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a b s t r a c t

In this paper, we introduce some notions of invariancy for the Ricci tensor on real hyper-
surfaces in complex two-plane Grassmannians G2(Cm+2), namely, F -invariant and invari-
ant Ricci tensor. Using these notions, we give non-existence theorem and characterization
for the special case among the real hypersurfaces of Type (A) in G2(Cm+2), respectively.
Here the distribution F is defined by F = [ξ ] ∪ D⊥ where D⊥

= Span{ξ1, ξ2, ξ3} and
[ξ ] = Span{ξ}.

© 2014 Elsevier B.V. All rights reserved.

0. Introduction

In [1] Suh proved the following theorem:

Theorem A. Let M be a connected orientable Hopf hypersurface in complex two-plane Grassmannians G2(Cm+2), m ≥ 3, with
ξ -invariant Ricci tensor. Then M is locally congruent to an open part of a tube around a totally geodesic G2(Cm+1) in G2(Cm+2).

From this theoremwe can obtain corollaries whose proof is not trivial from the theorem. It needs some calculations that we
present in this addendum. Consider the distribution F = Span{ξ} ∪ D⊥ onM . We will prove:

Corollary 1. Let M be a Hopf hypersurface in complex two-plane Grassmannians G2(Cm+2), m ≥ 3. Then its Ricci tensor is F -
invariant if and only if M is locally congruent to an open part of a tube around a totally geodesic G2(Cm+1) in G2(Cm+2) satisfying
tan2(

√
2r) = 2/(m − 1) and whose one-form q1 vanishes on the distribution D.
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Moreover, as a consequence of this result we obtain:

Corollary 2. There does not exist a Hopf hypersurface in G2(Cm+2), m ≥ 3, with Lie-vanishing (or invariant) Ricci tensor.

We use some references [2–4,1] to recall the Riemannian geometry of complex two-plane Grassmannians G2(Cm+2) and
some fundamental formulas including the Codazzi andGauss equations for a real hypersurface inG2(Cm+2). In particular, the
formula for the Ricci tensor S and its covariant derivative ∇S was shown explicitly in [5–7]. In Sections 1 and 2 respectively
we will give a proof of Corollaries 1 and 2.

1. The proof of Corollary 1

From [1] a new condition, namely the F -invariant Ricci tensor, yieldsM is locally congruent to an open part of a type (A)
real hypersurface in a complex two-plane Grassmannian G2(Cm+2). Now let us take ξ = ξ1 (which is possible for a type (A)
real hypersurface MA). Then it follows that

q2(Y ) = 2g(AY , ξ2), q3(Y ) = 2g(AY , ξ3) (1.1)

for any tangent vector field Y on MA. From this, the covariant derivatives of ξ2 and ξ3 with respect to an arbitrary tangent
vector field Y ∈ TMA are

∇Y ξ2 = q1(Y )ξ3 − q3(Y )ξ1 + φ2AY
= q1(Y )ξ3 − 2g(AY , ξ3)ξ1 + φ2AY (1.2-(i))

and

∇Y ξ3 = 2g(AY , ξ2)ξ1 − q1(Y )ξ2 + φ3AY , respectively. (1.2-(ii))

On the other hand, from the equation of Ricci tensor S (see (3.12) in [7]) the Ricci tensor S ofMA is given as follows:

SY = κY where κ =


4m + hα − α2 (:=δ) if Y ∈ Tα

4m + 6 + hβ − β2 (:=ρ) if Y ∈ Tβ

4m + 6 + hλ − λ2 (:=σ) if Y ∈ Tλ

4m + 8 (:=τ) if Y ∈ Tµ,

(1.3)

where the tangent bundle TMA is composed of four eigenspaces Tα , Tβ , Tλ and Tµ, that is, TMA = Tα ⊕ Tβ ⊕ Tλ ⊕ Tµ (see
Proposition B in [7]). Since κ is constant, we obtain

(Lξ2S)Y = Lξ2(SY ) − S(Lξ2Y )

= [ξ2, SY ] − S([ξ2, Y ])

= ∇ξ2(SY ) − ∇SY ξ2 − S(∇ξ2Y ) + S(∇Y ξ2)

= κ(∇ξ2Y − ∇Y ξ2) − S(∇ξ2Y − ∇Y ξ2) (1.4)

for all Y ∈ TxMA and x ∈ MA. Using (1.3), let us calculate (1.4) with respect to the eigenspaces Tα , Tβ , Tλ and Tµ on TxMA.
Case A-I. Y ∈ Tα , that is, Y = ξ(=ξ1).
From (1.2-(i)) and (1.3), Eq. (1.4) becomes

(Lξ2S)ξ = κ(∇ξ2ξ − ∇ξ ξ2) − S(∇ξ2ξ − ∇ξ ξ2)

= δ

φAξ2 − (q1(ξ) − α)ξ3


− S


φAξ2 − (q1(ξ) − α)ξ3


.

Since Aξ2 = βξ2 and Sξ3 = ρξ3, it follows that

(Lξ2S)ξ = −δβξ3 − δq1(ξ)ξ3 + δαξ3 + βρξ2 + ρq1(ξ)ξ3 − αρξ3

= (ρ − δ)(β + q1(ξ) − α)ξ3. (1.5)

Case A-II. Y ∈ Tβ , that is, Y = ξ2 or Y = ξ3.
If Y = ξ2, then [ξ2, Sξ2] = ρ[ξ2, ξ2] = 0. Thus we have

(Lξ2S)ξ2 = 0. (1.6-(i))

Now, put Y = ξ3. Since ∇ξ2ξ3 −∇ξ3ξ2 = 2βξ1 − q1(ξ2)ξ2 − q1(ξ3)ξ3 from (1.2-(i)) to (1.2-(ii)), Eq. (1.4) can be written as

(Lξ2S)ξ3 = ρ(∇ξ2ξ3 − ∇ξ3ξ2) − S(∇ξ2ξ3 − ∇ξ3ξ2)

= ρ

2βξ1 − q1(ξ2)ξ2 − q1(ξ3)ξ3


− S


2βξ1 − q1(ξ2)ξ2 − q1(ξ3)ξ3


= 2β(ρξ1 − Sξ1) − q1(ξ2)(ρξ2 − Sξ2) − q1(ξ3)(ρξ3 − Sξ3)

= 2β(ρ − δ)ξ1, (1.6-(ii))

where Sξ1 = δξ1, δ = (4m + hα − α2) and Sξν = ρξν , ρ = (4m + 6 + hβ − β2) for ν = 2, 3.
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Case A-III. Y ∈ Tλ, where Tλ = {Y ∈ D | φY = φ1Y }.
By (1.2-(i)) we obtain ∇Y ξ2 = q1(Y )ξ3 + λφ2Y . Moreover, we see that if any vector field Y belongs to the eigenspace Tλ,

then the vector field φ2Y belongs to Tµ, that is, it satisfies the properties g(φ2Y , ξι) = 0 and φφ2Y = −φ1φ2Y for Y ∈ Tλ

and ι = 1, 2, 3. It implies that Sφ2Y = τφ2Y where τ = (4m + 8).
From these facts, we get

(Lξ2S)Y = σ(∇ξ2Y − ∇Y ξ2) − S(∇ξ2Y − ∇Y ξ2)

= σ(∇ξ2Y − q1(Y )ξ3 − λφ2Y ) − S(∇ξ2Y − q1(Y )ξ3 − λφ2Y ) (1.7)

for any tangent vector Y ∈ Tλ.
On the other hand, for any Y ∈ D the vector field ∇ξ2Y belongs to the distribution D, because

g(∇ξ2Y , ξι) = −g(Y , ∇ξ2ξι)

= −g(Y , qι+2(ξ2)ξι+1 − qι+1(ξ2)ξι+2 + φιAξ2)

= −g(Y , qι+2(ξ2)ξι+1 − qι+1(ξ2)ξι+2 + βφιξ2)

= 0

for any ι = 1, 2, 3. By virtue of Proposition B given in [7], we know that the distribution D of TxMA at x ∈ MA is composed
of two eigenspaces Tλ and Tµ, that is, D = Tλ ⊕ Tµ. Thus there exist unique U ∈ Tλ and W ∈ Tµ such that

∇ξ2Y = U + W

=

2m−2
i=1

aλ
i e

λ
i +

2m−2
j=1

aµ

j e
µ

j

for an orthonormal basis {eλ
i , eµ

j | i, j = 1, 2, . . . , 2m − 2} of D. In general, from this we can consider the following three
subcases:

• Subcase 1. ∇ξ2Y ∈ Tλ, that is, a
µ

j = 0 for any j = 1, 2, . . . , 2m − 2,
• Subcase 2. ∇ξ2Y ∈ Tµ, that is, a

µ

i = 0 for any i = 1, 2, . . . , 2m − 2,
• Subcase 3.∇ξ2Y ∈ Tλ+Tµ, that is, there exist somenon-vanishing components aλ

s and aµ
t for some s, t = 1, 2, . . . , 2m−2,

given as ∇ξ2Y = aλ
s e

λ
s + aµ

t e
µ
t .

By the way, if Y ∈ Tλ, then φY = φ1Y . Differentiating this equation along the direction ξ2, we have

φ(∇ξ2Y ) = −2βφ3Y + φ1(∇ξ2Y ),

together with (1.1). For a model space of Type (A) in G2(Cm+2) the eigenvalue β is non-vanishing. Thus we see that ∇ξ2Y
does not belong to Tλ, and hence we must consider the following two subcases in the above ones:

Firstly, let us consider that ∇ξ2Y ∈ Tµ. That is, we can put ∇ξ2Y =
2m−2

j=1 aµ

j e
µ

j for an orthonormal basis {eµ

j } of Tµ. It
follows that

S(∇ξ2Y ) = S


2m−2
j=1

aµ

j e
µ

j


=

2m−2
j=1

aµ

j (Seµ

j )

=

2m−2
j=1

aµ

j (τeµ

j ) = τ

2m−2
j=1

aµ

j e
µ

j = τ∇ξ2Y

where τ = (4m + 8). Hence for the case Y ∈ Tλ and ∇ξ2Y ∈ Tµ Eq. (1.7) becomes

(Lξ2S)Y = σ(∇ξ2Y − q1(Y )ξ3 − λφ2Y ) − S(∇ξ2Y − q1(Y )ξ3 − λφ2Y )

= (σ − τ)∇ξ2Y + q1(Y )(ρ − σ)ξ3 + λ(τ − σ)φ2Y (1.8-(i))

where σ = (4m + 6 + hλ − λ2), ρ = (4m + 6 + hβ − β2) and τ = (4m + 8).
Secondly, let us find the formula related to (Lξ2S)Y with respect to Y ∈ Tλ and ∇ξ2Y ∈ Tλ + Tµ. For the sake of conve-

nience we may put ∇ξ2Y = aλ
s e

λ
s + aµ

t e
µ
t satisfying aλ

s a
µ
t ≠ 0 for some s, t = 1, 2, . . . , 2m− 2. From this notation, (1.7) can

be changed into

(Lξ2S)Y = σ(∇ξ2Y − q1(Y )ξ3 − λφ2Y ) − S(∇ξ2Y − q1(Y )ξ3 − λφ2Y )

= σ(aλ
s e

λ
s + aµ

t e
µ
t − q1(Y )ξ3 − λφ2Y )

− S(aλ
s e

λ
s + aµ

t e
µ
t − q1(Y )ξ3 − λφ2Y )

= (σ − τ)aµ
t e

µ
t − q1(Y )(σ − ρ)ξ3 − λ(σ − τ)φ2Y , (1.8-(ii))

because Seλ
s = σ eλ

s and Seµ
t = τeµ

t .
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Case A-IV. Y ∈ Tµ, where Tµ = {Y ∈ D | φY = −φ1Y }.
Since µ = 0, Eq. (1.2-(i)) implies that ∇Y ξ2 = q1(Y )ξ3. From (1.3) and (1.4), we have

(Lξ2S)Y = τ(∇ξ2Y − ∇Y ξ2) − S(∇ξ2Y − ∇Y ξ2)

= τ(∇ξ2Y − q1(Y )ξ3) − S(∇ξ2Y − q1(Y )ξ3)

= τ(∇ξ2Y ) − q1(Y )(τ − ρ)ξ3 − S(∇ξ2Y ) (1.9)

where ρ = (4m + 6 + hβ − β2) and τ = (4m + 8).
As mentioned in the Case A-III, we know that ∇ξ2Y belongs to the distribution D = Tλ ⊕ Tµ for Y ∈ D. In addition, since

Y ∈ Tµ, we get φ(∇ξ2Y ) = 2βφ3Y − φ1(∇ξ2Y ) from the property φY = −φ1Y . It means that the vector field ∇ξ2Y does not
belong to the eigenspace Tµ. Thus we have only two subcases given by ∇ξ2Y ∈ Tλ and ∇ξ2Y ∈ Tλ + Tµ. For such subcases
Eq. (1.9) becomes respectively

(Lξ2S)Y = (τ − σ)(∇ξ2Y ) − q1(Y )(τ − ρ)ξ3 for ∇ξ2Y ∈ Tλ (1.10-(i))

and

(Lξ2S)Y = (τ − σ)aλ
s e

λ
s − q1(Y )(τ − ρ)ξ3 for ∇ξ2Y ∈ Tλ + Tµ (1.10-(ii))

where we put ∇ξ2Y = aλ
s e

λ
s + aµ

t e
µ
t ∈ Tλ + Tµ satisfying aλ

s a
µ
t ≠ 0 for some s, t = 1, 2, . . . , 2m − 2.

Summing up these calculations, we have the following equation for X = ξ2.

(Lξ2S)Y =



(ρ − δ)(β + q1(ξ) − α)ξ3 if Y = ξ ∈ Tα

0 if Y = ξ2 ∈ Tβ

2β(ρ − δ)ξ1 if Y = ξ3 ∈ Tβ

(σ − τ)(∇ξ2Y ) − q1(Y )(σ − ρ)ξ3 − λ(σ − τ)φ2Y if Y ∈ Tλ, ∇ξ2Y ∈ Tµ

(σ − τ)aµ
t e

µ
t − q1(Y )(σ − ρ)ξ3 − λ(σ − τ)φ2Y if Y ∈ Tλ, ∇ξ2Y ∈ Tλ + Tµ

−(σ − τ)(∇ξ2Y ) − q1(Y )(τ − ρ)ξ3 if Y ∈ Tµ, ∇ξ2Y ∈ Tλ

(τ − σ)aλ
s e

λ
s − q1(Y )(τ − ρ)ξ3 if ∇ξ2Y ∈ Tλ + Tµ.

(1.11)

Moreover, by the similar consideration for X = ξ3 we obtain also:

(Lξ3S)Y =



−(ρ − δ)(β + q1(ξ) − α)ξ2 if Y = ξ ∈ Tα

−2β(ρ − δ)ξ1 if Y = ξ2 ∈ Tβ

0 if Y = ξ3 ∈ Tβ

(σ − τ)(∇ξ3Y ) + q1(Y )(σ − ρ)ξ2 − λ(σ − τ)φ3Y if Y ∈ Tλ, ∇ξ3Y ∈ Tµ

(σ − τ)aµ
t e

µ
t + q1(Y )(σ − ρ)ξ2 − λ(σ − τ)φ3Y if Y ∈ Tλ, ∇ξ3Y ∈ Tλ + Tµ

−(σ − τ)(∇ξ3Y ) + q1(Y )(τ − ρ)ξ2 if Y ∈ Tµ, ∇ξ3Y ∈ Tλ

−(σ − τ)aλ
s e

λ
s + q1(Y )(τ − ρ)ξ2 if Y ∈ Tµ, ∇ξ3Y ∈ Tλ + Tµ.

(1.12)

For the Ricci tensor S ofMA, the definition of F -invariant Ricci tensor gives that the vector fields (Lξν S)Y (ν = 1, 2, 3) must
vanish for each case mentioned above. So, from (1.6-(ii)), we have

ρ − δ = 0, (1.13)

together with β =
√
2 cot(

√
2r) ≠ 0 for the radius r ∈ (0, π/

√
8). Moreover, it follows

tan2(
√
2r) =

2
m − 1

, (1.14)

because h = TrA = α + 2β + (2m − 2)λ and m ≥ 3. In addition, by using (1.3) it follows that

σ − τ = −2 + hλ − λ2
= −8 + 4(m − 1) tan2(

√
2r) = 0

and

σ − ρ = 2 − hβ + β2
= 4m − 4 cot2(

√
2r) = 2(m + 1) = τ − ρ.

From these and Eqs. (1.11) and (1.12), we obtain
(Lξ2S)Y = −2(m + 1)q1(Y )ξ3,
(Lξ3S)Y = 2(m + 1)q1(Y )ξ2

(1.15)

for any tangent vector field Y ∈ D. Sincem ≥ 3, the one form q1 must vanish for Y ∈ D, that is, q1(Y ) = 0.
It gives us a complete proof of our Corollary 1 in the introduction. �
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2. The proof of Corollary 2

We only have to check if real hypersurfaces appearing in our Corollary 1 do or do not satisfy the condition, (LXS)Y = 0
for any tangent X, Y ∈ TM . In order to do this, putting X ∈ Tµ and Y = ξ3 ∈ Tβ , it implies

(LXS)ξ3 = ρ(∇Xξ3 − ∇ξ3X) − S(∇Xξ3 − ∇ξ3X) = 0

by Eq. (1.3) in Section 1. On the other hand, from (1.1), (1.2-(ii)) and q1(X) = 0 for any X ∈ D it follows that the vector field
∇Xξ3 = φ3AX = 0 for any X ∈ Tµ, µ = 0. Thus we obtain

(LXS)ξ3 = −ρ∇ξ3X + S(∇ξ3X) = 0. (2.1)

On the other hand, since g(∇ξ3X, ξι) = 0 for any X ∈ Tµ and ι = 1, 2, 3, we see that ∇ξ3X ∈ D = Tλ ⊕ Tµ. It is well
known that φX = −φ1X for X ∈ Tµ. Taking the covariant derivative along the direction ξ3, we obtain

φ(∇ξ3X) = −2βφ2X − φ1(∇ξ3X),

together with the basic formulas (see Section 2 in [1]) and (1.1). It follows that for any X ∈ Tµ the vector field ∇ξ3X does not
belong to Tµ, because β is non-vanishing. Therefore for the vector field ∇ξ3X we have the following two subcases:

• Subcase 1. ∇ξ3Y ∈ Tλ, that is, ∇ξ3Y =
2m−2

i=1 aλ
i e

λ
i for an orthonormal basis {eλ

i } of Tλ,
• Subcase 2.∇ξ3Y ∈ Tλ+Tµ, that is, there exist somenon-vanishing components aλ

s and aµ
t for some s, t = 1, 2, . . . , 2m−2,

given as follows:

∇ξ3Y = aλ
s e

λ
s + aµ

t e
µ
t .

From this, we first assume that ∇ξ3Y ∈ Tλ. Then Eq. (2.1) becomes

−ρ

2m−2
i=1

aλ
i e

λ
i + S

2m−2
i=1

aλ
i e

λ
i


= (σ − ρ)

2m−2
i=1

aλ
i e

λ
i = (σ − ρ)∇ξ3X = 0, (2.2)

where Seλ
i = σ eλ

i for i = 1, 2, . . . , 2m − 2. By our assumption thatMA has the invariant Ricci tensor, we already knew that
tan2(

√
2r) = 2/(m − 1). From this andm ≥ 3, (σ − ρ) is non-vanishing. So, Eq. (2.2) implies that

∇ξ3X = 0. (2.3)

Since AX = 0 for any X ∈ Tµ, we get (∇ξ3A)X = 0, together with (2.3). From this, the Codazzi equation given in [1] becomes

−(∇XA)ξ3 = 2φ3X,

where we have used φX = −φ1X for any X ∈ Tµ. On the other hand, for X ∈ Tµ we get (∇XA)ξ3 = 0 by using Aξ3 = βξ3 and
∇Xξ3 = 0. Hencewehaveφ3X = 0 from the previous two equations. It follows thatX = 0 for anyX ∈ Tµ, that is, dim Tµ = 0.
It gives us a contradiction. In fact, the dimension of the eigenspace Tµ is 2m − 2.

Next we consider the Subcase 2 mentioned above. For the sake of convenience we may put ∇ξ3Y = aλ
s e

λ
s + aµ

t e
µ
t such

that aλ
s a

µ
t ≠ 0 for some s, t = 1, 2, . . . , 2m − 2.

Then Eq. (2.1) becomes

aλ
s (σ − ρ)eλ

s + (τ − ρ)aµ
t e

µ
t = 0.

Taking the inner product with eλ
s ∈ Tλ to this equation, we have (σ − ρ) = 0, together with aλ

s ≠ 0 for some
s = 1, 2, . . . , 2m−2. It gives us a contradictionwithm ≥ 3. In fact, by virtue of Proposition B in [7]we get (σ−ρ) = 2(m+1)
where h = TrA = α + 2β + (2m − 2)λ.

Hence this gives the complete proof of Corollary 2 in the introduction. �
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