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a b s t r a c t

In this paper, first we introduce a new notion of pseudo anti-commuting for real hypersur-
faces in complex two-plane Grassmannians G2(Cm+2) and prove a complete classification
theorem, which gives a shrinking Ricci soliton with potential Reeb flow on Hopf real hy-
persurfaces and a tube over a totally real totally geodesic QPn,m = 2n in G2(Cm+2).
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0. Introduction

In the geometry of real hypersurfaces in complex space formsMm(c) or in quaternionic space forms Qm(c) Okumura [1],
Kimura [2], Montiel and Romero [3] (resp. Martinez and Pérez [4]) considered real hypersurfaces in Mn(c) (resp. in Qm(c))
with commuting shape operator, that is, Aφ = φA, or commuting Ricci tensor, Sφ = φS, where S and φ (resp. A and φi)
denote the Ricci tensor and the structure tensor of real hypersurfaces inMm(c) (resp. in Qm(c)).

In a quaternionic projective space QPm Pérez and Suh [5] have classified real hypersurfaces in QPm with commuting Ricci
tensor Sφi = φiS, i = 1, 2, 3, where S (resp. φi) denotes the Ricci tensor (resp. the structure tensor) of M in QPm, is locally
congruent to A1, A2-type, that is, a tube over QPk with radius 0 < r < π

2 , k ∈ {0, . . . ,m − 1}. The almost contact structure
vector fields {ξ1, ξ2, ξ3} are defined by ξi = −JiN, i = 1, 2, 3, where Ji, i = 1, 2, 3, denote a quaternionic Kähler structure of
QPm andN a unit normal field ofM in QPm. Moreover, Pérez and Suh [6] have considered the notion of∇ξiR = 0, i = 1, 2, 3,
where R denotes the curvature tensor of a real hypersurface M in QPm, and proved that M is locally congruent to a tube of
radius π

4 over QPk.
In paper [7] the author considered a real hypersurfaceM in complex two-plane Grassmannians G2(Cm+2) with commut-

ing Ricci tensor, Sφ = φS, where S and φ denote the Ricci tensor and the structure tensor of M in G2(Cm+2), respectively.
The curvature tensor R(X, Y )Z of M in G2(Cm+2) can be derived from the curvature tensor R̄(X, Y )Z of complex two-plane
Grassmannians G2(Cm+2) for any vector fields X, Y and Z on M . Then by contraction and using the geometric structure
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JJi = JiJ, i = 1, 2, 3 between the Kähler structure J and the quaternionic Kähler structure Ji, i = 1, 2, 3, we can derive the
Ricci tensor S given by (see Section 3)

g(SX, Y ) =

4m−1
i=1

g(R(ei, X)Y , ei),

where {e1, . . . , e4m−1} denotes a basis of the tangent space TxM of M, x ∈ M , in G2(Cm+2).
When the Ricci tensor S and the structure tensor φ commutes like Sφ = −φS, the Ricci tensor is said to be anti-

commuting. Motivated by such a notion of anti-commuting, we consider a new notion so called pseudo-anti commuting
Ricci tensor if the Ricci tensor satisfies the formula

Sφ + φS = 2kφ, k = const.

It is known that Einstein, pseudo-Einstein real hypersurfaces in the sense of Kon [8], Cecil and Ryan [9], real hypersurfaces
of type (B), which is a tube over a totally real totally geodesic real projective space RHn,m = 2n, in Mm(c) satisfy the
formula (see Yano and Kon [10]). Moreover, it can be easily checked that Einstein hypersurfaces and some special kind of
pseudo Einstein hypersurfaces in G2(Cm+2), and hypersurfaces of type (B), which is a tube over a totally real totally geodesic
quaternionic projective space QHn,m = 2n in G2(Cm+2) satisfy this formula (see Berndt and Suh [11], Pérez, Suh and
Watanabe [12]).

On the other hand, the ambient space G2(Cm+2) is known to be the unique compact irreducible Riemannian symmetric
space equipped with both a Kähler structure J and a quaternionic Kähler structure J not containing J (see Berndt and
Suh [11], [13]). So, in G2(Cm+2) we have two natural geometrical conditions for real hypersurfaces that [ξ ] = Span {ξ}

or D⊥
= Span {ξ1, ξ2, ξ3} is invariant under the shape operator. By using such kinds of geometric conditions and the result

in Alekseevskii [14], Berndt and Suh [11] have proved the following.

Theorem A. Let M be a connected real hypersurface in G2(Cm+2),m ≥ 3. Then both [ξ ] and D⊥ are invariant under the shape
operator of M if and only if

(A) M is an open part of a tube around a totally geodesic G2(Cm+1) in G2(Cm+2), or
(B) m is even, say m = 2n, and M is an open part of a tube around a totally geodesic QPn in G2(Cm+2).

When the structure vector field ξ ofM inG2(Cm+2) is invariant by the shape operatorA,M is said to be aHopf hypersurface.
In such a case the integral curves of the structure vector field ξ are geodesics (see Berndt and Suh [13]). The flow generated
by the integral curves of the structure vector field ξ for Hopf hypersurfaces in G2(Cm+2) is said to be a geodesic Reeb flow.

On the other hand, we say that the Reeb vector field is Killing, that is, Lξg = 0 for the Lie derivative along the direction
of the structure vector field ξ , which gives a characterization of real hypersurfaces of type (A) in Theorem A.

When the Ricci tensor S of M in G2(Cm+2) satisfies the formula Sφ + φS = 2kφ, k = const, we say that M has a pseudo
anti-commuting Ricci tensor.

In the proof of Theorem Awe have proved that the one-dimensional distribution [ξ ] belongs to either the 3-dimensional
distributionD⊥ or to the orthogonal complementD such that TxM = D⊕D⊥. The case (A) in TheoremA is just the case that
the one dimensional distribution [ξ ] belongs to the distribution D⊥. Of course they satisfy that the Reeb vector ξ is Killing,
that is, the structure tensor φ commutes with the shape operator A.

Recently, we have known that a solution of the Ricci flow equation ∂
∂t g(t) = −2Ric(g(t)), is given by

1
2
(Lξg)(X, Y ) + Ric(X, Y ) = kg(X, Y ),

where k is a constant and Lξ denotes the Lie derivative along the direction of the Reeb vector field ξ . Then the solution is
said to be a Ricci soliton, and surprisingly, it satisfies the pseudo-anti commuting condition Sφ + φS = 2kφ.

In this paper we consider such a converse problem and want to give a complete classification of real hypersurfaces in
G2(Cm+2) satisfying Sφ + φS = 2kφ. In order to do this, first we assert the following theorem.

Theorem 1. Let M be a Hopf hypersurface in G2(Cm+2) with pseudo anti-commuting Ricci tensor, m ≥ 3. Then we have one of
the following

(i) k = 4m + 2 +
α
2 (h − α) for ξ ∈ D⊥, where α = g(Aξ, ξ) and h denotes the mean curvature of M.

(ii) M is locally congruent to a tube of radius r over a totally geodesic and totally real quaternionic projective space QPm in
G2(Cm+2) for ξ ∈ D.

When the constant k is equal to 4m + 2 +
α
2 (h − α), we will show that a nice geometric and cosmological structure

could be given for hypersurfaces in G2(Cm+2) satisfying certain condition. In order to do this, let us recall an n-dimensional
Riemannian manifold (M, g) is said to be a Ricci soliton if there exists a smooth vector field V ∈ TxM, x ∈ M that satisfies
for any X, Y ∈ TM

1
2
(LV g)(X, Y ) + Ric(X, Y ) = kg(X, Y ),
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where LV g denotes the Lie derivative of g with respect to the vector field V and k a constant (see Chow et al. [15]). We will
denote the Ricci soliton by (M, g, V , k) and call the vector field V as the potential vector field of the Ricci soliton. A Ricci
soliton (M, g, V , k) is said to be a stable, expanding or shrinking according to k = 0, k < 0 or k > 0.

When the potential vector field V of the Ricci soliton (M, g, V , k) is a Killing vector field,M becomes an Einsteinmanifold.
It is known that the Ricci tensor S of an Einstein hypersurface M in G2(Cm+2) is given by S = ag for a constant a, that is,
Ric(X, Y ) = ag(X, Y ) for any X and Y onM and a Riemannian metric g defined onM . Naturally the Ricci tensor S commutes
with the structure tensor φ, that is, Sφ = φS. So by virtue of a theorem due to the author [7] it becomes a hypersurfaces
of type (A) in G2(Cm+2). But by Proposition B in Section 5 it can be easily checked that any tubes of radius r over a totally
geodesic G2(Cm+1) in G2(Cm+2) cannot be Einstein (see [12]). This means that among real hypersurfaces of type (A) there
do not exist any Ricci solitons in G2(Cm+2) with the Killing potential vector field.

But, besides of this one, we can also assert that there do not exist any Ricci soliton on real hypersurfaces of type B men-
tioned (ii) in Theorem 1. Then as an application of Theorem 1 in the direction of Math. Physics, we give another theorem as
follows:

Theorem 2. Let M be a Hopf real hypersurface in G2(Cm+2),m ≥ 3with potential Reeb field ξ and Ricci soliton constant k. Then
k = 4(m + 1) > 0 and the Ricci soliton (M, g, ξ , k) becomes a shrinking Ricci soliton.

By Theorem 2 and using the result given in Chow and etc. (see p. 7 in [15]), we know that any shrinking Ricci soliton on
a closed n-manifold has positive curvature. Then as another geometric result from such a topological point of a view, by
Theorem 2 we assert the following.

Corollary. Let M be a closed Hopf real hypersurface in G2(Cm+2), m ≥ 3with potential Reeb field ξ and Ricci soliton constant k.
Then the Ricci soliton (M, g, ξ , k) has a positive scalar curvature.

In Section 2 we recall Riemannian geometry of complex two-plane Grassmannians G2(Cm+2) and in Section 3 we will
show some fundamental properties of real hypersurfaces in G2(Cm+2). The formula for the Ricci tensor S and its covariant
derivative ∇S will be shown explicitly in this section. In Sections 4 and 5 we will give a complete proof of our Theorem 1
according to the geodesic Reeb flow satisfying ξ ∈ D or the geodesic Reeb flow satisfying ξ ∈ D⊥. Finally, in Section 6 we
introduce the notion of Ricci soliton given by Chowet al. [15] andmake its applications to real hypersurfaces inG2(Cm+2) and
prove our Theorem 2. Moreover, related to the pseudo-anti commuting, we will give some remarks about proper pseudo-
Einstein, Lie ξ invariant and harmonic curvature, and finally non existence of Ricci soliton on ruled real hypersurfaces in
G2(Cm+2).

1. Riemannian geometry of G2(Cm+2)

In this section we summarize basic material about G2(Cm+2), for details we refer to [11,13,16,7,17,17]. By G2(Cm+2) we
denote the set of all complex two-dimensional linear subspaces in Cm+2. The special unitary group G = SU(m + 2) acts
transitively on G2(Cm+2) with stabilizer isomorphic to K = S(U(2)×U(m)) ⊂ G. Then G2(Cm+2) can be identified with the
homogeneous space G/K , which we equip with the unique analytic structure for which the natural action of G on G2(Cm+2)
becomes analytic. Denote by g and k the Lie algebra of G and K , respectively, and by m the orthogonal complement of k in g

with respect to the Cartan–Killing form B of g. Then g = k ⊕ m is an Ad(K)-invariant reductive decomposition of g. We put
o = eK and identify ToG2(Cm+2)withm in the usual manner. Since B is negative definite on g, its negative restricted tom×m

yields a positive definite inner product onm. ByAd(K)-invariance ofB this inner product canbe extended to aG-invariant Rie-
mannian metric g on G2(Cm+2). In this way G2(Cm+2) becomes a Riemannian homogeneous space, even a Riemannian sym-
metric space. For computational reasonswe normalize g such that themaximal sectional curvature of (G2(Cm+2), g) is eight.

The Lie algebra k has the direct sum decomposition k = su(m) ⊕ su(2) ⊕ R, where R is the center of k. Viewing k as the
holonomy algebra ofG2(Cm+2), the centerR induces a Kähler structure J and the su(2)-part a quaternionic Kähler structure J

on G2(Cm+2). If J1 is any almost Hermitian structure in J, then JJ1 = J1J , and JJ1 is a symmetric endomorphismwith (JJ1)2 = I
and tr(JJ1) = 0. This fact will be used in next sections.

A canonical local basis J1, J2, J3 of J consists of three local almost Hermitian structures Jν in J such that Jν Jν+1 = Jν+2 =

−Jν+1Jν , where the index is taken module three. Since J is parallel with respect to the Riemannian connection ∇̄ of
(G2(Cm+2), g), there exist for any canonical local basis J1, J2, J3 of J three local one-forms q1, q2, q3 such that

∇̄X Jν = qν+2(X)Jν+1 − qν+1(X)Jν+2 (1.1)

for all vector fields X on G2(Cm+2).
Let p ∈ G2(Cm+2) andW a subspace of TpG2(Cm+2). We say thatW is a quaternionic subspace of TpG2(Cm+2) if JW ⊂ W

for all J ∈ Jp. And we say that W is a totally complex subspace of TpG2(Cm+2) if there exists a one-dimensional subspace
V of Jp such that JW ⊂ W for all J ∈ V and JW ⊥ W for all J ∈ V⊥

⊂ Jp. Here, the orthogonal complement of V in Jp is
taken with respect to the bundle metric and orientation on J for which any local oriented orthonormal frame field of J is
a canonical local basis of J. A quaternionic (resp. totally complex) submanifold of G2(Cm+2) is a submanifold all of whose
tangent spaces are quaternionic (resp. totally complex) subspaces of the corresponding tangent spaces of G2(Cm+2).
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The Riemannian curvature tensor R̄ of G2(Cm+2) is locally given by

R̄(X, Y )Z = g(Y , Z)X − g(X, Z)Y + g(JY , Z)JX − g(JX, Z)JY − 2g(JX, Y )JZ

+

3
ν=1

{g(JνY , Z)JνX − g(JνX, Z)JνY − 2g(JνX, Y )JνZ} +

3
ν=1

{g(Jν JY , Z)Jν JX − g(Jν JX, Z)Jν JY }, (1.2)

where J1, J2, J3 is any canonical local basis of J.

2. Some fundamental formulas

In this sectionwe derive some fundamental formulas whichwill be used in the proof of ourmain theorem. LetM be a real
hypersurface in G2(Cm+2), that is, a submanifold in G2(Cm+2) with real codimension one. The induced Riemannian metric
onM will also be denoted by g , and ∇ denotes the Riemannian connection of (M, g). Let N be a local unit normal field ofM
and A the shape operator ofM with respect to N .

The Kähler structure J of G2(Cm+2) induces onM an almost contactmetric structure (φ, ξ, η, g). Furthermore, let J1, J2, J3
be a canonical local basis of J. Then each Jν induces an almost contact metric structure (φν, ξν, ην, g) onM . Using the above
expression (1.2) for the curvature tensor R̄, the Gauss and the Codazzi equations are respectively given by

R(X, Y )Z = g(Y , Z)X − g(X, Z)Y + g(φY , Z)φX − g(φX, Z)φY − 2g(φX, Y )φZ

+

3
ν=1

{g(φνY , Z)φνX − g(φνX, Z)φνY − 2g(φνX, Y )φνZ}

+

3
ν=1

{g(φνφY , Z)φνφX − g(φνφX, Z)φνφY } −

3
ν=1

{η(Y )ην(Z)φνφX − η(X)ην(Z)φνφY }

−

3
ν=1

{η(X)g(φνφY , Z) − η(Y )g(φνφX, Z)} ξν + g(AY , Z)AX − g(AX, Z)AY

and

(∇XA)Y − (∇YA)X = η(X)φY − η(Y )φX − 2g(φX, Y )ξ +

3
ν=1


ην(X)φνY − ην(Y )φνX − 2g(φνX, Y )ξν


+

3
ν=1


ην(φX)φνφY − ην(φY )φνφX


+

3
ν=1


η(X)ην(φY ) − η(Y )ην(φX)


ξν,

where R denotes the curvature tensor ofM in G2(Cm+2).
The following identities can be proved in a straightforwardmethod andwill be used frequently in subsequent calculations

(see [12,16,7,18]):

φν+1ξν = −ξν+2, φνξν+1 = ξν+2,

φξν = φνξ, ην(φX) = η(φνX),

φνφν+1X = φν+2X + ην+1(X)ξν,

φν+1φνX = −φν+2X + ην(X)ξν+1.

(2.1)

Now let us put

JX = φX + η(X)N, JνX = φνX + ην(X)N

for any tangent vector X of a real hypersurface M in G2(Cm+2), where N denotes a normal vector of M in G2(Cm+2). Then
from this and the formulas (1.1) and (2.1) we have that

(∇Xφ)Y = η(Y )AX − g(AX, Y )ξ , ∇Xξ = φAX, (2.2)
∇Xξν = qν+2(X)ξν+1 − qν+1(X)ξν+2 + φνAX, (2.3)

(∇Xφν)Y = −qν+1(X)φν+2Y + qν+2(X)φν+1Y + ην(Y )AX − g(AX, Y )ξν . (2.4)

Summing up these formulas, we find the following

∇X (φνξ) = ∇X (φξν)

= (∇Xφ)ξν + φ(∇Xξν)

= qν+2(X)φν+1ξ − qν+1(X)φν+2ξ + φνφAX − g(AX, ξ)ξν + η(ξν)AX . (2.5)

Moreover, from JJν = Jν J, ν = 1, 2, 3, it follows that

φφνX = φνφX + ην(X)ξ − η(X)ξν . (2.6)
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3. Proof of main theorem

In this section let us consider a real hypersurfaceM in G2(Cm+2) with commuting Ricci tensor, that is, Sφ = φS.
Now let us contract Y and Z in the equation of Gauss in Section 2. Then the Ricci tensor S of a real hypersurface M in

G2(Cm+2) is given by

SX =

4m−1
i=1

R(X, ei)ei

= (4m + 10)X − 3η(X)ξ − 3
3

ν=1

ην(X)ξν +

3
ν=1

{(Trφνφ)φνφX − (φνφ)2X}

−

3
ν=1

{ην(ξ)φνφX − η(X)φνφξν} −

3
ν=1

{(Tr φνφ)η(X) − η(φνφX)}ξν + hAX − A2X, (3.1)

where h denotes the trace of the shape operator A of M in G2(Cm+2). From the formula JJν = Jν J, Tr JJν = 0, ν = 1, 2, 3 we
calculate the following for any basis {e1, . . . , e4m−1,N} of the tangent space of G2(Cm+2)

0 = Tr JJν

=

4m−1
k=1

g(JJνek, ek) + g(JJνN,N)

= Tr φφν − ην(ξ) − g(JνN, JN)

= Tr φφν − 2ην(ξ) (3.2)
and

(φνφ)2X = φνφ(φφνX − ην(X)ξ + η(X)ξν)

= φν(−φνX + η(φνX)ξ) + η(X)φν
2ξ

= X − ην(X)ξν + η(φνX)φνξ + η(X){−ξ + ην(ξ)ξ}. (3.3)
Substituting (3.2) and (3.3) into (3.1), we have

SX = (4m + 10)X − 3η(X)ξ − 3
3

ν=1

ην(X)ξν +

3
ν=1

{ην(ξ)φνφX − X − η(φνX)φνξ − η(X)ην(ξ)ξν} + hAX − A2X

= (4m + 7)X − 3η(X)ξ − 3
3

ν=1

ην(X)ξν +

3
ν=1

{ην(ξ)φνφX − η(φνX)φνξ − η(X)ην(ξ)ξν} + hAX − A2X . (3.4)

Now let us take a covariant derivative of Sφ + φS = 2kφ, k = const. Then it gives that
(∇Y S)φX + S(∇Yφ)X + (∇Yφ)SX + φ(∇Y S)X = 2k(∇Yφ)X . (3.5)

Then the first term of (3.5) becomes

(∇Y S)φX = −3g(φAY , φX)ξ − 3
3

ν=1

{qν+2(Y )ην+1(φX) − qν+1(Y )ην+2(φX) + g(φνAY , φX)}ξν

− 3
3

ν=1

ην(φX){qν+2(Y )ξν+1 − qν+1(Y )ξν+2 + φνAφX}

+

3
ν=1


Y (ην(ξ))φνφ

2X + ην(ξ){−qν+1(Y )φν+2φ
2X

+ qν+2(Y )φν+1φ
2X + ην(φ

2X)AY − g(AY , φ2X)ξν}

− ην(ξ)g(AY , φX)φνξ − g(φAY , φνφX)φνξ

+ {qν+1(Y )η(φν+2φX) − qν+2(Y )η(φν+1φX) − ην(φX)η(AY ) + η(ξν)g(AY , φX)}φνξ

− η(φνφX){qν+2(Y )φν+1ξ − qν+1(Y )φν+2ξ + φνφAY − η(AY )ξν + η(ξν)AY }

− g(φAY , φX)ην(ξ)ξν


+ (Yh)AφX + h(∇YA)φX − (∇YA2)φX .

The second term of (3.5) becomes

S(∇Yφ)X = η(X)

(4m + 7)AY − 3η(AY )ξ − 3

3
ν=1

ην(AY )ξν +

3
ν=1

{ην(ξ)φνφAY − η(φνAY )φνξ − η(AY )ην(ξ)ξν}

+ hA2Y − A3Y

− g(AY , X)


(4m + 7)ξ − 3ξ − 4

3
ν=1

ην(ξ)ξν + hAξ − A2ξ

.
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The third term of (3.5) gives
(∇Yφ)SX = η(SX)AY − g(AY , SX)ξ ,

and the fourth term of (3.5) is given by

φ(∇Y S)X = −3η(X)φ2AY − 3
3

ν=1


qν+2(Y )ην+1(X) − qν+1(Y )ην+2(X) + g(φνAY , φX)


φξν

− 3
3

ν=1

ην(X)

qν+2(Y )φξν+1 − qν+1(Y )φξν+2 + φφνAY


+

3
ν=1


Y

ην(ξ)


φφνφX + ην(ξ)


−qν+1(Y )φφν+2φX

+ qν+2(Y )φφν+1φX + ην(φX)φAY − g(AY , φX)φξν


+ ην(ξ)


η(X)φφνAY − g(AY , X)φφνξ


− g(φAY , φνX)φφνξ

+

qν+1(Y )η(φν+2X) − qν+2(Y )η(φν+1X) − ην(X)η(AY ) + η(ξν)g(AY , X)


φφνξ

− η(φνX)

qν+2(Y )φφν+1ξ − qν+1(Y )φφν+2ξ + φφνφAY − η(AY )φξν + η(ξν)φAY


− g(φAY , X)ην(ξ)φξν − η(X)Y (ην(ξ))φξν − η(X)ην(ξ)φ∇Y ξν


+ (Yh)φAX + hφ(∇YA)X − φ(∇YA2)X .

Putting X = ξ into (3.5) and using the structure vector ξ is principal, that is, Aξ = αξ , then we have

S(∇Yφ)ξ + (∇Yφ)Sξ + φ(∇Y S)ξ =


(4m + 7)AY − 3η(AY )ξ − 3

3
ν=1

ην(AY )ξν

+

3
ν=1

{ην(ξ)φνφAY − η(φνφAY )φνξ − αη(Y )ην(ξ)ξν}

+ hA2Y − A3Y


− αη(Y )

4(m + 1)ξ − 4

3
ν=1

ην(ξ)ξν + (αh − α2)ξ


+


{4(m + 1) + hα − α2

} − 4
3

ν=1

ην(ξ)2

AY − 3η(X)φ2AY

−


{4(m + 1)α + hα2

− α3
}η(Y ) − 4

3
ν=1

ην(ξ)ην(AY )

ξ

− 3
3

ν=1

{qν+2(Y )ην+1(ξ) − qν+1(Y )ην+2(ξ) + ην(φAY )}φξν

− 3
3

ν=1

ην(ξ){qν+2(Y )φξν+1 − qν+1(Y )φξν+2 + φφνAY }

+

3
ν=1


ην(ξ){φφνAY − αη(Y )φ2ξν} − g(φAY , φξν)φ

2ξν

− Y (ην(ξ))φξν − ην(ξ)φ∇Y ξν


+ hφ(∇YA)ξ − φ(∇YA2)ξ .

From this, putting Y = ξ into the above formula, we have the following

0 =

3
ν=1

{qν+2(ξ)ην+1(ξ) − qν+1(ξ)ην+2(ξ)}φξν +

3
ν=1

ην(ξ){qν+2(ξ)φξν+1 − qν+1(ξ)φξν+2 + αφ2ξν}.

Now in order to show that ξ belongs to either the distribution D or to the distribution D⊥, let us assume that ξ = X1 + X2
for some X1 ∈ D and X2 ∈ D⊥. Then it follows that

0 =

3
ν=1


qν+2(ξ)ην+1(ξ) − qν+1(ξ)ην+2(ξ)


(φνX1 + φνX2)

+

3
ν=1

ην(ξ)

qν+2(ξ)(φν+1X1 + φν+1X2) − qν+1(ξ)(φν+2X1 + φν+2X2) − αξν + αη(ξν)(X1 + X2)


. (3.6)
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Then by comparing D and D⊥ component of (3.6), we have respectively

0 =

3
ν=1

{qν+2(ξ)ην+1(ξ) − qν+1(ξ)ην+2(ξ)}φνX1 + α

3
ν=1

ην(ξ)2X1

+

3
ν=1

ην(ξ){qν+2(ξ)φν+1X1 − qν+1(ξ)φν+2X1}, (3.7)

0 =

3
ν=1

{qν+2(ξ)ην+1(ξ) − qν+1(ξ)ην+2(ξ)}φνX2

+

3
ν=1

ην(ξ){qν+2(ξ)φν+1X2 − qν+1(ξ)φν+2X2 − αξν + αη(ξν)X2}. (3.8)

Taking an inner product (3.7) with X1, we have

α

3
ν=1

ην(ξ)2 = 0. (3.9)

Then α = 0 or ην(ξ) = 0 for ν = 1, 2, 3. So for a non-vanishing geodesic Reeb flow we have ην(ξ) = 0, ν = 1, 2, 3. This
means that ξ ∈ D, which makes a contradiction for our assumption ξ = X1 + X2. Including this one, we are able to assert
the following.

Lemma 3.1. Let M be a Hopf hypersurface in G2(Cm+2)with pseudo anti-commuting Ricci tensor. Then the Reeb vector ξ belongs
to either the distribution D or the distribution D⊥.

Proof. When the geodesic Reeb flow is non-vanishing, that is α ≠ 0, (3.9) gives ξ ∈ D. When the geodesic Reeb flow is
vanishing, we differentiate Aξ = 0. Then by Berndt and Suh [13] we know that

3
ν=1

ην(ξ)ην(φY ) = 0.

From this, by replacing Y by φY , it follows that

3
ν=1

η2
ν(ξ)η(Y ) = 0.

So if there are some Y ∈ D such that η(Y ) ≠ 0, then ην(ξ) = 0 for ν = 1, 2, 3. This means that ξ ∈ D. If η(Y ) = 0 for any
Y ∈ D, then we know ξ ∈ D⊥. �

4. Real hypersurfaces with geodesic Reeb flow satisfying ξ ∈ D

Let us consider a Hopf hypersurface M in G2(Cm+2) with pseudo-commuting Ricci tensor, that is, Sφ + φS = 2kφ, k =

const. Then in this section, by Lemma 3.1, we consider pseudo-commuting hypersurfaces in G2(Cm+2) with ξ ∈ D. Then by
a theorem due to Lee and Suh [19], M is locally congruent to a tube of radius r over a totally real and totally geodesic QPm

in G2(Cm+2).
Concerned with such kind of tube we are able to recall a proposition given by Berndt and Suh [11] as follows:

Proposition A. Let M be a connected real hypersurface of G2(Cm+2). Suppose that AD ⊂ D, Aξ = αξ , and ξ is tangent to D.
Then the quaternionic dimension m of G2(Cm+2) is even, say m = 2n, and M has five distinct constant principal curvatures

α = −2 tan(2r), β = 2 cot(2r), γ = 0, λ = cot(r), µ = − tan(r)

with some r ∈ (0, π/4). The corresponding multiplicities are

m(α) = 1, m(β) = 3 = m(γ ), m(λ) = 4n − 4 = m(µ)

and the corresponding eigenspaces are

Tα = Rξ, Tβ = JJξ, Tγ = Jξ, Tλ, Tµ,

where

Tλ ⊕ Tµ = (HCξ)⊥, JTλ = Tλ, JTµ = Tµ, JTλ = Tµ.
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Now it remains only to check whether the Ricci tensor for real hypersurfaces of type (B) in Theorem A is pseudo anti-
commuting or not. In order to do this, first let us calculate the following

SX = (4m + 7)X − 3η(X)ξ − 3
3

ν=1

ην(X)ξν +

3
ν=1

{ην(ξ)φνφX − η(φνX)φνξ − η(X)ην(ξ)ξν} + hAX − A2X .

From this, by using the formula in Section 2, we have

SφX = (4m + 7)φX − 3
3

ν=1

ην(φX)ξν −

3
ν=1

{ην(ξ)φνX − ην(X)φνξ} + hAX − A2X (4.1)

and

φSX = (4m + 7)φX − 3
3

ν=1

ην(X)φξν −

3
ν=1

{ην(ξ)φνX − η(φνX)ξν} + hφAX − φA2X . (4.2)

Then Sφ + φS = 2kφ becomes

2kφX = 2(4m + 7)φX − 2
3

ν=1

ην(φX)ξν − 2
3

ν=1

ην(X)φξν

− 2
3

ν=1

{ην(ξ)φνX + h(Aφ + φA)X − (A2φ + φA2)X}. (4.3)

Now by proposition A let us check the formula (4.3) as follows:
Case I. X = ξ ∈ D

0 = −2
3

ν=1

ην(ξ)φξν − 2
3

ν=1

ην(ξ)φνξ = −4
3

ν=1

ην(ξ)φξν .

The right side also vanishes. So we have this case.
Case II. X = ξ1 ∈ D⊥

Proposition A gives Aφξ1 = 0. Then it satisfies

2kφξ1 = 2(4m + 7)φξ1 − 2{η2(φξ1)ξ2 + η3(φξ1)ξ3} − 2φξ1 + hφAξ1 − φA2ξ1

=

2(4m + 7) − 2 + βh − β2φξ1

for 2k = 2(4m + 7) − 2 + βh − β2. This also holds for ξ2 and ξ3.
Case III. X = φξ1 ∈ Tγ , γ = 0.

Then Aφξ1 = 0 implies that (4.3) holds

−2kξ1 = 2(4m + 7)(−ξ1 + ξ) + 2ξ1 + hAφ2ξ1 − A2φ2ξ1

= {−2(4m + 7) + 2 − βh + β2
}ξ1

for 2k = 2(4m + 7) − 2 + βh − β2. This also holds for φξ2 and φξ3.
Case IV. X ∈ Tλ, λ = cot r .

Then AX = λX, AφX = µφX , A2φX = µφX and φA2X = λ2φX . Using these formulas, we have

2kφX = 2(4m + 7)φX + h(Aφ + φA)X − (A2φ + φA2)X
= {2(4m + 7) + hβ − (β2

+ 2)}φX .

This case also becomes 2k = 2(4m + 7) − 2 + βh − β2.
Case V. X ∈ Tµ, µ = − tan r .

Then AX = µX, AφX = λφX and A2φX = λ2φX give for (4.3) as follows:

2kφX = 2(4m + 7)φX + h(Aφ + φA)X − (A2φ + φA2)X
=


2(4m + 7) + h(µ + λ) − (µ2

+ λ2)

φX .

This case also becomes 2k = 2(4m + 7) − 2 + βh − β2.
So summing up all cases mentioned above, real hypersurfaces of type (B) satisfy pseudo anti-commuting condition

Sφ + φS = 2kφ for 2k = 2(4m + 7) − 2 + βh − β2, where β = 2 cot 2r and h = TrA denotes the mean curvature of
type (B).
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5. Pseudo anti-commuting real hypersurfaces with ξ ∈ D⊥

Now let us consider a Hopf hypersurface M in G2(Cm+2) with pseudo anti-commuting Ricci tensor and ξ ∈ D⊥. Now
differentiating Sφ + φS = 2kφ gives

(∇Y S)φX + S(∇Yφ)X + (∇Yφ)SX + φ(∇Y S)X = 2k(∇Yφ)X .

In this section by Lemma3.1we only discuss the geodesic Reeb flow ξ belongs to the distributionD⊥. Sincewehave assumed
that ξ ∈ D⊥

= Span{ξ1, ξ2, ξ3}, there exists an Hermitian structure J1 ∈ J such that JN = J1N , that is, ξ = ξ1. Then it follows
that

φξ2 = φ2ξ = φ2ξ1 = −ξ3, φξ3 = φ3ξ1 = −ξ2. (5.1)

From this, together with the expression of (3.4) and ξ ∈ D⊥, we have

(4m + 1)g(AX, Y )ξ − 3

{q3(Y )η3(X) + q2(Y )η2(X)}ξ1 − q1(Y )η2(X)ξ2 − q1(Y )η3(X)ξ3


+ 2η(X)η2(AY )ξ2 + 2η(X)η3(AY )ξ3 +

3
ν=1

ην(X)φνφAY

+ (Yh)AφX + h(∇YA)φX − (∇YA2)φX + η(X){hA2Y − A3Y }

− {g(AY , SX) + η3(X)η3(AY ) + η2(X)η2(AY )}ξ + 4

g(φ2AY , X)ξ3 − g(φ3AY , X)ξ2


− 3

3
ν=1

ην(X)φφνAY + 4
3

ν=1

g(φAY , φνX)ξν + η3(X)φ2AY − η2(X)φ3AY

+ (Yh)φAX + hφ(∇YA)X − φ(∇YA2)X
= 2k{η(Y )AX − g(AY , X)ξ}. (5.2)

Now putting X = ξ in (5.2), we have

(4m + 1)g(Aξ, Y )ξ + 2η2(AY )ξ2 + 2η3(AY )ξ3 + φ1φAY + hA2Y − A3Y

− g(AY , Sξ)ξ + 4

g(φ2AY , ξ)ξ3 − g(φ3AY , ξ)ξ2


− 3φφ1AY + 4g(φAY , φ2ξ)ξ2 + 4g(φAY , φ3ξ)ξ3

+ hφ(∇YA)ξ − φ(∇YA2)ξ = 0.

From this, if we use the following formulas

Sξ = 4(m + 1)ξ − 4
3

ν=1

ην(ξ)ξν + hAξ − A2ξ

= (4m + hα − α2)ξ

and

g(AY , Sξ) = α(4m + hα − α2)η(Y ),

then it follows that

φ1φAY + hA2Y − A3Y = −10η2(AY )ξ2 − 10η3(AY )ξ3 + hαAY − α2AY + hφAφAY − φA2φAY + 3φφ1AY . (5.3)

On the other hand, by the equation of Codazzi in [11] (see p. 6), we have

AφAY = φY +

3
ν=1

{ην(Y )φξν + ην(φY )ξν + ην(ξ)φνY − 2η(Y )ην(ξ)φξν − 2ην(ξ)ην(φY )ξ} + α(Aφ + φA)Y

= φY + φ1Y + η2(Y )φξ2 + η3(Y )φξ3 + η2(φY )ξ2 + η3(φY )ξ3 + α(Aφ + φA)Y . (5.4)

So for any Y ∈ D (5.4) gives that AφAY = φY + φ1Y + α(Aφ + φA)Y . This implies

φA2φAY = φAφY + φAφ1Y + αφA(Aφ + φA)Y .

From this, together with (5.3), it follows that

φ1φAY + hA2Y − A3Y = −10η2(AY )ξ2 − 10η3(AY )ξ3 + αhAY − α2AY + αhφ(Aφ + φA)Y
+ h(−Y + φφ1Y ) − φAφY − φAφ1Y − αφA(Aφ + φA)Y + 3φφ1AY . (5.5)
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On the other hand, we calculate the following

SφY = (4m + 7)φY − 3η2(φY )ξ2 − 3η3(φY )ξ3 + φ1φ
2Y − η(φ2φY )φ2ξ − η(φ3φY )φ3ξ + hAφY − A2φY ,

φSY = (4m + 7)φY − 3
3

ν=1

ην(Y )φξν + φφ1φY − η(φ2Y )φ2ξ − η(φ3Y )φ3ξ + hφAY − φA2Y .

So for any Y ∈ D the condition Sφ + φS = 2kφ implies that

2(4m + 7)φY − φ1Y + hAφY − A2φY + φφ1φY + hφAY − φA2Y = 2kφY .

Then by replacing Y by φY for Y ∈ D we have

A3Y − hA2Y − {2(4m + 7) − 2k}AY = Aφ1φY + Aφφ1Y − hAφAφY + AφA2φY . (5.6)

Now by using (5.4) for Y ∈ D, the terms in the right side becomes respectively

AφAφY = −Y + φ1φY + α(Aφ + φA)φY

and

AφA2φY = φAφY + φ1AφY + η2(AφY )φξ2 + η3(AφY )φξ3 + η2(φAφY )ξ2 + η3(φAφY )ξ3 + α(Aφ + φA)φY .

From these, together with (5.5) and (5.6), we have

φ1φAY − 2{4m + 7 − k}AY − Aφ1φY − Aφφ1Y + hAφAφY − AφA2φY

= −10η2(AY )ξ2 − 10η3(AY )ξ3 + αhAY − α2AY + αhφ(Aφ + φA)Y

+ h(−Y + φφ1Y ) − φAφY − φAφ1Y − αφA(Aφ + φA)Y + 3φφ1AY .

Substituting the above formulas into this, we have

φ1φAY − {2(4m + 7 − k) − α(α − h)}AY − Aφ1φY − Aφφ1Y

+ h{−Y + φ1φY + α(Aφ + φA)φY } − φAφY − φ1AφY − α(Aφ + φA)AφY

− η2(AφY )φξ2 − η3(AφY )φξ3 − η2(φAφY )ξ2 − η3(φAφY )ξ3

= −10η2(AY )ξ2 − 10η3(AY )ξ3 + αhφ(Aφ + φA)Y + h(−Y + φφ1Y )

− φAφY − φAφ1Y − αφA(Aφ + φA)Y + 3φφ1AY .

From this, if we use the following formulas obtained from (5.4)

αAφAφY = −αY + αφ1φY + α2(Aφ + φA)φY

and

αφAφAY = −αY + αφφ1Y + α2φ(Aφ + φA)Y ,

then it follows that

φ1φAY − {2(4m + 7 − k) − α(α − h)}AY − Aφ1φY − Aφφ1Y − φ1AφY + αY − αφ1φY − α2(Aφ + φA)φY

− η2(AφY )φξ2 − η3(AφY )φξ3 − η2(φAφY )ξ2 − η3(φAφY )ξ3

= −10η2(AY )ξ2 − 10η3(AY )ξ3 − φAφ1Y + αY − αφφ1Y − α2φ(Aφ + φA)Y + 3φφ1AY .

From this, let us take an inner product with ξ2, then for any Y ∈ D we have

− 2η2(AY ) − 2g(Aφ1φY , ξ2) + η3(AφY ) + η3(Aφ1Y )

−{2(4m + 7 − k) − α(α − h)}η2(AY ) − η3(AφY ) − η2(φAφY )

= −10η2(AY ). (5.7)

Then in this section we know that the distribution D can be decomposed into two distributions D1 and D2 defined in such
a way that

D1 = {Y ∈ D|φY = φ1Y }

and

D2 = {Y ∈ D|φY = −φ1Y }.

So first let us consider the distribution D1.
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Then by a direct calculation in (5.7) for any Y ∈ D1, we have

{2(4m + 2 − k) − α(α − h)}η2(AφY ) = 0. (5.8)

Now let use the similar method as in taking ξ2 in above formula. So if we take an inner product ξ3 to the above formula, then
it follows that

− 2η3(AY ) − 2g(Aφ1φY , ξ3) − η2(AφY ) − η2(Aφ1Y )

− {2(4m + 7 − k) − α(α − h)}η3(AY ) + η2(AφY ) − η3(φAφY )

= −10η3(AY ). (5.9)

Then by a straightforward calculation in (5.9) for any Y ∈ D1, we have

{2(4m + 2 − k) − α(α − h)}η3(AY ) = 0. (5.10)

From this, we assert the following.

Lemma 5.1. Let M be a Hopf pseudo anti-commuting real hypersurface in G2(Cm+2)with the Reeb vector field ξ belonging to the
distribution D⊥. Then k = 4m + 2 +

α
2 (h − α) or M is locally congruent to a tube of radius r over a totally geodesic G2(Cm+1)

in G2(Cm+2), where h denotes the mean curvature of M and α = g(Aξ, ξ).

Proof. Now we consider for the case k ≠ 4m + 2 +
α
2 (h − α). Then (5.8) and (5.10) give ην(AY ) = 0 for any Y ∈ D1. Then

in order to show that g(AD, D⊥) = 0 it is sufficient to show that ην(AY ) = 0 for any Y ∈ D2.
So for any Y ∈ D2 (5.7) and (5.9) give the following respectively

6 − 2(4m + 7 − k) + α(α − h)

η2(AY ) = 2η3(AφY ) (5.11)

and 
6 − 2(4m + 7 − k) + α(α − h)


η3(AY ) = −2η2(AφY ). (5.12)

Now let us put b = 6 − 2(4m + 7 − k) + α(α − h). Then we consider the following two cases.
Case I. b ≠ 0

Then (5.11) and (5.12) give for any Y ∈ D2

η2(AY ) =
2
b
η3(AφY ), η3(AY ) = −

2
b
η2(AφY ).

Since the distribution D2 is invariant by the structure tensor φ, if we replace the vector Y by φY , it becomes

η2(AφY ) = −
2
b
η3(AY ), η3(AφY ) =

2
b
η2(AY ).

Then it gives η2(AY ) =
4
b2

η2(AY ). This implies η2(AY ) = η3(AY ) = 0 for Y ∈ D2 when b ≠ 2. When b = 2, (5.8) and (5.10)
give naturally η2(AY ) = 0 and η3(AY ) = 0 for any Y ∈ D1 respectively. Moreover, from (5.11) and (5.12) it follows that

η2(AY ) = η3(AφY ), η3(AY ) = −η2(AφY )

for any Y ∈ D2. Then by using the same method given in Suh [7, pp. 1803–1804] we can prove that η2(AY ) = 0 and η3(AY )
= 0 for any Y ∈ D2.
Case II. b = 0.

(5.11) and (5.12) give η2(AφY ) = 0 and η3(AφY ) = 0 for any Y ∈ D2 respectively. The invariance of the distribution D2
under the structure tensor φ gives also η2(AY ) = η3(AY ) = 0 for any Y ∈ D2.

Summing up Cases I and II, we conclude that the distributionD is invariant by the shape operator, that is, g(AD, D⊥) = 0.
Then by TheoremA due to Berndt and Suh [11],M is locally isometric to a tube of radius r over the totally geodesic G2(Cm+1)
in G2(Cm+2). This gives our assertion. �

Now we want to prove that real hypersurfaces of type (A), that is, a tube of radius r over a totally geodesic G2(Cm+1) in
G2(Cm+2), does not admit any pseudo anti-commuting structures.

Related to this kind of hypersurfaces in Theorem A we introduce another proposition due to Berndt and Suh [11] as
follows:

Proposition B. Let M be a connected real hypersurface of G2(Cm+2). Suppose that AD ⊂ D, Aξ = αξ , and ξ is tangent to D⊥.
Let J1 ∈ J be the almost Hermitian structure such that JN = J1N. Then M has three (if r = π/2) or four (otherwise) distinct
constant principal curvatures

α =
√
8 cot(

√
8r), β =

√
2 cot(

√
2r), λ = −

√
2 tan(

√
2r), µ = 0
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with some r ∈ (0, π/
√
8). The corresponding multiplicities are

m(α) = 1, m(β) = 2, m(λ) = 2m − 2 = m(µ),

and the corresponding eigenspaces we have

Tα = Rξ = RJN,

Tβ = C⊥ξ = C⊥N,

Tλ = {X |X⊥Hξ, JX = J1X},

Tµ = {X |X⊥Hξ, JX = −J1X}.

In the paper [13] due to Berndt and Suh we have given a characterization of real hypersurfaces of type A in Theorem A
when the shape operator A ofM inG2(Cm+2) commuteswith the structure tensorφ, which is equivalent to the condition that
the Reeb flow on M is isometric, that is Lξg = 0, where L (resp. g) denotes the Lie derivative (resp. the induced Riemannian
metric) ofM in the direction of the Reeb vector field ξ . Namely, Berndt and Suh [11] proved the following.

Theorem B. Let M be a connected orientable real hypersurface in G2(Cm+2),m ≥ 3. Then the Reeb flow on M is isometric if and
only if M is an open part of a tube around some totally geodesic G2(Cm+1) in G2(Cm+2).

Now let us check that real hypersurfaces of type (A) mentioned in Proposition B and Theorem B whether they satisfy
pseudo anti-commuting, that is, Sφ + φS = 2kφ. Then by Theorem B for the commuting shape operator, that is, Aφ = φA,
the commuting Ricci tensor Sφ = φS implies that Sφ = φS = kφ, which is given by

SφX = (4m + 7)φX − 3
3

ν=1

ην(φX)ξν −

3
ν=1

{ην(ξ)φνX − ην(X)φνξ} + hAφX − A2φX

= kφX . (5.13)
Now by using Proposition B, we check case by case whether two sides in (5.13) are equal to each other as follows:

Case I. X = ξ = ξ1
In this case it can be easily checked that two sides are equal to each other.

Case II. X = ξ2, ξ3
Then by putting X = ξ2 in (5.13) we have

kφξ2 = Sφξ2 = (4m + 7)φξ2 − 3
3

ν=1

ην(φξ2)ξν −

3
ν=1

{ην(ξ)φνξ2 − ην(ξ2)φνξ} + hAφξ2 − A2φξ2

= −(4m + 7)ξ3 + 3ξ3 − 2ξ3 − hβξ3 + β2ξ3

= −{(4m + 6) + hβ − β2
}ξ3

which gives k = 4m + 6 + hβ − β2.
Case III. X ∈ Tλ, λ = −

√
2 tan(

√
2r).

Then AX = λX, AφX = λφX and A2φX = λ2φX gives
kφX = SφX = (4m + 7)φX − φ1X + hλφX − λ2φX

= (4m + 6 + hλ − λ2)φX .

This case becomes k = 4m + 6 + hλ − λ2.
Case IV. X ∈ Tµ, µ = 0.

Then AφX = 0 and A2φX = 0 gives
kφX = SφX = (4m + 7)φX − φ1X = (4m + 8)φX .

This means k = 4m + 8.
By comparing Cases II and III for the constant k we know cot2(

√
2r) = m − 1. On the other hand, from Cases III and IV

we have
4m + 8 = 4m + 6 + h(−

√
2 tan

√
2r) − 2 tan2

√
2r,

which gives

2 = (3
√
2 cot

√
2r −

√
2(2m − 1) tan

√
2r)(−

√
2 tan

√
2r) − 2 tan2

√
2r

= −6 + 2(2m − 1) tan2
√
2r − 2 tan2

√
2r.

Then it follows that tan2
√
2r =

2
m−1 , which gives a contradiction. So real hypersurfaces of type (A) inG2(Cm+2) in Lemma5.1

cannot be appeared. Now we prove the following.

Theorem 5.2. Let M be a Hopf pseudo anti-commuting real hypersurface in G2(Cm+2) with Reeb vector field ξ belonging to the
distribution D⊥. Then k = 4m + 2 +

α
2 (h − α).
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6. Ricci soliton on real hypersurfaces in G2(Cm+2)

Let us recall that an n-dimensional Riemannian manifold (M, g) is said to be Ricci soliton if there exists a smooth vector
field V ∈ TxM, x ∈ M that satisfies

1
2
(LV g)(X, Y ) + Ric(X, Y ) = kg(X, Y ), X, Y ∈ TM

where LV g denotes the Lie derivative of g with respect to the vector field V and k a constant (see Chow et al. [15]). We will
denote the Ricci soliton by (M, g, V , k) and call the vector field V as the potential vector field of the Ricci soliton. A Ricci
soliton (M, g, V , k) is said to be a stable, expanding or shrinking according to k = 0, k < 0 or k > 0. It is known that the
Ricci tensor S of an Einstein hypersurface M in G2(Cm+2) is given by S = ag for a constant a, that is, Ric(X, Y ) = ag(X, Y )
for any X and Y onM and a Riemannian metric g defined onM .

In this section we consider a Ricci soliton on real hypersurfaces in G2(Cm+2) with the potential Reeb vector field ξ . Then
the Ricci soliton formula gives the following for any vector fields onM

Ric(X, Y ) +
1
2
(Lξg)(X, Y ) = kg(X, Y ), (6.1)

where Lξ denotes the Lie derivative along the direction of the Reeb vector field ξ . The formula (6.1) becomes

(4m + 7 − k)X − 3η(X)ξ − 3
3

ν=1

ην(X)ξν +

3
ν=1

{ην(ξ)φνφX − η(φνX)φνξ

− η(X)ην(ξ)ξν} + hAX − A2X +
1
2
(φA − Aφ)X = 0. (6.2)

Moreover, from (6.2) it follows that

SφX = kφX +
1
2
(Aφ − φA)φX

= kφX −
1
2
(φAφX + AX − αη(X)ξ)

and

φSX = kφX +
1
2
(φAφ − φ2A)X

= kφX +
1
2
(φAφX + AX − αη(X)ξ).

Then it follows that the Ricci soliton satisfies (Sφ+φS)X = 2kφX, k = const. By using Lemma 3.1, the Reeb vector ξ belongs
either to the distribution D or the distribution D⊥. Then we assert the following.

Lemma 6.1. Let M be a Hopf Ricci soliton on real hypersurfaces in G2(Cm+2) with the potential Reeb field ξ . Then the soliton
constant k is given by

k = 4m + hα − α2 for ξ ∈ D⊥,

k = 4(m + 1) + hα − α2 for ξ ∈ D

Proof. The Ricci soliton constant k in (6.1) becomes

k = Ric(ξ , ξ) = g(Sξ, ξ) = 4(m + 1) − 4
3

ν=1

ην(ξ)2 + hg(Aξ, ξ) − g(A2ξ, ξ), (6.3)

because (Lξg)(ξ , ξ) = 0.We know that the Hopf Ricci soliton satisfies the pseudo anti-commuting, so Lemma 3.1 gives that
the Reeb vector field ξ belongs to the distribution D or D⊥. Then putting X = ξ in (6.2), we assert the results in our lemma
according to the Reeb vector ξ ∈ D or ξ ∈ D⊥ as follows: For ξ = ξ1 ∈ D⊥ in (6.3) the Ricci curvature Ric(ξ , ξ) = g(Sξ, ξ)
becomes

k = Ric(ξ , ξ) = g(Sξ, ξ) = 4(m + 1) − 4 + hα − α2,

so k = 4m + hα − α2. For ξ ∈ D, (6.3) gives k = 4(m + 1) + hα − α2. This gives our assertion. �
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From (6.2), together with (6.3), we have
4

3
ν=1

ην(ξ)2 − α(h − α) + 3

X − 3η(X)ξ − 3

3
ν=1

ην(X)ξν

+

3
ν=1


ην(ξ)φνφX − η(φνX)φνξ − η(X)ην(ξ)ξν


+ hAX − A2X +

1
2
(φA − Aφ)X = 0. (6.4)

Then for ξ ∈ D, (6.4) gives the following


3 − α(h − α)


X − 3η(X)ξ − 3

3
ν=1

ην(X)ξν −

3
ν=1

η(φνX)φνξ + hAX − A2X +
1
2
(φA − Aφ)X = 0. (6.5)

Since the Hopf Ricci soliton satisfies Sφ + φS = 2kφ, by Theorem 1 we have two cases (i) k = 4m + 2 +
α
2 (h − α) and

(ii) real hypersurfaces of type (B) in Theorem A. Now first we consider the latter case (ii). Then we can use all the properties
given in Proposition A in Section 4. So we can apply Proposition A to (6.5). Now, putting X = ξ2 in (6.5), we have

−α(h − α)ξ2 + (hβ − β2)ξ2 = 0.

From this we know that h = α + β = α + 3β + 4(n − 1)(λ + µ). This implies cot r = tan r , which means r =
π
4 . It gives

us a contradiction. So the Ricci soliton cannot be appeared in real hypersurfaces of type (B) in G2(Cm+2).
Nextwe consider the first case (i) for ξ ∈ D⊥. Since the Ricci soliton satisfies pseudo anti-commuting, we have Sφ+φS =

2kφ, so Theorem 5.2 gives k = 4m+2+
α
2 (h−α). From this, compared with the first result k = 4m+hα−α2 in Lemma 6.1

for the Hopf Ricci soliton, we know that 4 = α(h− α). So the soliton constant k becomes k = 4(m+ 1) > 0. This gives that
(M, ξ , g, 4(m+ 1)) becomes a shrinking Ricci soliton. Then we give a complete proof of Theorem 2 in the introduction. �

Remark 6.2. In the paper due to Pérez, Suh andWatanabe [12] we have given a classification of pseudo-Einstein real hyper-
surfaces in G2(Cm+2). But it is proper pseudo-Einstein with c ≠ 0 so it does not satisfy the pseudo-anti commuting formula,
because the quaternionic Kähler structure is included in G2(Cm+2).

Remark 6.3. Related to the properties of the Ricci tensor in G2(Cm+2) we have proved the non-existence of real hypersur-
faces in G2(Cm+2) with parallel Ricci tensor in [17]. Motivated by such a geometric property we give a characterization of
type (A) in Theorem A by the invariant Ricci tensor, that is, Lξ S = 0 along the flow in the direction of the Reeb vector
field ξ (see [18]). Moreover, in [20] we gave a complete classification of real hypersurfaces M in G2(Cm+2) with harmonic
curvature, that is, δS = 0, where δ denotes the adjoint coderivative defined onM in G2(Cm+2).

Remark 6.4. When we consider a ruled real hypersurface MR = Σ ∗ ×G2(Cm+1) in G2(Cm+2), the expression of the shape
operator Aξ = βξ2, Aξ2 = βξ and AX = 0 for any X orthogonal to ξ = ξ1 and ξ2 (see [21]). So the ruled real hypersurface
MR is not Hopf. Of course, the trace of the shape operator h vanishes and the principal curvature α = g(Aξ, ξ) also vanishes.
From such a view point, by Theorem 2, there do not exist any Ricci soliton on ruled real hypersurfaces in G2(Cm+2).
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