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ABSTRACT

Y. Miyazawa introduced a two-variable polynomial invariant of virtual knots in
2006 [Magnetic graphs and an invariant for virtual links, J. Knot Theory Ramifi-
cations 15 (2006) 1319–1334] and then generalized it to give a multi-variable one
via decorated virtual magnetic graph diagrams in 2008. A. Ishii gave a simple state
model for the two-variable Miyazawa polynomial by using pole diagrams in 2008
[A multi-variable polynomial invariant for virtual knots and links, J. Knot Theory
Ramifications 17 (2008) 1311–1326]. H. A. Dye and L. H. Kauffman constructed an
arrow polynomial of a virtual link in 2009 which is equivalent to the multi-variable
Miyazawa polynomial [Virtual crossing number and the arrow polynomial, preprint
(2008), arXiv:0810.3858v3, http://front.math.ucdavis.edu.]. We give a bracket model for
the multi-variable Miyazawa polynomial via pole diagrams and polar tangles similarly
to the Ishii’s state model for the two-variable polynomial. By normalizing the bracket
polynomial we get the multi-variable Miyazawa polynomial fK ∈ Z[A, A−1, K1, K2, . . .]
of a virtual link K. n-similar knots take the same value for any Vassiliev invariant of
degree < n. We show that fK1 ≡ fK2 mod (A4 −1)n if two virtual links K1 and K2 are
n-similar. Also we give a necessary condition for a virtual link to be periodic by using
n-similarity of virtual tangles and the Miyazawa polynomial.
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1. Introduction

A link is an embedding of circles S1 in the three-dimensional Euclidean space R
3.

A link K1 is said to be isotopic or equivalent to a link K2 if there is an ambient
isotopy of R

3 which transforms K1 to K2. In particular, a link with one component
is called a knot.

A basic problem in knot theory is to distinguish a pair of links, and mathe-
maticians have been trying to find invariants of links. In 1980s, many quantum
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polynomial invariants of knots were introduced [2, 4, 9, 11–13]. In 1990, Vassiliev
introduced finite type invariants of knots, called Vassiliev invariants, by using sin-
gularity theory and algebraic topology [24].

In 1996, Kauffman introduced virtual knot theory which is an extension of knot
theory, and gave several invariants of virtual knots [14]. In particular, he extended
the bracket polynomial of links to virtual links and defined Vassiliev invariants of
virtual knots.

Miyazawa found a two-variable polynomial invariant of virtual links [16] and
independently generalized it by constructing a multi-variable polynomial invariant
of virtual links [17]. He gave a lower bound on the virtual crossing number by using
the multi-variable polynomial.

Dye and Kauffman also defined the arrow polynomial of a virtual link which is
a generalization of the bracket polynomial [3]. The polynomial gives an invariant of
(oriented) virtual knots and links. By changing variables suitably, we may get the
arrow polynomial from the Miyazawa polynomial and vice versa.

A virtual link diagram is closed curves generically immersed in the two-
dimensional Euclidean space. A double point of the curve is either a (classical)
crossing or a virtual crossing. A virtual crossing is denoted by a singular point
surrounded by a small circle. Two virtual link diagrams are said to be equivalent
if there is a finite sequence of Reidemeister moves and virtual moves transforming
one of the two diagrams to the other diagram. See Figs. 1 and 2. Virtual links are
defined as the equivalence classes of virtual link diagrams under the equivalence
relation. A virtual link with one circle component is called a virtual knot. Any two
equivalent classical knots are isotopic [7, 14]. In this paper, all virtual links are
assumed to be oriented.

It is a well-known open problem whether Vassiliev invariants can distinguish all
knots or not. Goussarov [5, 6], Habiro [8] and Stanford [22] independently showed
that two knots have the same value for all Vassiliev invariants of degree < n if and
only if they are n-similar. Thus Vassiliev invariants distinguish all of the knots if
and only if for any two different knots K and K ′ there is a positive integer n such
that K and K ′ are not n-similar. Similarly to the case of classical knots, any pair
of virtual links cannot be distinguished by all Vassiliev invariants of degree < n.

Ishii gave a bracket polynomial for the Miyazawa polynomial by using pole
diagrams and reconstructed the Miyazawa multi-variable polynomial by using pole

Fig. 1. Reidemeister moves.
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Fig. 2. Virtual moves.

diagrams [10]. A closed curve of a virtual link diagram is called a strand. A pole on
a strand of a virtual link diagram is a unit normal vector with the initial point on
the strand. A virtual link diagram allowed to have poles is called a pole diagram or
a polar link diagram. Ishii showed that the virtual crossing number of a virtualized
alternating link is determined by its diagram [10].

We can naturally extend Reidemeister moves and virtual moves of virtual links
to polar link diagrams. A local move on polar link diagrams as shown in Fig. 3 is
called a polar move.

Two polar link diagrams are said to be equivalent if they are related by a finite
sequence of Reidemeister moves, virtual moves and polar moves. A polar link is
defined to be an equivalent class of polar link diagrams under Reidemeister moves,
virtual moves and polar moves.

Miyazawa introduced a decorated virtual magnetic graph (DVMG) diagram and
defined a multi-variable polynomial invariant for virtual links via DVMG diagrams
[16]. An oriented bivalent graph G in R

3 is said to be magnetic if the edges of each
component of G are oriented alternately. A diagram of G is called a magnetic graph
diagram. G is allowed to have components consisting of closed edges with no vertices.
A virtual magnetic graph diagram (VMG) is a magnetic graph diagram allowed to
have virtual crossings. A vertex of a VMG diagram is said to be oriented if one
of the two edges incident to the vertex is chosen for the vertex. A VMG diagram

Fig. 3. Polar moves.
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Fig. 4. An oriented pole diagram.

is said to be DVMG diagram if each vertex of the VMG diagram is oriented. In
particular, a DVMG diagram without vertices is a virtual link diagram, which may
have classical crossings.

Let P be a polar link diagram. Denote by G(P ) the 2-valent graph obtained
by collapsing each pole of P to a vertex. The preimage of an edge of the graph
G(P ) in the correspondence is called an edge of P . A polar link diagram P whose
edges are oriented is said to be oriented if the edges of each component of P are
oriented alternately. See Fig. 4. From now on, any polar link diagram is assumed
to be oriented.

In Sec. 2, we introduce polar tangles and then we define products and closures
of polar tangles. Similarly to the Ishii’s model for the Miyazawa polynomial, we
redefine the multi-variable Miyazawa polynomial for polar links.

In Sec. 3, we introduce a skein module of polar tangles by using the relations of
the multi-variable Miyazawa polynomial and then introduce n-similarity for polar
tangles and polar links. We show that fK ≡ fL mod (A4 − 1)n for any n-similar
virtual links K and L, where fK is the multi-variable Miyazawa polynomial of a
virtual link K. Also we show that if T1 and T2 are n-similar virtual (k, k)-tangle
diagrams such that T 2

1 is well-defined, then f
T pr

1
≡ f

T pr

2
mod (p, (A4 − 1)npr

) for

all primes p and for all positive integers n and r.

2. Polar Tangles and the Multi-variable Miyazawa Polynomial

Let a and b be real numbers with a < b. Let I be the closed interval [a, b] and let
k be a positive integer. Fix k points in the upper plane I2 ×{b} of the cube I3 and
the corresponding k points in the lower plane I2 × {a}. A (k, k)-tangle is obtained
by embedding oriented curves and oriented circles in I3 so that the endpoints of the
curves are the fixed 2k points. A (k, k)-tangle diagram is a projection of a tangle onto
a plane with the information of over-strands and under-strands at double points.

A singular (k, k)-tangle diagram is a (k, k)-tangle diagram which may have some
transverse self-intersections called double points.

Given two singular (k, k)-tangle diagrams S and T , the tangle product ST is
defined to be the tangle obtained by gluing the lower line segment of the rectangle
containing S to the upper line segment of the rectangle containing T . The closure
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T of a tangle diagram T is the knot or link obtained by attaching k parallel strands
connecting the k points on the upper line segment of the rectangle and their corre-
sponding k points on the lower line segment of the rectangle in the exterior of the
rectangle containing T .

A virtual tangle diagram is a tangle diagram allowed to have virtual crossings,
denoted as a 4-valent vertex with small circle around it as previously mentioned.
Two virtual (k, k)-tangle diagrams are said to be equivalent if there is a finite
sequence of Reidemeister moves and virtual moves transforming one to the other
one. Virtual (k, k)-tangles are defined to be the equivalence classes of virtual (k, k)-
tangle diagrams under the equivalence relation. In particular, a virtual link is a
virtual (0, 0)-tangle.

A (k, k)-tangle is said to be oriented if all of the curves and circles are oriented.
We define the product and closure for oriented tangles if the orientations of curves
are matched in the meeting points.

A pole on a strand of a virtual tangle diagram is a unit normal vector with
the initial point on the strand. A virtual tangle diagram allowed to have poles
is called a polar (k, k)-tangle diagram or polar tangle diagram briefly. A singular
polar (k, k)-tangle diagram is a polar (k, k)-tangle diagram which may have some
double points. (Singular) polar tangles are defined to be the equivalence classes
of (singular) polar tangle diagrams under Reidemeister moves, virtual moves and
polar moves. An oriented polar tangle is defined similarly to that of oriented polar
links. See Fig. 5 for oriented polar (3, 3)-tangles. From now on, we assume that any
polar tangles are oriented.

Similarly to the case of tangle diagrams we define the product and closure for
polar tangle diagrams when the orientations are matched at the meeting points.

Two polar (k, k)-tangles S and T are said to have the same boundary orientation
if the local orientation of the curve at each endpoint of S is the same as that of the
curve at the corresponding endpoint of T . See Fig. 6.

For a polar (k, k)-tangle T , assume that T 2 = TT is defined. T n will denote
the n-times self-product of T for each n ∈ N, and T 0 will denote the trivial tangle
having the same boundary orientation with T . Note that, for a polar (k, k)-tangle
T , if the closure T is well-defined then T n and T n are also well-defined.

Fig. 5. Oriented polar (3, 3)-tangles.
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Fig. 6. (3, 3)-Tangles having the same boundary orientation.

A polar (k, k)-tangle T is said to be 1-trivial if there exists a diagram D of T ,
which can be changed to the trivial diagram by changing some crossings of D by
using Reidemeister moves and virtual moves.

Dye and Kauffman defined the arrow polynomial based on an oriented state
expansion of an oriented virtual link diagram. We extend the multi-variable
Miyazawa polynomial for polar link diagrams as follows.

Definition 2.1. We define the bracket polynomial of a polar link diagram by using
the following relations.

(1) 〈L+〉 = A〈L0〉 + A−1〈L∞〉 and 〈L−〉 = A−1〈L0〉 + A〈L∞〉, where L+, L−, L0,
and L∞ are polar link diagrams as shown in Fig. 7 and A is an indeterminate.

(2) 〈C1〉 = 〈C2〉 and 〈C3〉 = 〈C4〉, where C1, C2, C3 and C4 are diagrams as shown
in Fig. 8.

(3) 〈O〉 = 1 and 〈L∪Om〉 = (−A2−A−2)Km〈L〉, where Km’s are indeterminates, O

is the trivial knot diagram without crossings and Om is the polar link diagram
with 2m poles as shown in Fig. 8.

If a function v from the set of all polar link diagrams to a set takes the same
value for any pair of equivalent polar link diagrams, then it is called an invariant
of polar links. We define the sign of a crossing of a polar link diagram as shown in
Fig. 9. The writhe w(K) of a polar link diagram K is defined to be the sum of signs
of all crossings of K.

Miyazawa and Dye and Kauffman showed independently that the polynomial
〈K〉 of a virtual link is invariant under the Reidemeister moves II and III and the

Fig. 7. Splicing a crossing.
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1C 2C 3C 4C mO

Fig. 8. Poles of polar diagrams.

Fig. 9. The sign of a crossing.

virtual moves in different approaches. They obtained an invariant fK by normalizing
〈K〉 by the formula

fK = (−A3)−w(K)〈K〉.

We extend the polynomials 〈K〉 and fK for polar link diagrams and polar
links, respectively. These two polynomials take values in the polynomial ring
Z[A, A−1, K1, K2, . . .].

3. Similarity Indices of Virtual Knots and Tangles

Two virtual link diagrams are homotopic if they are related by a finite sequence of
Reidemeister moves, virtual moves and crossing changes of self-crossings. A crossing
of a virtual link diagram is called a self-crossing if the over-strand and under-strand
involved with the crossing belong to the same component. If two virtual links have
diagrams which are homotopic then they are said to be homotopic. Since crossing
change is an unknotting operation for classical knots, any pair of classical knots is
homotopic. A flat virtual link is the homotopy class of a virtual link. We will see
that similarity of virtual links is a generalization of homotopy of virtual links.

In 1990, Ohyama [18] introduced the n-triviality of a knot for each natural
number n, gave several necessary conditions for a knot K to be n-trivial by using
the coefficients of the Conway polynomial. Ohyama and Ogushi [21] showed that
for each natural number n, there are infinitely many n-trivial knots. Taniyama [23]
extended the notion of n-triviality of a knot to the n-similarity of links naturally.
Ohyama introduced the n-similarity for tangles in [20]. Goussarov [5, 6] introduced
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the n-similarity of knots and showed that it is an equivalence relation on knots and
that the set of knots modulo n-similarity forms a group under the connected sum.

Definition 3.1. A singular virtual link diagram is a virtual link diagram with
finitely many double points and a singular virtual link is the equivalence class of a
virtual link diagram under the relation generated by Reidemeister moves, virtual
moves and moves involved with singular points as illustrated in Fig. 10. Similarly,
we define singular polar (k, k)-tangle diagrams and singular polar (k, k)-tangles.

Given a singular virtual knot, link or polar link diagram D, let A1, . . . , Am

be disjoint nonempty sets of crossings of D. For εi = ± (1 ≤ i ≤ m), let
D(Aε1

1 , . . . , Aεm
m ) denote the singular knot, link or polar link diagram obtained from

D by changing all the crossings in Ai only if εi = −.

Definition 3.2. A singular virtual link K1 is said to be n-similar to a singular
virtual link K2 for a positive integer n, if there exist a singular virtual link dia-
gram D of K1 and disjoint nonempty sets A1, . . . , An of crossings of D such that
D(Aε1

1 , . . . , Aεn
n ) is a diagram of K2 when εi = − for some i ∈ {1, . . . , n}.

The similarity index of virtual links K and L is the largest such n. In particular
if K is the trivial virtual link, then K is said to be n-trivial. The triviality index
O(K) of K is the largest nonnegative integer n such that K is n-trivial.

Ohyama gave knots which are n-trivial as shown in Fig. 11 [18, 21].
Similarly as in the case of singular virtual links, we can define the n-similarity

and the similarity index for singular polar (k, k)-tangle diagrams when we replace
“link” by “polar tangle” in the above definition. See [18–20, 23] for n-similarity

Fig. 10. Moves for singular virtual link diagrams.

1A 2A 3A nA1A 2A 3A nA

Fig. 11. An n-trivial knot.
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of knots, links and tangles. If a polar link or polar (k, k)-tangle is n-similar to
the trivial link or tangle, it is said to be n-trivial. The triviality index O(K) of a
polar link or polar tangle K is also defined to be the similarity index of K and the
trivial one. Now we see that two virtual links are homotopic if and only if they are
1-similar.

Let L+, L−, L0 and L∞ be polar link diagrams as shown in Fig. 7. Since fL =
(−A3)−w(L) for any polar link diagram L,

〈L+〉 = A〈L0〉 + A−1〈L∞〉 and 〈L−〉 = A−1〈L0〉 + A〈L∞〉.

Thus we get the following.

Lemma 3.3. For the quadruple (L+, L−, L0, L∞) of polar link diagrams as in
Fig. 7, we have equalities

fL+ = −A−2fL0 − A−4fL∞ and fL− = −A2fL0 − A4fL∞ .

Dye and Kauffman noted that the arrow polynomial gives a flat virtual link
invariant if we take A = 1 [3]. Let g, h and i be polynomials in the ring
Z[A, A−1, K1, K2, . . .]. Let I be the ideal of Z[A, A−1, K1, K2, . . .] generated by the
element i. If g − h is an element of I, we denote it by g ≡ h mod i. We get a
necessary condition for a given pair of virtual links to be homotopic by using the
multi-variable Miyazawa polynomial as in the following

Lemma 3.4. If L1 and L2 are homotopic polar links then

fL1 ≡ fL2 mod A4 − 1.

Proof. It is enough to show that the f -polynomial is invariant modulo A4 − 1
for a crossing change. Let L+, L−, L0 and L∞ be polar link diagrams as shown in
Fig. 7. We compute the f -polynomial for the two links L+, L− which differ by a
crossing change. Since fL+ = −A−2fL0 −A−4fL∞ and fL− = −A2fL0 −A4fL∞ by
Lemma 3.3, we have

fL+ − fL− = (A2 − A−2)fL0 + (A4 − A−4)fL∞

≡ 0 mod (A4 − 1).

Therefore, we have fL+ ≡ fL− mod A4 − 1.

Since every virtual link is a polar link, we have the following.

Theorem 3.5. If L1 and L2 are homotopic virtual links then

fL1 ≡ fL2 mod A4 − 1.

Example 3.6. Let K1 and K2 be the two virtual links as shown in Fig. 12. Since
fK1 = 1 − A4 + (−A−4 − 1)K2

1 ≡ −2K2
1 mod (A4 − 1) and fK2 = −A2 − A−2 ≡

−2A2 mod (A4 − 1), we see that K1 and K2 are not homotopic.
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1K 2K

Fig. 12. Non-homotopic links.

K× K+ K−

Fig. 13. K(×), K+ and K−.

A polar link invariant v taking values in a module can be extended to a singular
polar link invariant by using the Vassiliev skein relation: v(K×) = v(K+)− v(K−),
where K×, K+ and K− are singular polar link diagrams which are identical except
the indicated local parts in Fig. 13.

Definition 3.7. A polar link invariant v taking values in a module is called a
Vassiliev invariant of degree n if n is the smallest nonnegative integer such that
v vanishes on singular polar links with more than n double points. A polar link
invariant v is called a Vassiliev invariant if v is a Vassiliev invariant of degree n for
some nonnegative integer n.

For each singular polar (k, k)-tangle T , let TT denote the set of all singular polar
(k, k)-tangles which have the same boundary orientation with T . Also ZTT denotes
the free Z-module generated by TT . Let V be the submodule of ZTT generated by
the relation L× = L+ −L−, where L×, L+ and L− are singular polar (k, k)-tangles
as shown in Fig. 14. For a singular polar (k, k)-tangle T ′ ∈ TT , we denote the
equivalence class of T ′ in ZTT /V by [T ′].

Let H be the ring Z[A, A−1, K1, K2, . . .] of polynomials with indeterminates
A, K1, K2, . . . . For a given set S, we denote by HS the free H-module generated by
the set S.

1460003-10

J.
 K

no
t T

he
or

y 
R

am
if

ic
at

io
ns

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 K
Y

U
N

G
PO

O
K

 N
A

T
IO

N
A

L
 U

N
IV

E
R

SI
T

Y
 o

n 
08

/2
0/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.



2nd Reading

July 21, 2014 14:19 WSPC/S0218-2165 134-JKTR 1460003

Similarity indices and the Miyazawa polynomials of virtual links

L+ L− 0L                               L ∞L×

Fig. 14. Crossings and splicings.

For the module HTT , define R to be the submodule of HP generated by the
relations:

L× = L+ − L−, L+ = −A−2L0 − A−4L∞ and L− = −A2L0 − A4L∞,

where L×, L+, L−, L0 and L∞ are the tangles which are identical except the indi-
cated local parts as shown in Fig. 14. Let HTT /R denote the quotient module of
HTT by R. For T ′ ∈ TT , [T ′] denotes the equivalence class in the quotient module
HTT /R. Recall that we have defined [T ′] in the module ZTT /V . It would be clear
from context that whether [T ′] belongs to ZTT /V or HTT /R.

Note that if T 2 is well-defined, the product operation on TT induces the product
operation on ZTT .

Notations. Let T be a polar (k, k)-tangle diagram allowed to have singular cross-
ings.

(1) Let {x1, . . . , xl} be a set of crossings of T . Let T ({x−
1 , . . . , x−

j−1, x
×
j , x+

j+1, . . . ,

x+
l }) be the singular polar (k, k)-tangle diagram obtained from T by changing

the crossings x1, . . . , xj−1 and collapsing the crossing xj to a double point.
(2) Let S =

∑m
i=1 aiTi ∈ ZTT be a Z-linear combination of polar (k, k)-tangle

diagrams T1, . . . , Tm allowed to have singular points. Assume that each Ti has
crossings labeled by x1, . . . , xl. We define S({x−

1 , . . . , x−
j−1, x

×
j , x+

j+1, . . . , x
+
l })

by the equation

S({x−
1 , . . . , x−

j−1, x
×
j , x+

j+1, . . . , x
+
l })

=
m∑

i=1

aiTi({x−
1 , . . . , x−

j−1, x
×
j , x+

j+1, . . . , x
+
l }).

(3) Let {A1, A2, . . . , An} be a collection of disjoint nonempty sets of crossings of T .
Let Aj = {xj1, . . . , xjαj} for j = 1, . . . , n and εjk be the sign of the crossing xjk

for k = 1, . . . , αj . We define T (A×
1 , . . . , A×

n ) ∈ ZTT inductively by the following
rules:

T (A×
1 ) =

α1∑

j=1

ε1jT ({x−
11, . . . , x

−
1j−1, x

×
1j , x

+
1j+1, . . . , x

+
1α1

}) and

for k = 2, . . . , n,
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T (A×
1 , . . . , A×

k ) =
αk∑

j=1

εkjT (A×
1 , . . . , A×

k−1)

× ({x−
k1, . . . , x

−
kj−1, x

×
kj , x

+
kj+1, . . . , x

+
kαk

}).

Lemma 3.8. Let T1 and T2 be two n-similar polar (k, k)-tangle diagrams. Assume
that a collection {A1, A2, . . . , An} of disjoint nonempty sets of crossings of T1 gives
the n-similarity. Then we have the following equality in ZTT /V

[T1] − [T2] = [T1(A×
1 , . . . , A×

n )].

Proof. We use mathematical argument on n. Let T1 and T2 be 1-similar via a set
A1 = {x11, . . . , x1α1} of crossings of T1. For each j = 1, . . . , α1, we have formula in
ZTT /V as following

ε1j [T1({x−
11, . . . , x

−
1j−1, x

×
1j , x

+
1j+1, . . . , x

+
1α1

})]

= [T1({x−
11, . . . , x

−
1j−1, x

+
1j , x

+
1j+1, . . . , x

+
1α1

})]

− [T1({x−
11, . . . , x

−
1j−1, x

−
1j , x

+
1j+1, . . . , x

+
1α1

})].

Now we sum the equalities for j = 1, . . . , α1 and get the equalities

[T1] − [T2] = [T1({x+
11, . . . , x

+
1α1

})] − [T1({x−
11, . . . , x

−
1α1

})]

=
α1∑

j=1

ε1j [T1({x−
11, . . . , x

−
1j−1, x

×
1j , x

+
1j+1, . . . , x

+
1α1

})]

= T1(A×
1 ).

Assume that the statement holds for (n−1)-similar polar (k, k)-tangle diagrams. Let
T1 and T2 be n-similar polar (k, k)-tangle diagrams and the family {A1, A2, . . . , An}
of disjoint nonempty sets of crossings of T1 gives the n-similarity, where Aj =
{xj1, . . . , xjαj} for j = 1, . . . , n. Since for j = 1, . . . , αn,

εnj [T1(A×
1 , . . . , A×

n−1)({x−
n1, . . . , x

−
nj−1, x

×
nj , x

+
nj+1, . . . , x

+
nαn

})]

= [T1(A×
1 , . . . , A×

n−1)({x−
n1, . . . , x

−
nj−1, x

+
nj , x

+
nj+1, . . . , x

+
nαn

})]

− [T1(A×
1 , . . . , A×

n−1)({x−
n1, . . . , x

−
nj−1, x

−
nj , x

+
nj+1, . . . , x

+
nαn

})],

we get the following equalities in ZTT /V

[T1(A×
1 , . . . , A×

n )]

=
αn∑

j=1

εnj [T1(A×
1 , . . . , A×

n−1)

× ({x−
n1, . . . , x

−
nj−1, x

×
nj , x

+
nj+1, . . . , x

+
nαn

})]
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= [T1(A×
1 , . . . , A×

n−1)({x+
n1, . . . , x

+
nαn

})]

− [T1(A×
1 , . . . , A×

n−1)({x−
n1, . . . , x

−
nαn

})]

= ([T1] − [T2]) − ([T2] − [T2])

= [T1] − [T2].

Note that [T1(A×
1 , . . . , A×

n−1)({x+
n1, . . . , x

+
nαn

})] = [T1] − [T2], by inductive hypoth-
esis, because {A1, . . . , An−1} gives an (n − 1)-similarity of T1 and T2 for
T1({x+

n1, . . . , x
+
nαn

}), and that [T1(A×
1 , . . . , A×

n−1)({x−
n1, . . . , x

−
nαn

})] = [T2] − [T2],
by inductive hypothesis, because {A1, . . . , An−1} gives an (n − 1)-similarity of T2

and T2 for T1({x−
n1, . . . , x

−
nαn

}).

Let P be the set of singular polar link diagrams modulo the equivalence relation
of polar link diagrams and let HP be the free H-module generated by P . We extend
the invariant f on HP linearly. Let R be the submodule of HP generated by the
set of relations:

L× = L+ − L−, L+ = −A−2L0 − A−4L∞ and

L− = −A2L0 − A4L∞,

where L×, L+ and L− are singular polar links which are identical except for the
shown local part in Fig. 14. By Lemma 3.3, we can induce a map f from f on the
quotient module HP/R by the assigning rule f [L] = fL for each L ∈ P . For a polar
link diagram P , we denote the equivalence class of P in HP/R by [P ].

A polar (k, k)-tangle diagram L is said to be n-singular if it has n double points.
For two elements a and b in commutative ring R, a is said to be a multiple of b,
denoted by b|a, if there exists an element c ∈ R satisfying a = bc.

Lemma 3.9. If L is an n-singular polar (k, k)-tangle diagram, then there exist
ai ∈ H and (n − 1)-singular polar (k, k)-tangle diagrams Li (i = 1, . . . , l) such that
(A4 − 1) | ai and [L] =

∑1
i=1 ai[Li] in the module HTT /R.

Proof. Let L = (L×), L+, L−, L0 and L∞ be polar (k, k)-tangle diagrams which
differ locally as shown in Fig. 14.

Then in the module HTT /R, by Lemma 3.3 we have

[L×] = [L+] − [L−]

= (−A−2PL0 − A−4PL∞) − (−A2PL0 − A4PL∞)

= (A2 − A−2)[L0] + (A4 − A−4)[L∞]

= (A4 − 1)A−2[L0] + (A4 − 1)(1 + A−4)[L∞].

If L× is an n-singular polar link diagram then we see that L0 and L∞ are (n − 1)-
singular polar link diagrams.
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In particular, an n-singular polar link is an n–singular polar (0, 0)-tangle and
we can apply Lemma 3.9 for singular polar links.

Lemma 3.10. Let K and L be two n-similar polar link diagrams. Then we have
a congruence relation

fK ≡ fL mod (A4 − 1)n.

Proof. If K and L are n-similar polar link diagrams then by Lemma 3.8,
[K] − [L] is given as a linear combination of equivalence classes of n-singular
polar link diagrams. By applying Lemma 3.9 repeatedly we see that there exist
bi ∈ Z[A, A−1, K1, . . .] and polar link diagrams Li (i = 1, . . . , l) such that

(A4 − 1)n | bi and [K] − [L] =
1∑

i=1

bi[Li]

in the module HP/R. By Lemma 3.3, the f -polynomial vanishes for any elements
of R. Therefore, we see that

fK − fL = f [K] − f [L] = f [K]−[L] =
l∑

i=1

bif [Li] =
l∑

i=1

bifLi ≡ 0

mod (A4 − 1)n.

Since every virtual link diagram is a polar link diagram, we have the following.

Theorem 3.11. Let K and L be two n-similar virtual link diagrams. Then we
have a congruence relation

fK ≡ fL mod (A4 − 1)n.

Definition 3.12. A polar link L is said to be n-periodic if there exists a diagram
of the polar link which is unchanged under the rotation of 2π

n .

If L is n-periodic then there exists a polar tangle T such that L = T n.
We give a necessary condition for two polar (k, k)-tangles T1 and T2 to be

n-similar by using periodic polar links. Assume that two polar tangles T1 and
T2 are n-similar then they have the same boundary orientation. Therefore, the
closure of T1 is well-defined if and only if the closure of T2 is well-defined.
Moreover, the closure of T1 is well-defined if and only if T 2

1 is well-defined. We
extend the closing operation for the set of singular polar tangles to the mod-
ule ZTT1 linearly. Let α and β be elements in the ring Z[A, A−1, K1, K2, . . .].
For two polynomials f1, f2 ∈ Z[A, A−1, K1, K2, . . .] denote f1 ≡ f2 mod (α, β)
if f1 − f2 belongs to the ideal of the ring Z[A, A−1, K1, K2, . . .] generated
by α − β.

Lemma 3.13. Let p be a prime and n and r be positive integers. Assume that T1

and T2 are n-similar polar (k, k)-tangle diagrams such that T 2
1 is well-defined. Then
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we get the following relation

f
T pr

1
≡ f

T pr

2
mod (p, (A4 − 1)npr

).

Proof. In the module ZTT /V , by Lemma 3.8 we have

[T1] − [T2] = [T1(A×
1 , . . . , A×

n )].

Then we get a congruence relation in the quotient module ZTT /V :

[T pr

1 ] − [T pr

2 ] ≡ [(T1 − T2)pr

] mod p

= [(T1(A×
1 , . . . , A×

n ))pr

].

Since T pr

1 − T pr

2 ≡ (T1(A×
1 , . . . , A×

n ))pr mod p in HP/R and since the quotient
map f : HP/R → P is induced from the linear map f : HP → P which vanishes on
R, we get a congruence relation

f
T pr

1
− f

T pr

2
= f

[T pr

1 ]
− f

[T pr

2 ]

≡ f
[(T1(A

×
1 ,...,A×

n ))pr ]
mod p

= f
(T1(A

×
1 ,...,A×

n ))pr .

Since (T1(A×
1 , . . . , A×

n ))pr is a linear combination of npr-singular links,

f
(T1(A

×
1 ,...,A×

n ))pr ≡ 0 mod (A4 − 1)npr

by Lemma 3.9.

Hence we get the formula f
T pr

1
≡ f

T pr

2
mod (p, (A4 − 1)npr

).

Since every virtual tangle diagram is a polar tangle diagram, we have the fol-
lowing.

Theorem 3.14. Let p be a prime and n and r be positive integers. Assume that
T1 and T2 are n-similar virtual (k, k)-tangle diagrams such that T 2

1 is well-defined.
Then we get the following relation

f
T pr

1
≡ f

T pr

2
mod (p, (A4 − 1)npr

).

For a polar tangle diagram T , the mirror image of T , denoted by T ∗, is the
tangle diagram obtained by changing all crossings of T . For a polar link L, from
the definition of the f -polynomial, we get

fL∗(A, K1, K2, . . .) = fL(A−1, K1, K2, . . .).

Example 3.15. Let T1 and T2 be the tangle diagrams as shown in Fig. 15. Then
T2 is the mirror image of T1 and T1 and T2 are 1-similar. Let L be the 2-periodic
virtual link T 2. Suppose that T1 and T2 are 2-similar. Then by Theorem 3.13, we
have

fL(A, K1, K2, . . .) ≡ fL(A−1, K1, K2, . . .) mod (2, (A4 − 1)4).

1460003-15

J.
 K

no
t T

he
or

y 
R

am
if

ic
at

io
ns

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 K
Y

U
N

G
PO

O
K

 N
A

T
IO

N
A

L
 U

N
IV

E
R

SI
T

Y
 o

n 
08

/2
0/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.



2nd Reading

July 21, 2014 14:19 WSPC/S0218-2165 134-JKTR 1460003

M.-J. Jeong & C.-Y. Park

1T 2T

Fig. 15. 1-similar tangles.

But fL(A, K1, K2, . . .) and fL∗(A, K1, K2, . . .) are not congruent mod (2, (A4−1)4)
because

fL = (−A10 − A6)K2 − 2(A8 + A4)K1 + A4

≡ (A10 + A6)K2 + A4 mod (2, (A4 − 1)4)

and

fL∗ = (−A−10 − A−6)K2 − 2(A−8 + A−4)K1 + A−4

≡ (A10 + A6)K2 + A12 mod (2, (A4 − 1)4).

Therefore, we see that the similarity index of T1 and T2 is 1.

If T and T ∗ are n-similar and L = T p, then by applying Lemma 3.13, we get
the following.

Corollary 3.16. Let p be a prime and let n and r be positive integers. Assume that
a polar link L = T pr is pr-periodic and T and T ∗ are n-similar polar tangles. Then

fL(A, K1, K2, . . .) ≡ fL(A−1, K1, K2, . . .) mod (p, (A4 − 1)pr

).

For any virtual tangle T, T and T ∗ are 1-similar. Therefore, we get a necessary
condition for a virtual link to be periodic by using the multi-variable Miyazawa
polynomial as in the following.

Corollary 3.17. Let p be a prime and n and r be positive integers. If a virtual
link L is pr-periodic, then

fL(A, K1, K2, . . .) ≡ fL(A−1, K1, K2, . . .) mod (p, (A4 − 1)pr

).

In 2009, Kim, Lee and Seo gave several necessary conditions for a virtual link
to be periodic by using the two-variable Miyazawa polynomial [15]. Corollary 3.17
is a generalization of one of their theorems for periodic virtual links.
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