{equation*}
\left(\mathscr{L}_{\xi_{2}} S\right) Y=(\tau-\sigma)\left(\nabla_{\xi_{2}} Y\right)-q_{1}(Y)(\tau-\rho) \xi_{3} \quad \text { for } \nabla_{\xi_{2}} Y \in T_{\lambda} \tag{i}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\mathscr{L}_{\xi_{2}} S\right) Y=(\tau-\sigma) a_{s}^{\lambda} e_{s}^{\lambda}-q_{1}(Y)(\tau-\rho) \xi_{3} \quad \text { for } \nabla_{\xi_{2}} Y \in T_{\lambda}+T_{\mu} \tag{ii}
\end{equation*}
$$

where we put $\nabla_{\xi_{2}} Y=a_{s}^{\lambda} e_{s}^{\lambda}+a_{t}^{\mu} e_{t}^{\mu} \in T_{\lambda}+T_{\mu}$ satisfying $a_{s}^{\lambda} a_{t}^{\mu} \neq 0$ for some $s, t=1,2, \ldots, 2 m-2$.
Summing up these calculations, we have the following equation for $X=\xi_{2}$.

$$
\left(\mathscr{L}_{\xi_{2}} S\right) Y= \begin{cases}(\rho-\delta)\left(\beta+q_{1}(\xi)-\alpha\right) \xi_{3} & \text { if } Y=\xi \in T_{\alpha} \tag{1.11}\\ 0 & \text { if } Y=\xi_{2} \in T_{\beta} \\ 2 \beta(\rho-\delta) \xi_{1} & \text { if } Y=\xi_{3} \in T_{\beta} \\ (\sigma-\tau)\left(\nabla_{\xi_{2}} Y\right)-q_{1}(Y)(\sigma-\rho) \xi_{3}-\lambda(\sigma-\tau) \phi_{2} Y & \text { if } Y \in T_{\lambda}, \nabla_{\xi_{2}} Y \in T_{\mu} \\ (\sigma-\tau) a_{t}^{\mu} e_{t}^{\mu}-q_{1}(Y)(\sigma-\rho) \xi_{3}-\lambda(\sigma-\tau) \phi_{2} Y & \text { if } Y \in T_{\lambda}, \nabla_{\xi_{2}} Y \in T_{\lambda}+T_{\mu} \\ -(\sigma-\tau)\left(\nabla_{\xi_{2}} Y\right)-q_{1}(Y)(\tau-\rho) \xi_{3} & \text { if } Y \in T_{\mu}, \nabla_{\xi_{2}} Y \in T_{\lambda} \\ (\tau-\sigma) a_{s}^{\lambda} e_{s}^{\lambda_{2}}-q_{1}(Y)(\tau-\rho) \xi_{3} & \text { if } \nabla_{\xi_{2}} Y \in T_{\lambda}+T_{\mu} .\end{cases}
$$

Moreover, by the similar consideration for $X=\xi_{3}$ we obtain also:

$$
\left(\mathscr{L}_{\xi_{3}} S\right) Y= \begin{cases}-(\rho-\delta)\left(\beta+q_{1}(\xi)-\alpha\right) \xi_{2} & \text { if } Y=\xi \in T_{\alpha} \tag{1.12}\\ -2 \beta(\rho-\delta) \xi_{1} & \text { if } Y=\xi_{2} \in T_{\beta} \\ 0 & \text { if } Y=\xi_{3} \in T_{\beta} \\ (\sigma-\tau)\left(\nabla_{\xi_{3}} Y\right)+q_{1}(Y)(\sigma-\rho) \xi_{2}-\lambda(\sigma-\tau) \phi_{3} Y & \text { if } Y \in T_{\lambda}, \nabla_{\xi_{3}} Y \in T_{\mu} \\ (\sigma-\tau) a_{t}^{\mu} e_{t}^{\mu}+q_{1}(Y)(\sigma-\rho) \xi_{2}-\lambda(\sigma-\tau) \phi_{3} Y & \text { if } Y \in T_{\lambda}, \nabla_{\xi_{3}} Y \in T_{\lambda}+T_{\mu} \\ -(\sigma-\tau)\left(\nabla_{\xi_{3}} Y\right)+q_{1}(Y)(\tau-\rho) \xi_{2} & \text { if } Y \in T_{\mu}, \nabla_{\xi_{3}} Y \in T_{\lambda} \\ -(\sigma-\tau) a_{s}^{\lambda} e_{s}^{\lambda}+q_{1}(Y)(\tau-\rho) \xi_{2} & \text { if } Y \in T_{\mu}, \nabla_{\xi_{3}} Y \in T_{\lambda}+T_{\mu} .\end{cases}
$$

For the Ricci tensor S of M_{A}, the definition of \mathcal{F}-invariant Ricci tensor gives that the vector fields $\left(\mathscr{L}_{\xi_{\nu}} S\right) Y(v=1,2,3)$ must vanish for each case mentioned above. So, from (1.6-(ii)), we have

$$
\begin{equation*}
\rho-\delta=0 \tag{1.13}
\end{equation*}
$$

together with $\beta=\sqrt{2} \cot (\sqrt{2} r) \neq 0$ for the radius $r \in(0, \pi / \sqrt{8})$. Moreover, it follows

$$
\begin{equation*}
\tan ^{2}(\sqrt{2} r)=\frac{2}{m-1} \tag{1.14}
\end{equation*}
$$

because $h=\operatorname{Tr} A=\alpha+2 \beta+(2 m-2) \lambda$ and $m \geq 3$. In addition, by using (1.3) it follows that

$$
\sigma-\tau=-2+h \lambda-\lambda^{2}=-8+4(m-1) \tan ^{2}(\sqrt{2} r)=0
$$

and

$$
\sigma-\rho=2-h \beta+\beta^{2}=4 m-4 \cot ^{2}(\sqrt{2} r)=2(m+1)=\tau-\rho
$$

From these and Eqs. (1.11) and (1.12), we obtain

$$
\left\{\begin{array}{l}
\left(\mathscr{L}_{\xi_{2}} S\right) Y=-2(m+1) q_{1}(Y) \xi_{3}, \tag{1.15}\\
\left(\mathscr{L}_{\xi_{3}} S\right) Y=2(m+1) q_{1}(Y) \xi_{2}
\end{array}\right.
$$

for any tangent vector field $Y \in \mathfrak{D}$. Since $m \geq 3$, the one form q_{1} must vanish for $Y \in \mathfrak{D}$, that is, $q_{1}(Y)=0$.
It gives us a complete proof of our Corollary 1 in the introduction.

2. The proof of Corollary 2

We only have to check if real hypersurfaces appearing in our Corollary 1 do or do not satisfy the condition, $\left(\mathscr{L}_{X} S\right) Y=0$ for any tangent $X, Y \in T M$. In order to do this, putting $X \in T_{\mu}$ and $Y=\xi_{3} \in T_{\beta}$, it implies

$$
\left(\mathscr{L}_{X} S\right) \xi_{3}=\rho\left(\nabla_{X} \xi_{3}-\nabla_{\xi_{3}} X\right)-S\left(\nabla_{X} \xi_{3}-\nabla_{\xi_{3}} X\right)=0
$$

by Eq. (1.3) in Section 1 . On the other hand, from (1.1), (1.2-(ii)) and $q_{1}(X)=0$ for any $X \in \mathfrak{D}$ it follows that the vector field $\nabla_{X} \xi_{3}=\phi_{3} A X=0$ for any $X \in T_{\mu}, \mu=0$. Thus we obtain

$$
\begin{equation*}
\left(\mathscr{L}_{X} S\right) \xi_{3}=-\rho \nabla_{\xi_{3}} X+S\left(\nabla_{\xi_{3}} X\right)=0 \tag{2.1}
\end{equation*}
$$

On the other hand, since $g\left(\nabla_{\xi_{3}} X, \xi_{\imath}\right)=0$ for any $X \in T_{\mu}$ and $\iota=1,2$, 3, we see that $\nabla_{\xi_{3}} X \in \mathfrak{D}=T_{\lambda} \oplus T_{\mu}$. It is well known that $\phi X=-\phi_{1} X$ for $X \in T_{\mu}$. Taking the covariant derivative along the direction ξ_{3}, we obtain

$$
\phi\left(\nabla_{\xi_{3}} X\right)=-2 \beta \phi_{2} X-\phi_{1}\left(\nabla_{\xi_{3}} X\right)
$$

together with the basic formulas (see Section 2 in [1]) and (1.1). It follows that for any $X \in T_{\mu}$ the vector field $\nabla_{\xi_{3}} X$ does not belong to T_{μ}, because β is non-vanishing. Therefore for the vector field $\nabla_{\xi_{3}} X$ we have the following two subcases:

- Subcase 1. $\nabla_{\xi_{3}} Y \in T_{\lambda}$, that is, $\nabla_{\xi_{3}} Y=\sum_{i=1}^{2 m-2} a_{i}^{\lambda} e_{i}^{\lambda}$ for an orthonormal basis $\left\{e_{i}^{\lambda}\right\}$ of T_{λ},
- Subcase 2. $\nabla_{\xi_{3}} Y \in T_{\lambda}+T_{\mu}$, that is, there exist some non-vanishing components a_{s}^{λ} and a_{t}^{μ} for some $s, t=1,2, \ldots, 2 m-2$, given as follows:

$$
\nabla_{\xi_{3}} Y=a_{s}^{\lambda} e_{s}^{\lambda}+a_{t}^{\mu} e_{t}^{\mu}
$$

From this, we first assume that $\nabla_{\xi_{3}} Y \in T_{\lambda}$. Then Eq. (2.1) becomes

$$
\begin{equation*}
-\rho \sum_{i=1}^{2 m-2} a_{i}^{\lambda} e_{i}^{\lambda}+S\left(\sum_{i=1}^{2 m-2} a_{i}^{\lambda} e_{i}^{\lambda}\right)=(\sigma-\rho) \sum_{i=1}^{2 m-2} a_{i}^{\lambda} e_{i}^{\lambda}=(\sigma-\rho) \nabla_{\xi_{3}} X=0, \tag{2.2}
\end{equation*}
$$

where $S e_{i}^{\lambda}=\sigma e_{i}^{\lambda}$ for $i=1,2, \ldots, 2 m-2$. By our assumption that M_{A} has the invariant Ricci tensor, we already knew that $\tan ^{2}(\sqrt{2} r)=2 /(m-1)$. From this and $m \geq 3,(\sigma-\rho)$ is non-vanishing. So, Eq. (2.2) implies that

$$
\begin{equation*}
\nabla_{\xi_{3}} X=0 \tag{2.3}
\end{equation*}
$$

Since $A X=0$ for any $X \in T_{\mu}$, we get $\left(\nabla_{\xi_{3}} A\right) X=0$, together with (2.3). From this, the Codazzi equation given in [1] becomes

$$
-\left(\nabla_{X} A\right) \xi_{3}=2 \phi_{3} X
$$

where we have used $\phi X=-\phi_{1} X$ for any $X \in T_{\mu}$. On the other hand, for $X \in T_{\mu}$ we get $\left(\nabla_{X} A\right) \xi_{3}=0$ by using $A \xi_{3}=\beta \xi_{3}$ and $\nabla_{X} \xi_{3}=0$. Hence we have $\phi_{3} X=0$ from the previous two equations. It follows that $X=0$ for any $X \in T_{\mu}$, that is, $\operatorname{dim} T_{\mu}=0$. It gives us a contradiction. In fact, the dimension of the eigenspace T_{μ} is $2 m-2$.

Next we consider the Subcase 2 mentioned above. For the sake of convenience we may put $\nabla_{\xi_{3}} Y=a_{s}^{\lambda} e_{s}^{\lambda}+a_{t}^{\mu} e_{t}^{\mu}$ such that $a_{s}^{\lambda} a_{t}^{\mu} \neq 0$ for some $s, t=1,2, \ldots, 2 m-2$.

Then Eq. (2.1) becomes

$$
a_{s}^{\lambda}(\sigma-\rho) e_{s}^{\lambda}+(\tau-\rho) a_{t}^{\mu} e_{t}^{\mu}=0
$$

Taking the inner product with $e_{s}^{\lambda} \in T_{\lambda}$ to this equation, we have $(\sigma-\rho)=0$, together with $a_{s}^{\lambda} \neq 0$ for some $s=1,2, \ldots, 2 m-2$. It gives us a contradiction with $m \geq 3$. In fact, by virtue of Proposition B in [7] we get $(\sigma-\rho)=2(m+1)$ where $h=\operatorname{Tr} A=\alpha+2 \beta+(2 m-2) \lambda$.

Hence this gives the complete proof of Corollary 2 in the introduction.

Acknowledgments

This work was supported by grant Proj. No. NRF-2011-220-C00002 from National Research Foundation of Korea. The first author by NRF Grant Nos. 2012-R1A1A3002031 and 2011-0030044 (SRC-GAIA) and the third by grant Proj. No. NRF-2012R1A2A2A01043023.

References

[1] Y.J. Suh, Real hypersurfaces in complex two-plane Grassmannians with ξ-invariant Ricci tensor, J. Geom. Phys. 61 (2011) $808-814$.
[2] J.D. Pérez, Y.J. Suh, The Ricci tensor of real hypersurfaces in complex two-plane Grassmannians, J. Korean Math. Soc. 44 (2007) 211 -235.
[3] J.D. Pérez, Y.J. Suh, Y. Watanabe, Generalized Einstein hypersurfaces in complex two-plane Grassmannians, J. Geom. Phys. 60-11 (2010) 1806-1818,
[4] Y.J. Suh, Real hypersurfaces in complex two-plane Grassmannians with commuting Ricci tensor, J. Geom. Phys. 60-11 (2010) 1792-1805.
[5] Y.J. Suh, Real hypersurfaces in complex two-plane Grassmannians with parallel Ricci tensor, Proc. Roy. Soc. Edinburgh Sect. A 142 (6) (2012) 1309-1324.
[6] Y.J. Suh, Real hypersurfaces in complex two-plane Grassmannians with ξ-parallel Ricci tensor, J. Geom. Phys. 64 (2013) 1-11.
[7] Y.J. Suh, Real hypersurfaces in complex two-plane Grassmannians with harmonic curvature, J. Math. Pures Appl. 100 (2013) 16-33.

[^0]: DOI of original article: http://dx.doi.org/10.1016/j.geomphys.2012.10.005.

 * Corresponding author. Tel.: +82 1029710409.

 E-mail addresses: lhjibis@hanmail.net, lhjibis@knu.ac.kr (H. Lee), hb2107@naver.com (G.J. Kim), yjsuh@knu.ac.kr (Y.J. Suh).

