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ABSTRACT

We introduce the alternating tangle decomposition of a diagram of a link L and
improve the upper bound of arc index α(L) by using information of the alternating
tangle decomposition. Also we get the exact arc index of a class of links by combining
the upper bound with Morton and Beltrami’s lower bound of the arc index.
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1. Introduction

Consider the open-book decomposition of S3 which has open disks as pages and
an unknotted circle as a binding. It can be easily shown that every link L can be
embedded in an open-book with finitely many pages so that it meets each page in
a simple arc. Such an embedding is called an arc-presentation of L, see Fig. 1. The
arc index α(L) of a link L is the minimum number of pages in any arc-presentation
for L.

While a link diagram is a presentation of a link with a finite number of singular
points (crossings) with multiplicity 2, an arc-presentation with n-pages (and hence a
wheel diagram) is a presentation of a link with only one singular point (the binding)
with multiplicity n, in which every edge incident to the binding is assigned with a
real number (the relative height with respect to the binding). Brunn [6] is the first
person who used such a presentation of knots, and Cromwell [7] gave the formal
definition of the arc index of a link.

Recently there are many researchers who are studying the multi-crossing
projections of links, which is a presentation of a link with finite singular points with
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Fig. 1. Various presentations of a link.

multiplicity n [1–3]. Arc index is also closely related with the Thurston–Bennequin
number, knot Floer homology and Khovanov homology [9, 10, 12].

In 1996, Cromwell and Nutt [8] found an upper bound on the arc index in terms
of the minimal crossing number c(L) and, in 2000, the author and Park [4] showed
that for any prime link L, α(L) ≤ c(L) + 2, and this inequality is strict if and only
if L is not alternating. Beltrami [5] improved the upper bound of α(L) for a special
class of links, in which all of them are adequate.

In this paper we will introduce the alternating tangle decomposition of a link
diagram D and improve the upper bound of α(L) by using the alternating tangle
decomposition.

Theorem 1.1. Let D be a connected reduced link diagram with the alternating
tangle decomposition (GD; T1, . . . , Tn). Suppose that Ti is strongly reduced and fat
for each i. Then

α(D) ≤ c(D) + 2n − ν,

where ν denotes the number of non-alternating edges in D.

By combining the above theorem and the lower bound of the arc index of a link
obtained by Morton and Beltrami [11], one can get the exact arc index of a class
of links.

2. Alternating Tangle Decomposition

Let D be a diagram of a link. Then one can see that D consists of finite number
of alternating tangles T1, . . . , Tn which are connected by non-alternating edges.
By contracting each alternating tangle to a vertex, we get a planar graph GD,
called a connecting graph of D. Note that GD is even-valent and bipartite. We will
denote D as (GD; T1, . . . , Tn) and call it the alternating tangle decomposition of
D, see Fig. 2. Notice that every diagram can be decomposed into an alternating
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Fig. 2. Alternating tangle decomposition.

tangle decomposition. Conversely, let Γ be a planar even-valent bipartite graph with
vertices v1, . . . , vn and let T1, . . . , Tn be n alternating tangles. If valency of vi is ki

and if Ti is a ki-tangle, then one can construct a link diagram D whose alternating
tangle decomposition is (GD; T1, . . . , Tn). Notice that a link diagram presented by
an alternating tangle decomposition is not unique.

An alternating tangle T is said to be strongly alternating if both of its natural
closures are reduced and alternating. A tangle T is said to be fat if it does not have
any isthmus (cut edge). See Fig. 3.

One can see that if each Ti is strongly alternating, the diagram (GD; T1, . . . , Tn)
is adequate, and hence it is a minimal diagram. An n-semi-alternating diagram
of a link is the diagram which is decomposed into two strongly alternating
n-tangles.

In 2002, Beltrami [5] calculated the arc index of semi-alternating links, which is
a special case of one of our main results.

11n11

Fat,  
Strongly aletrnating

non-Fat,  strongly aletrnating

Fat,  
not strongly aletrnating

Fig. 3. Fat tangle, strongly alternating tangle.
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Proposition 2.1. (1) If L is a semi-alternating (= 2-semi-alternating) link, then
α(L) = c(L).

(2) If L is an n-semi-alternating link and if the constructing tangles are fat, then
α(L) = c(L) − 2n + 4.

3. Bound for the Arc Index

Note that a diagram is a presentation of a link with a finite number of singular
points (crossings) with multiplicity 2 and an arc-presentation with n-pages (and
hence a wheel diagram) is a presentation of a link with only one singular point
(the binding) with multiplicity n, in which every edge incident to the binding is
assigned with a real number (= the relative height with respect to the binding). It
is clear that an arc-presentation is presented by a wheel diagram precisely and vise
versa.

In [4], an algorithm was presented for constructing an arc-presentation from a
link diagram of a link by fixing a singular point (= a crossing) and assigning relative
heights on the edges incident to the crossing, and after then contracting neighboring
crossings to the fixed crossing with an assignment of relative heights successively.
Note that the contraction of a neighboring crossing to the fixed crossing corresponds
to contractions of edges between the two crossings.

To explain the algorithm efficiently, we introduce two basic contraction moves,
the edge contraction and the triangle contraction.

A knot and spoke diagram [4] is a planar graph G with specific vertex c0, called
the binding vertex, satisfying the following conditions:

(i) all vertices except c0 are either univalent or 4-valent;
(ii) every univalent vertex is adjacent to c0 by an edge, called a spoke, labeled by

two different numbers;
(iii) every 4-valent vertex has under–over information as a link diagram;
(iv) every edge incident to c0 is labeled by a number if it is not a spoke;
(v) every labeled number is used exactly twice.

By considering the labeled numbers as a relative heights, one can easily see that
a knot and spoke diagram can be realized as a link L in R

3. Also if there are only
spokes, it is a wheel diagram, and hence an arc-presentation of L. From now on,
we will introduce two basic contraction deformations of a knot and spoke diagram
to get a wheel diagram.

Definition 3.1 (Edge contraction). Let D be a knot and spoke diagram with
the specific vertex c0. Choose an edge e which is incident to c0. Note that the end
point of e meeting c0 is assigned the relative height, say a, and the other end point
of e meets three other edges, say e1, e2, e3, so that e1e3 and ee2 form parts of the
link. By contracting the edge e to c0, we get a new diagram D/e, in which e1, e2 and
e3 are incident to c0. For being D/e a knot and spoke diagram, we assign relative
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Fig. 4. Edge contraction.

heights at e1, e2 and e3 as follows:

(i) assign the relative height a at e2;
(ii) assign the relative height b at e1 and e3 that is less than (respectively, greater

than) any height already used if e1e3 is undercross (respectively, overcross) ee2.

See Fig. 4 for details.

Definition 3.2 (Triangle contraction). Let D be a knot and spoke diagram
with the specific vertex c0. Suppose that there are two edges e and f which is
incident to c0 and an edge h so that e, f and h forms a triangle. Suppose that both
end points of h are undercross or both overcross. Note that the end points of e

and f meeting c0 are assigned the relative heights, say a and b, respectively. Let
e1, e2, e3 and e4 denote the edges of D that e1he4, ee2 and fe3 form a part of the
link. By contracting the triangle T = efh to c0, we get a new diagram D/T , in
which e1, e2, e3 and e4 are incident to c0. For being D/T a knot and spoke diagram,
we assign relative heights at e1, e2, e3 and e4 as follows:

(i) assign the relative height a at e2;
(ii) assign the relative height b at e3;
(iii) assign the relative height c at e1 and e4 that is less than (respectively, greater

than) any height already used if both end points of h are undercross (respec-
tively, overcross).

See Fig. 5 for details.

In the edge contraction or the triangle contraction, if the other end of the edge
e1 is incident to c0, in other word, if e and e1 form a bigon, then e1 is changed to
a loop in the resulting diagram. We need to change the edge e1 into a spoke to get
the knot and spoke diagram D/e or D/T , as seen in Fig. 6. Notice that R(D/e) =
R(D)−1, S(D/e) = S(D)+1 and R(D/T ) = R(D)−2, S(D/T ) = S(D)+1, where
R(D) and S(D) denote the number of regions in D ⊂ S2 and the number of spokes
in D, respectively.
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Fig. 5. Triangle contraction.

Fig. 6.

Lemma 3.3. Let D be a knot and spoke diagram with R(D) regions in D ⊂ S2

and S(D) spokes. Then we have the following conditions :

(1) R(D/e) + S(D/e) = R(D) + S(D).
(2) R(D/T ) + S(D/T ) = R(D) + S(D) − 1.

Definition 3.4. Let D be a knot and spoke diagram with the binding vertex v.
An edge e ∈ E(D) is said to be contractible if the number of components of D\{v}
equals to the number of components of (D/e)\{v}.

In [4], Park and the author proved the following lemma which does the key role
in the proof of the main theorem.

Lemma 3.5. Let D be a knot and spoke diagram with the binding vertex v. If
v(D) ≥ 2, then there exist at least two contractible edges which are incident to v.
Furthermore, if e is not contractible, then the diagram D can be depicted as Fig. 7
and each of D1 and D2 contains at least one contractible edge.
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Fig. 7.

Lemma 3.6. Let D be a knot and spoke diagram with the binding vertex v. Let E

be a connected subgraph of D as topological graphs. If there is an edge e, incident
to v, whose other end is not in E, then there is a bf contractible edge, incident to
v, whose other end is not in E.

Proof. If e is contractible, we have done. Now suppose that e is not contractible.
Then D is divided into two subdiagrams D1 and D2 as seen in Fig. 7. Since E is
connected and does not contain the other end v′ of e, E is contained in one of D1

and D2, say D1. By Lemma 3.5, there exists a contractible edge e′ = vv′′ such that
v′′ is in D2. Clearly, v′′ is not in D1 and hence not in E.

The following is one of the main results of the paper.

Theorem 3.7. Let D be a connected reduced link diagram with the alternating
tangle decomposition (GD; T1, . . . , Tn). Suppose that Ti is fat for each i. Then

α(D) ≤ c(D) + 2n − ν,

where ν denotes the number of non-alternating edges in D.

Proof. We will construct an arc-presentation of D with c(D)+2n− ν arcs. Recall
that the knot and spoke diagram with spokes only is an arc-presentation, and that
any link L with diagram D admits an arc-presentation with c(D) + 2 arcs. Also
notice that each triangle contraction reduces the number of arcs by 1, by Lemma 3.3.
Hence we need to find possible triangle contractions as much as possible.

Let γi denote the boundary of Ti which is obtained from T by removing the
outside arcs, see Fig. 8. Suppose that Ti is strongly alternating for each i so that D

is an adequate diagram. Since each Ti is strongly alternating and fat, the boundary
γi of Ti is a simple closed curve. Without loss of generality, we may assume that
our binding vertex v is on γ1, and that every edge in T1 which is incident to v meets
γ, by Lemma 3.6 when E is taken γ as a subgraph.

If T1 is incident to another alternating tangle, say T2, by non-alternating edges
f1, f2, . . . , fm, see Fig. 9.
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γ

Fig. 8.

Fig. 9.

If m = 1, then T1 and T2 are connected by some path which is different with f1.
For, if there are no connection between T1 and T2 except f1, then f1 is a cut edge of
the original diagram D, which is impossible because D is a link diagram. Since f1 is
contractible, one can get a new diagram of the shape in Fig. 11 by contracting f1.

If m ≥ 2, then it is clear that f1 is contractible. By contracting f1, we get the
diagram in Fig. 10.

By applying Lemma 3.6 again to the connected subgraph E = γ2, one can
contract each edge of T2 whose one end is v and the other end is not in γ2, so that
all edges in the resulting tangle which are incident to v, meet γ2. Note that the
edge f2 and the vertex v form a triangle T , on which we will apply the triangle
contraction. Since, after the triangle contraction, the resulting diagram is still of
the form in Fig. 10, one can repeat the same process to get the diagram in which
two tangles T1 and T2 are amalgamated into a new tangle T1 ∗ T2 in Fig. 11.

Notice that we applied the triangle contraction m − 1 times and that the last
triangle contraction concerned with fm results in a cut vertex so that it does not
decrease the number of arcs of our arc-presentation. Indeed, there are m− 2 appli-
cable triangle contractions.

Fig. 10.
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Fig. 11.

If there is another tangle, say T3, which is connected to T1∗T2 by non-alternating
edges, one can apply the above process to the non-alternating edges g1, . . . , gl

between T1 ∗ T2 and T3 to get the diagram in which three tangles T1, T2 and T3

are amalgamated into a tangle T1 ∗ T2 ∗ T3 in Fig. 12. Note that the boundary of
T1 ∗ T2 ∗ T3 forms a bouquet of three circles. Notice that there are l − 2 applicable
triangle contractions.

One can apply this process inductively to get T1 ∗ T2 ∗ Tn. Here, consider the
simple graph ΓD obtained from GD by changing multiple edges into a single edge.
If ΓD is a tree, then, the resulting diagram T1 ∗ T2 ∗ Tn is of the form in Fig. 13.

Fig. 12.

Fig. 13.
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If ΓD is not a tree, then there exists a cycle in ΓD. Consider an innermost cycle
with boundary e1e2 · · · ek which is read by cyclical order in any orientation. Without
loss of generality, we may assume that two tangles Ti and Ti+1 are connected
by n(ek) non-alternating edges in D which correspond to ei in ΓD. Note that
T1 ∗ T2 ∗ · · · ∗ Tk is of the shape at the left diagram in Fig. 14, on which we can
apply triangle contractions n(ek) times to get the right diagram in Fig. 14.

Notice that throughout the above process, we found ν − 2(n − 1) applicable
triangle contractions so that we can get an arc-presentation with c(D) + 2 − {ν −
2(n − 1)} = c(D) − ν + 2n arcs.

Finally, suppose that Ti is not strongly alternating for some i. Then the tangle Ti

can be depicted as the left in Fig. 15. By changing all cut crossings of Ti as the right
in Fig. 15 according to the crossing, we can get a new alternating tangle T ′

i , which
is still alternating and fat. Notice that c(T ′

i ) = c(Ti) + k and R(T ′
i ) = R(Ti) + k

where k is the number of cut crossings of Ti. Since T ′
i is strongly alternating and

the new diagram D′ = (GD; T ′
1, . . . , T

′
n) has n tangles and ν non-alternating edges.

Hence by the previous case, it admits an arc-presentation with c(D′)+2n− ν arcs.

Fig. 14.

Fig. 15.
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Fig. 16.

By starting the our process at one of the newborn crossings of D′, without loss
of generality, we may assume that the arc-presentation of T ′

i looks like Fig. 16.
By slightly changing the arc-presentation of T ′

i as in Fig. 16, one can get an arc-
presentation of Ti, whose number of arcs is (−1)+ that of T ′

i . Hence, if k is the
number of cut crossings of all Ti’s, then we have

α(D) ≤ α(D′) − k ≤ c(D′) + 2n − ν − k = c(D) + 2n − ν.

From the proof of the above theorem we can construct an arc-presentation for
(GD; T1, . . . , Tn) even though Ti is not fat for some i.

Corollary 3.8. Let D be a connected reduced link diagram with the alternating
tangle decomposition (GD; T1, . . . , Tn). Suppose that the boundary circle of Ti has
mi double points for each i. Then

α(D) ≤ c(D) + 2n − ν + 2m,

where ν denotes the number of non-alternating edges in D and m = m1 + · · ·+mn.

In 1998, Morton and Beltrami [11] gave the following lower bound for the arc
index.

Proposition 3.9. Let α(L) denote the arc index of L. Then

α(L) ≥ breadtha FL(a, z) + 2,

where FL(a, z) is the Kauffman polynomial of L.

1460014-11
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In 1988, Thistlethwaite [13] gave a lower bound for breadtha FL(a, z)+2. Let G

denote the graph derived from the checkerboard shading of D by placing a vertex
in each shaded region and connecting them through the crossings in the usual way.
The edges of G are labeled + or − according to the sense of the crossings. Let G+

denote the subgraph of G consisting of all vertices of G and the positive edges of G

and let G+ denote the quotient graph obtained from G+ by identifying those pairs
of vertices which are ends of a path consisting of negative edges of G. The graphs
G− and G− are defined likewise.

Proposition 3.10. For a connected adequate link diagram D of L with the asso-
ciated graph G,

breadthaFL(a, z) + 2 ≥ rank(G+) + rank(G−) + V (G+) + V (G−).

Since (GD; T1, . . . , Tn) is adequate when each Ti is strongly reduced, we can
obtain the following lower bound for the arc index.

Theorem 3.11. Let D be a connected reduced link diagram with the alternating
tangle decomposition (GD; T1, . . . , Tn). Suppose that Ti is strongly reduced for each
i, and the incidents between all two vertices of GD are even. Then

α(D) ≥ c(D) + 2n − ν,

where ν denotes the number of non-alternating edges in D.

Proof. Note that D is adequate because Ti is strongly reduced for each i. Let
ΓD denote the graph obtained from GD by identifying two consecutive multiple
edges. Then from the construction of G+ and G−, one can see that rank(G+) +
rank(G−) = rank(GD) − rank(ΓD). Since G+ (respectively, G+) is the quotient
graph obtained from G+ (respectively, G−) by identifying those pairs of vertices
which are ends of a path consisting of negative (respectively, positive) edges of
G, V (G+) + V (G−) = V (GD) − E(ΓD) + V (ΓD). Since GD and ΓD are planar,
rank(GD)+V (GD) = E(GD)+1, rank(ΓD)+V (ΓD) = E(ΓD)+1. Since V (ΓD) =
n, E(ΓD) = ν

2 , we get rank(G+) + rank(G−) + V (G+) + V (G−) = c(D) + 2n − ν.

Corollary 3.12. Let D be a connected reduced link diagram with the alternating
tangle decomposition (GD; T1, . . . , Tn). Suppose that Ti is strongly reduced and fat
for each i, and suppose that the number of edges between all two vertices of GD are
even. Then

α(D) = c(D) + 2n − ν,

where ν denotes the number of non-alternating edges in D.

Example 3.13. For the diagram in Fig. 17, we know that n = 6, c(D) = 6 +
6 + 8 + 8 + 4 + 4 = 36 and ν = E(GD) = 18. Since all alternating tangles are
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Fig. 17. P (−p, q, r).

strongly reduced and fat and since for any two tangles Ti and Tj , the number
of non-alternating edges between them is even, by the above corollary, we have
α(D) = c(D) + 2n − ν = 36 + 2 × 6 − 18 = 30.

Remark 3.14. The condition being strongly alternating and fat is essential. In
2012, Jin gave a talk about the arc index of pretzel links P (−p, q, r), p, q, r ≥ 2.
He showed that if p, r ≥ 3, then α(P (−p, 2, r)) = c(P (−p, 2, r)), and if q ≥ 3, then
α(P (−p, 2, r)) < c(P (−p, 2, r)) in all the cases that he treated. Notice that the
pretzel link P (−p, q, r) consists of two alternating tangles, one of which is neither
strongly alternating nor fat.
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