Arc index via the alternating tangle decomposition

Yongju Bae
Department of Mathematics, College of Natural Sciences, Kyungpook National University, Taegu 702-701, Korea
ybae@knu.ac.kr
Received 27 February 2014
Accepted 30 June 2014
Published 5 August 2014

Abstract

We introduce the alternating tangle decomposition of a diagram of a link L and improve the upper bound of arc index $\alpha(L)$ by using information of the alternating tangle decomposition. Also we get the exact arc index of a class of links by combining the upper bound with Morton and Beltrami's lower bound of the arc index.

Keywords: Arc index; arc-presentation; wheel diagram; alternating tangle decomposition.

Mathematics Subject Classification 2010: 57M25, 57M27

1. Introduction

Consider the open-book decomposition of S^{3} which has open disks as pages and an unknotted circle as a binding. It can be easily shown that every link L can be embedded in an open-book with finitely many pages so that it meets each page in a simple arc. Such an embedding is called an arc-presentation of L, see Fig. 1. The arc index $\alpha(L)$ of a link L is the minimum number of pages in any arc-presentation for L.

While a link diagram is a presentation of a link with a finite number of singular points (crossings) with multiplicity 2, an arc-presentation with n-pages (and hence a wheel diagram) is a presentation of a link with only one singular point (the binding) with multiplicity n, in which every edge incident to the binding is assigned with a real number (the relative height with respect to the binding). Brunn [6] is the first person who used such a presentation of knots, and Cromwell [7] gave the formal definition of the arc index of a link.

Recently there are many researchers who are studying the multi-crossing projections of links, which is a presentation of a link with finite singular points with

```
Y. Bae
```


Fig. 1. Various presentations of a link.
multiplicity $n[1-3]$. Arc index is also closely related with the Thurston-Bennequin number, knot Floer homology and Khovanov homology [9, 10, 12].

In 1996, Cromwell and Nutt [8] found an upper bound on the arc index in terms of the minimal crossing number $c(L)$ and, in 2000, the author and Park [4] showed that for any prime link $L, \alpha(L) \leq c(L)+2$, and this inequality is strict if and only if L is not alternating. Beltrami [5] improved the upper bound of $\alpha(L)$ for a special class of links, in which all of them are adequate.

In this paper we will introduce the alternating tangle decomposition of a link diagram D and improve the upper bound of $\alpha(L)$ by using the alternating tangle decomposition.

Theorem 1.1. Let D be a connected reduced link diagram with the alternating tangle decomposition $\left(G_{D} ; T_{1}, \ldots, T_{n}\right)$. Suppose that T_{i} is strongly reduced and fat for each i. Then

$$
\alpha(D) \leq c(D)+2 n-\nu
$$

where ν denotes the number of non-alternating edges in D.
By combining the above theorem and the lower bound of the arc index of a link obtained by Morton and Beltrami [11], one can get the exact arc index of a class of links.

2. Alternating Tangle Decomposition

Let D be a diagram of a link. Then one can see that D consists of finite number of alternating tangles T_{1}, \ldots, T_{n} which are connected by non-alternating edges. By contracting each alternating tangle to a vertex, we get a planar graph G_{D}, called a connecting graph of D. Note that G_{D} is even-valent and bipartite. We will denote D as $\left(G_{D} ; T_{1}, \ldots, T_{n}\right)$ and call it the alternating tangle decomposition of D, see Fig. 2. Notice that every diagram can be decomposed into an alternating

Fig. 2. Alternating tangle decomposition.
tangle decomposition. Conversely, let Γ be a planar even-valent bipartite graph with vertices v_{1}, \ldots, v_{n} and let T_{1}, \ldots, T_{n} be n alternating tangles. If valency of v_{i} is k_{i} and if T_{i} is a k_{i}-tangle, then one can construct a link diagram D whose alternating tangle decomposition is $\left(G_{D} ; T_{1}, \ldots, T_{n}\right)$. Notice that a link diagram presented by an alternating tangle decomposition is not unique.

An alternating tangle T is said to be strongly alternating if both of its natural closures are reduced and alternating. A tangle T is said to be fat if it does not have any isthmus (cut edge). See Fig. 3.

One can see that if each T_{i} is strongly alternating, the diagram $\left(G_{D} ; T_{1}, \ldots, T_{n}\right)$ is adequate, and hence it is a minimal diagram. An n-semi-alternating diagram of a link is the diagram which is decomposed into two strongly alternating n-tangles.

In 2002, Beltrami [5] calculated the arc index of semi-alternating links, which is a special case of one of our main results.

Fig. 3. Fat tangle, strongly alternating tangle.

Proposition 2.1. (1) If L is a semi-alternating (=2-semi-alternating) link, then $\alpha(L)=c(L)$.
(2) If L is an n-semi-alternating link and if the constructing tangles are fat, then $\alpha(L)=c(L)-2 n+4$.

3. Bound for the Arc Index

Note that a diagram is a presentation of a link with a finite number of singular points (crossings) with multiplicity 2 and an arc-presentation with n-pages (and hence a wheel diagram) is a presentation of a link with only one singular point (the binding) with multiplicity n, in which every edge incident to the binding is assigned with a real number ($=$ the relative height with respect to the binding). It is clear that an arc-presentation is presented by a wheel diagram precisely and vise versa.

In [4], an algorithm was presented for constructing an arc-presentation from a link diagram of a link by fixing a singular point ($=$ a crossing) and assigning relative heights on the edges incident to the crossing, and after then contracting neighboring crossings to the fixed crossing with an assignment of relative heights successively. Note that the contraction of a neighboring crossing to the fixed crossing corresponds to contractions of edges between the two crossings.

To explain the algorithm efficiently, we introduce two basic contraction moves, the edge contraction and the triangle contraction.

A knot and spoke diagram [4] is a planar graph G with specific vertex c_{0}, called the binding vertex, satisfying the following conditions:
(i) all vertices except c_{0} are either univalent or 4 -valent;
(ii) every univalent vertex is adjacent to c_{0} by an edge, called a spoke, labeled by two different numbers;
(iii) every 4 -valent vertex has under-over information as a link diagram;
(iv) every edge incident to c_{0} is labeled by a number if it is not a spoke;
(v) every labeled number is used exactly twice.

By considering the labeled numbers as a relative heights, one can easily see that a knot and spoke diagram can be realized as a link L in \mathbb{R}^{3}. Also if there are only spokes, it is a wheel diagram, and hence an arc-presentation of L. From now on, we will introduce two basic contraction deformations of a knot and spoke diagram to get a wheel diagram.

Definition 3.1 (Edge contraction). Let D be a knot and spoke diagram with the specific vertex c_{0}. Choose an edge e which is incident to c_{0}. Note that the end point of e meeting c_{0} is assigned the relative height, say a, and the other end point of e meets three other edges, say e_{1}, e_{2}, e_{3}, so that $e_{1} e_{3}$ and $e e_{2}$ form parts of the link. By contracting the edge e to c_{0}, we get a new diagram D / e, in which e_{1}, e_{2} and e_{3} are incident to c_{0}. For being D / e a knot and spoke diagram, we assign relative

Fig. 4. Edge contraction.
heights at e_{1}, e_{2} and e_{3} as follows:
(i) assign the relative height a at e_{2};
(ii) assign the relative height b at e_{1} and e_{3} that is less than (respectively, greater than) any height already used if $e_{1} e_{3}$ is undercross (respectively, overcross) $e e_{2}$.

See Fig. 4 for details.
Definition 3.2 (Triangle contraction). Let D be a knot and spoke diagram with the specific vertex c_{0}. Suppose that there are two edges e and f which is incident to c_{0} and an edge h so that e, f and h forms a triangle. Suppose that both end points of h are undercross or both overcross. Note that the end points of e and f meeting c_{0} are assigned the relative heights, say a and b, respectively. Let e_{1}, e_{2}, e_{3} and e_{4} denote the edges of D that $e_{1} h e_{4}, e e_{2}$ and $f e_{3}$ form a part of the link. By contracting the triangle $T=e f h$ to c_{0}, we get a new diagram D / T, in which e_{1}, e_{2}, e_{3} and e_{4} are incident to c_{0}. For being D / T a knot and spoke diagram, we assign relative heights at e_{1}, e_{2}, e_{3} and e_{4} as follows:
(i) assign the relative height a at e_{2};
(ii) assign the relative height b at e_{3};
(iii) assign the relative height c at e_{1} and e_{4} that is less than (respectively, greater than) any height already used if both end points of h are undercross (respectively, overcross).

See Fig. 5 for details.
In the edge contraction or the triangle contraction, if the other end of the edge e_{1} is incident to c_{0}, in other word, if e and e_{1} form a bigon, then e_{1} is changed to a loop in the resulting diagram. We need to change the edge e_{1} into a spoke to get the knot and spoke diagram D / e or D / T, as seen in Fig. 6. Notice that $R(D / e)=$ $R(D)-1, S(D / e)=S(D)+1$ and $R(D / T)=R(D)-2, S(D / T)=S(D)+1$, where $R(D)$ and $S(D)$ denote the number of regions in $D \subset S^{2}$ and the number of spokes in D, respectively.

Y. Bae

Fig. 5. Triangle contraction.
D

D

Fig. 6.

Lemma 3.3. Let D be a knot and spoke diagram with $R(D)$ regions in $D \subset S^{2}$ and $S(D)$ spokes. Then we have the following conditions:
(1) $R(D / e)+S(D / e)=R(D)+S(D)$.
(2) $R(D / T)+S(D / T)=R(D)+S(D)-1$.

Definition 3.4. Let D be a knot and spoke diagram with the binding vertex v. An edge $e \in E(D)$ is said to be contractible if the number of components of $D \backslash\{v\}$ equals to the number of components of $(D / e) \backslash\{v\}$.

In [4], Park and the author proved the following lemma which does the key role in the proof of the main theorem.

Lemma 3.5. Let D be a knot and spoke diagram with the binding vertex v. If $v(D) \geq 2$, then there exist at least two contractible edges which are incident to v. Furthermore, if e is not contractible, then the diagram D can be depicted as Fig. 7 and each of D_{1} and D_{2} contains at least one contractible edge.

Fig. 7.

Lemma 3.6. Let D be a knot and spoke diagram with the binding vertex v. Let E be a connected subgraph of D as topological graphs. If there is an edge e, incident to v, whose other end is not in E, then there is a bf contractible edge, incident to v, whose other end is not in E.

Proof. If e is contractible, we have done. Now suppose that e is not contractible. Then D is divided into two subdiagrams D_{1} and D_{2} as seen in Fig. 7. Since E is connected and does not contain the other end v^{\prime} of e, E is contained in one of D_{1} and D_{2}, say D_{1}. By Lemma 3.5, there exists a contractible edge $e^{\prime}=v v^{\prime \prime}$ such that $v^{\prime \prime}$ is in D_{2}. Clearly, $v^{\prime \prime}$ is not in D_{1} and hence not in E.

The following is one of the main results of the paper.
Theorem 3.7. Let D be a connected reduced link diagram with the alternating tangle decomposition $\left(G_{D} ; T_{1}, \ldots, T_{n}\right)$. Suppose that T_{i} is fat for each i. Then

$$
\alpha(D) \leq c(D)+2 n-\nu
$$

where ν denotes the number of non-alternating edges in D.
Proof. We will construct an arc-presentation of D with $c(D)+2 n-\nu$ arcs. Recall that the knot and spoke diagram with spokes only is an arc-presentation, and that any link L with diagram D admits an arc-presentation with $c(D)+2$ arcs. Also notice that each triangle contraction reduces the number of arcs by 1 , by Lemma 3.3. Hence we need to find possible triangle contractions as much as possible.

Let γ_{i} denote the boundary of T_{i} which is obtained from T by removing the outside arcs, see Fig. 8. Suppose that T_{i} is strongly alternating for each i so that D is an adequate diagram. Since each T_{i} is strongly alternating and fat, the boundary γ_{i} of T_{i} is a simple closed curve. Without loss of generality, we may assume that our binding vertex v is on γ_{1}, and that every edge in T_{1} which is incident to v meets γ, by Lemma 3.6 when E is taken γ as a subgraph.

If T_{1} is incident to another alternating tangle, say T_{2}, by non-alternating edges $f_{1}, f_{2}, \ldots, f_{m}$, see Fig. 9.

Fig. 8.

Fig. 9.

If $m=1$, then T_{1} and T_{2} are connected by some path which is different with f_{1}. For, if there are no connection between T_{1} and T_{2} except f_{1}, then f_{1} is a cut edge of the original diagram D, which is impossible because D is a link diagram. Since f_{1} is contractible, one can get a new diagram of the shape in Fig. 11 by contracting f_{1}.

If $m \geq 2$, then it is clear that f_{1} is contractible. By contracting f_{1}, we get the diagram in Fig. 10.

By applying Lemma 3.6 again to the connected subgraph $E=\gamma_{2}$, one can contract each edge of T_{2} whose one end is v and the other end is not in γ_{2}, so that all edges in the resulting tangle which are incident to v, meet γ_{2}. Note that the edge f_{2} and the vertex v form a triangle T, on which we will apply the triangle contraction. Since, after the triangle contraction, the resulting diagram is still of the form in Fig. 10, one can repeat the same process to get the diagram in which two tangles T_{1} and T_{2} are amalgamated into a new tangle $T_{1} * T_{2}$ in Fig. 11 .

Notice that we applied the triangle contraction $m-1$ times and that the last triangle contraction concerned with f_{m} results in a cut vertex so that it does not decrease the number of arcs of our arc-presentation. Indeed, there are $m-2$ applicable triangle contractions.

Fig. 10.

Fig. 11.

If there is another tangle, say T_{3}, which is connected to $T_{1} * T_{2}$ by non-alternating edges, one can apply the above process to the non-alternating edges g_{1}, \ldots, g_{l} between $T_{1} * T_{2}$ and T_{3} to get the diagram in which three tangles T_{1}, T_{2} and T_{3} are amalgamated into a tangle $T_{1} * T_{2} * T_{3}$ in Fig. 12. Note that the boundary of $T_{1} * T_{2} * T_{3}$ forms a bouquet of three circles. Notice that there are $l-2$ applicable triangle contractions.

One can apply this process inductively to get $T_{1} * T_{2} * T_{n}$. Here, consider the simple graph Γ_{D} obtained from G_{D} by changing multiple edges into a single edge. If Γ_{D} is a tree, then, the resulting diagram $T_{1} * T_{2} * T_{n}$ is of the form in Fig. 13.

Fig. 12.

Fig. 13.

Y. Bae

If Γ_{D} is not a tree, then there exists a cycle in Γ_{D}. Consider an innermost cycle with boundary $e_{1} e_{2} \cdots e_{k}$ which is read by cyclical order in any orientation. Without loss of generality, we may assume that two tangles T_{i} and T_{i+1} are connected by $n\left(e_{k}\right)$ non-alternating edges in D which correspond to e_{i} in Γ_{D}. Note that $T_{1} * T_{2} * \cdots * T_{k}$ is of the shape at the left diagram in Fig. 14, on which we can apply triangle contractions $n\left(e_{k}\right)$ times to get the right diagram in Fig. 14.

Notice that throughout the above process, we found $\nu-2(n-1)$ applicable triangle contractions so that we can get an arc-presentation with $c(D)+2-\{\nu-$ $2(n-1)\}=c(D)-\nu+2 n$ arcs.

Finally, suppose that T_{i} is not strongly alternating for some i. Then the tangle T_{i} can be depicted as the left in Fig. 15. By changing all cut crossings of T_{i} as the right in Fig. 15 according to the crossing, we can get a new alternating tangle T_{i}^{\prime}, which is still alternating and fat. Notice that $c\left(T_{i}^{\prime}\right)=c\left(T_{i}\right)+k$ and $R\left(T_{i}^{\prime}\right)=R\left(T_{i}\right)+k$ where k is the number of cut crossings of T_{i}. Since T_{i}^{\prime} is strongly alternating and the new diagram $D^{\prime}=\left(G_{D} ; T_{1}^{\prime}, \ldots, T_{n}^{\prime}\right)$ has n tangles and ν non-alternating edges. Hence by the previous case, it admits an arc-presentation with $c\left(D^{\prime}\right)+2 n-\nu$ arcs.

Fig. 14.

Fig. 15.

Fig. 16.

By starting the our process at one of the newborn crossings of D^{\prime}, without loss of generality, we may assume that the arc-presentation of T_{i}^{\prime} looks like Fig. 16. By slightly changing the arc-presentation of T_{i}^{\prime} as in Fig. 16, one can get an arcpresentation of T_{i}, whose number of arcs is $(-1)+$ that of T_{i}^{\prime}. Hence, if k is the number of cut crossings of all T_{i} 's, then we have

$$
\alpha(D) \leq \alpha\left(D^{\prime}\right)-k \leq c\left(D^{\prime}\right)+2 n-\nu-k=c(D)+2 n-\nu .
$$

From the proof of the above theorem we can construct an arc-presentation for $\left(G_{D} ; T_{1}, \ldots, T_{n}\right)$ even though T_{i} is not fat for some i.

Corollary 3.8. Let D be a connected reduced link diagram with the alternating tangle decomposition $\left(G_{D} ; T_{1}, \ldots, T_{n}\right)$. Suppose that the boundary circle of T_{i} has m_{i} double points for each i. Then

$$
\alpha(D) \leq c(D)+2 n-\nu+2 m,
$$

where ν denotes the number of non-alternating edges in D and $m=m_{1}+\cdots+m_{n}$.
In 1998, Morton and Beltrami [11] gave the following lower bound for the arc index.

Proposition 3.9. Let $\alpha(L)$ denote the arc index of L. Then

$$
\alpha(L) \geq \operatorname{breadth}_{a} F_{L}(a, z)+2
$$

where $F_{L}(a, z)$ is the Kauffman polynomial of L.

In 1988, Thistlethwaite [13] gave a lower bound for $\operatorname{breadth}_{a} F_{L}(a, z)+2$. Let G denote the graph derived from the checkerboard shading of D by placing a vertex in each shaded region and connecting them through the crossings in the usual way. The edges of G are labeled + or - according to the sense of the crossings. Let G_{+} denote the subgraph of G consisting of all vertices of G and the positive edges of G and let $\overline{G_{+}}$denote the quotient graph obtained from G_{+}by identifying those pairs of vertices which are ends of a path consisting of negative edges of G. The graphs G_{-}and $\overline{G_{-}}$are defined likewise.

Proposition 3.10. For a connected adequate link diagram D of L with the associated graph G,

$$
\operatorname{breadth}_{a} F_{L}(a, z)+2 \geq \operatorname{rank}\left(G_{+}\right)+\operatorname{rank}\left(G_{-}\right)+V\left(\overline{G_{+}}\right)+V\left(\overline{G_{-}}\right) .
$$

Since $\left(G_{D} ; T_{1}, \ldots, T_{n}\right)$ is adequate when each T_{i} is strongly reduced, we can obtain the following lower bound for the arc index.

Theorem 3.11. Let D be a connected reduced link diagram with the alternating tangle decomposition $\left(G_{D} ; T_{1}, \ldots, T_{n}\right)$. Suppose that T_{i} is strongly reduced for each i, and the incidents between all two vertices of G_{D} are even. Then

$$
\alpha(D) \geq c(D)+2 n-\nu
$$

where ν denotes the number of non-alternating edges in D.
Proof. Note that D is adequate because T_{i} is strongly reduced for each i. Let Γ_{D} denote the graph obtained from G_{D} by identifying two consecutive multiple edges. Then from the construction of G_{+}and G_{-}, one can see that $\operatorname{rank}\left(G_{+}\right)+$ $\operatorname{rank}\left(G_{-}\right)=\operatorname{rank}\left(G_{D}\right)-\operatorname{rank}\left(\Gamma_{D}\right)$. Since $\overline{G_{+}}$(respectively, $\left.\overline{G_{+}}\right)$is the quotient graph obtained from G_{+}(respectively, G_{-}) by identifying those pairs of vertices which are ends of a path consisting of negative (respectively, positive) edges of $G, V\left(\overline{G_{+}}\right)+V\left(\overline{G_{-}}\right)=V\left(G_{D}\right)-E\left(\Gamma_{D}\right)+V\left(\Gamma_{D}\right)$. Since G_{D} and Γ_{D} are planar, $\operatorname{rank}\left(G_{D}\right)+V\left(G_{D}\right)=E\left(G_{D}\right)+1, \operatorname{rank}\left(\Gamma_{D}\right)+V\left(\Gamma_{D}\right)=E\left(\Gamma_{D}\right)+1$. Since $V\left(\Gamma_{D}\right)=$ $n, E\left(\Gamma_{D}\right)=\frac{\nu}{2}$, we get $\operatorname{rank}\left(G_{+}\right)+\operatorname{rank}\left(G_{-}\right)+V\left(\overline{G_{+}}\right)+V\left(\overline{G_{-}}\right)=c(D)+2 n-\nu$.

Corollary 3.12. Let D be a connected reduced link diagram with the alternating tangle decomposition $\left(G_{D} ; T_{1}, \ldots, T_{n}\right)$. Suppose that T_{i} is strongly reduced and fat for each i, and suppose that the number of edges between all two vertices of G_{D} are even. Then

$$
\alpha(D)=c(D)+2 n-\nu,
$$

where ν denotes the number of non-alternating edges in D.
Example 3.13. For the diagram in Fig. 17, we know that $n=6, c(D)=6+$ $6+8+8+4+4=36$ and $\nu=E\left(G_{D}\right)=18$. Since all alternating tangles are

Fig. 17. $\quad P(-p, q, r)$.
strongly reduced and fat and since for any two tangles T_{i} and T_{j}, the number of non-alternating edges between them is even, by the above corollary, we have $\alpha(D)=c(D)+2 n-\nu=36+2 \times 6-18=30$.

Remark 3.14. The condition being strongly alternating and fat is essential. In 2012, Jin gave a talk about the arc index of pretzel links $P(-p, q, r), p, q, r \geq 2$. He showed that if $p, r \geq 3$, then $\alpha(P(-p, 2, r))=c(P(-p, 2, r))$, and if $q \geq 3$, then $\alpha(P(-p, 2, r))<c(P(-p, 2, r))$ in all the cases that he treated. Notice that the pretzel link $P(-p, q, r)$ consists of two alternating tangles, one of which is neither strongly alternating nor fat.

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2013R1A1A4A01009028).

References

[1] C. Adams, Triple crossing number of knots and links, J. Knot Theory Ramifications 22(2) (2013), 1350006, 17 pp .
[2] C. Adams, Quadruple crossing number of knots and links, Math. Proc. Cambridge Philos. Soc. 156(2) 241-253.
[3] C. Adams, T. Crawford, B. DeMeo, M. Landry, A. Lin, M. Montee, S. Park, S. Venkatesh and F. Yhee, Knot projections with a single multi-crossing, preprint (2012), arXiv:1208.5742.
[4] Y. Bae and C.-Y. Park, An upper bound of arc index of links, Math. Proc. Cambridge Philos. Soc. 129 (2000) 491-500.
[5] E. Beltrami, Arc index of non-alternating links, J. Knot Theory Ramifications 11(3) (2002) 431-444.
[6] H. Brunn, Uber Kerneigebiete, Math. Ann. 73(3) (1913) 436-440 (in German).
[7] P. R. Cromwell, Embedding knots and links in an open book I: Basic properties, Topology Appl. 64 (1995) 37-58.
[8] P. R. Cromwell and I. J. Nutt, Embedding knots and links in an open book II. Bounds on arc index, Math. Proc. Cambridge Philos. Soc. 119 (1996) 309-319.
[9] C. Manolescu, P. Ozsvath and S. Sarkar, A combinatorial description of knot Floer homology, Ann. Math. 169(2) (2009) 633-660.
[10] H. Matsuda, Links in an open book decomposition and in the standard contact structure, Proc. Amer. Math. Soc. 134 (2006) 3697-3702.
[11] H. R. Morton and E. Beltrami, Arc index and the Kauffman polynomial, Math. Proc. Cambridge Philos. Soc. 123 (1998) 41-48.
[12] L. Ng, On arc index and maximal Thurston-Bennequin number, J. Knot Theory Ramifications 21(2) (2012), 125003, 11 pp.
[13] M. Thistlethwaite, On the Kauffman polynomial of an adequate link, Invent. Math. 93(2) (1988) 285-296.

