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Abstract. We study the classifying problem of immersed submanifolds in Hermitian
symmetric spaces. Typically in this paper, we deal with real hypersurfaces in a complex two-
plane Grassmannian G2(Cm+2 ) which has a remarkable geometric structure as a Hermitian
symmetric space of rank 2. In relation to the generalized Tanaka-Webster connection, we
consider a new concept of the parallel normal Jacobi operator for real hypersurfaces in
G2(Cm+2 ) and prove non-existence of real hypersurfaces in G2(Cm+2 ) with generalized
Tanaka-Webster parallel normal Jacobi operator.
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Introduction

In complex projective spaces or in quaternionic projective spaces, many differential

geometers studied real hypersurfaces with parallel curvature tensor ([7]). From a new

perspective, it is investigated to classify real hypersurfaces in complex two-plane

Grassmannians with parallel normal Jacobi operator, that is, ∇RN = 0 ([8], [10]

and [6]).
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As a prevailing notion, in a Riemannian manifold (M, g), a vector field X along

a geodesic γ ofM is called a Jacobi field if it satisfies the second order Jacobi equation

∇2

γ̇X + R(X, γ̇)γ̇ = 0,

where γ̇ is the vector tangent to γ. For any tangent vector field X at x ∈ M , the

Jacobi operator RX is defined by

(RXY )(x) = (R(Y, X)X)(x),

for any vector field Y ∈ TxM .

On the other hand, let us put a unit normal vector field N to a hypersurface M

into the curvature tensor R of the ambient space M . In [8], for any tangent vector

field X on M , the normal Jacobi operator RN is defined by

RN (X) = R(X, N)N.

The ambient space, a complex two-plane Grassmannian G2(Cm+2 ) consists of

all complex two-dimensional linear subspaces in Cm+2 . This Riemannian symmet-

ric space is the unique compact irreducible Riemannian manifold equipped with

both a Kähler structure J and a quaternionic Kähler structure J not containing J .

Then, naturally, we could consider two geometric conditions for hypersurfaces M

in G2(Cm+2 ): that both the one-dimensional distribution [ξ] = Span{ξ} and the
three-dimensional distribution D⊥ = Span{ξ1, ξ2, ξ3} are invariant under the shape
operator A of M ([3]), where the Reeb vector field ξ is defined by ξ = −JN , N

denotes a local unit normal vector field of M in G2(Cm+2 ) and the almost contact

3-structure vector fields ξν are defined by ξν = −JνN , ν = 1, 2, 3, where {J1, J2, J3}
denotes a local basis of J. The distribution D denotes the orthogonal complement

of D⊥ in TxM , x ∈ M which becomes the maximal quaternionic subbundle of TxM ,

x ∈ M . If X is a tangent vector on M , we may put

JX = ϕX + η(X)N, JνX = ϕνX + ην(X)N

where ϕX (resp. ϕνX) is the tangential part of JX (resp. JνX) and η(X) = g(X, ξ)

(resp. ην(X) = g(X, ξν)) is the coefficient of normal part of JX (resp. JνX). In this

case, we call ϕ the structure tensor field of M .

By using the result in Alekseevskij [1], Berndt and Suh [3] proved the following:
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Theorem A. Let M be a connected orientable real hypersurface in G2(Cm+2 ),

m > 3. Then both [ξ] and D⊥ are invariant under the shape operator of M if and

only if

(A) M is an open part of a tube around a totally geodesic G2(Cm+1 ) in G2(Cm+2 ),

or

(B) m is even, say m = 2n, and M is an open part of a tube around a totally

geodesic HPn in G2(Cm+2 ).

By using the normal Jacobi operator, Jeong, Kim and Suh considered the notion

of parallel normal Jacobi operator, that is, ∇XRN = 0 along any vector field X on

M in G2(Cm+2 ). Then they gave a non-existence theorem as follows [8]:

Theorem B. There exist no Hopf hypersurfaces in G2(Cm+2 ), m> 3, with par-

allel normal Jacobi operator.

Recall that the Reeb vector field ξ is said to be Hopf if it is invariant under the

shape operator A. The one dimensional foliation of M by the integral manifolds of

the Reeb vector field ξ is said to be a Hopf foliation of M . We say that M is a Hopf

hypersurface in G2(Cm+2 ) if and only if the Hopf foliation of M is totally geodesic.

By the formulas in [8], Section 3, it can be easily checked that M is Hopf if and only

if the Reeb vector field ξ is Hopf.

Moreover, Jeong and Suh considered the general notion of the F-parallel normal

Jacobi operator defined in such a way that ∇FRN = 0, F = [ξ]∪D⊥, which is weaker

than the notion of the parallel normal Jacobi operator mentioned above. They gave

a non-existence theorem as follows [10]:

Theorem C. There exist no connected Hopf real hypersurfaces in G2(Cm+2 ),

m> 3, with F-parallel normal Jacobi operator, F = [ξ] ∪ D⊥.

Related to the Levi-Civita connection ∇, the generalized Tanaka-Webster connec-
tion (from now on, GTW connection) for contact metric manifolds was introduced by

Tanno ([13]) as a generalization of the connection defined by Tanaka in [12] and, inde-

pendently, by Webster in [14]. The Tanaka-Webster connection is defined as a canon-

ical affine connection on a non-degenerate, pseudo-Hermitian CR-manifold. A real

hypersurface M in a Kähler manifold has an (integrable) CR-structure associated

with the almost contact structure (ϕ, ξ, η, g) induced on M by the Kähler structure,

but, in general, this CR-structure is not guaranteed to be pseudo-Hermitian. Cho

defined GTW connection for a real hypersurface of a Kähler manifold (see [4], [5])

by

∇̂(k)
X Y = ∇XY + g(ϕAX, Y )ξ − η(Y )ϕAX − kη(X)ϕY,

with a constant k ∈ R \ {0} (see [5], [9]).
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Using this GTW connection ∇̂(k), we consider the new notion of generalized

Tanaka-Webster parallel normal Jacobi operator (in short, GTW parallel normal

Jacobi operator), that is, ∇̂(k)
X RN = 0 for any vector field X ∈ TxM . In Section 1

we will prove the following Main Theorem.

Main Theorem. There exist no Hopf hypersurface in a complex two-plane Grass-

mannian G2(Cm+2 ), m > 3, with GTW parallel normal Jacobi operator.

In Section 2 we define a new notion called the GTW Reeb-parallel defined by

(∇̂(k)
ξ RN )Y = 0 for any tangent vector field Y on M . It is weaker than the GTW

parallel normal Jacobi operator. As an interesting result, for ξ∈D⊥, any Hopf hy-

persurface M in G2(Cm+2 ) admits a natural GTW Reeb-parallel normal Jacobi

operator.

In this paper, we refer to [1], [2], [3], [8], and [11] for Riemannian geometric

structures of G2(Cm+2 ) and its geometric quantities.

1. Proof of Main Theorem

Let us denote by R(X, Y )Z the curvature tensor in G2(Cm+2 ). Then the normal

Jacobi operator RN ofM in G2(Cm+2 ) can be defined by RNX = R(X, N)N for any

vector field X ∈ TxM = D ⊕ D⊥, where the distribution D denotes the orthogonal

complement of D⊥ in TxM , x ∈ M (see [8]).

In [8] and [10], the derivative of the normal Jacobi operator is written as

(1.1) (∇XRN )Y = 3g(ϕAX, Y )ξ + 3η(Y )ϕAX

+ 3

3∑

ν=1

{g(ϕνAX, Y )ξν + ην(Y )ϕνAX}

−
3∑

ν=1

[2ην(ϕAX)(ϕνϕY − η(Y )ξν) − g(ϕνAX, ϕY )ϕνξ

− η(Y )ην(AX)ϕνξ − ην(ϕY )(ϕνϕAX − g(AX, ξ)ξν)]

for any tangent vector fields X and Y on M .

In [5], the author defined the GTW connection ∇̂(k) for M as follows:

(1.2) ∇̂(k)
X Y = ∇XY + g(ϕAX, Y )ξ − η(Y )ϕAX − kη(X)ϕY

for a non-zero real number k. By using (1.2), we have

(∇̂(k)
X RN )Y = ∇̂(k)

X (RNY ) − RN (∇̂(k)
X Y )

= ∇X(RNY ) + g(ϕAX, RNY )ξ − η(RNY )ϕAX − kη(X)ϕRNY

− RN (∇XY + g(ϕAX, Y )ξ − η(Y )ϕAX − kη(X)ϕY ).
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From this, together with the fact that M is Hopf, we obtain

(1.3) (∇̂(k)
X RN )Y =

3∑

ν=1

{3g(ϕνAX, Y )ξν + 3ην(Y )ϕνAX

− 2ην(ϕAX)ϕνϕY + 5ην(ϕAX)η(Y )ξν

+ g(ϕνAX, ϕY )ϕνξ + ην(ϕY )ϕνϕAX

− αη(X)ην(ϕY )ξν + 3ην(ϕAX)ην(Y )ξ

− ην(ξ)g(ϕAX, ϕνϕY )ξ + ην(ξ)ην(ϕAX)η(Y )ξ

− αην(ξ)η(X)ην(ϕY )ξ + ην(AX)ην(ϕY )ξ

− 4ην(ξ)ην(Y )ϕAX − 4kη(X)ην(Y )ϕνξ

+ kην(ξ)η(X)ϕϕνϕY − kην(ξ)η(X)η(Y )ϕνξ

− kην(ξ)η(X)ην(ϕY )ξ + 4kη(X)ην(ϕY )ξν

− 4ην(ξ)g(ϕAX, Y )ξν + ην(ξ)η(Y )ϕνAX

+ kην(ξ)η(X)ϕνY }

for any tangent vector fields X and Y on M .

Let us assume that the normal Jacobi operator RN on a Hopf hypersurface M in

a complex two-plane Grassmann manifold G2(Cm+2 ) is GTW parallel, that is,

(∗) (∇̂(k)
X RN )Y = 0

for any tangent vector fields X and Y on M .

Here, it is the main goal to show that the Reeb vector field ξ belongs to either

the distribution D or its orthogonal complement D⊥ such that TM = D ⊕ D⊥ in

G2(Cm+2 ) when the normal Jacobi operator is GTW parallel.

From now on, we may write the Reeb vector field ξ as

(∗∗) ξ = η(X0)X0 + η(ξ1)ξ1

for some unit vector fields X0 ∈ D and ξ1 ∈ D⊥.

By putting X = ξ in (1.3) and using the condition (∗), we have

(1.4) 0 = (∇̂(k)
ξ RN )Y =

3∑

ν=1

{−4αην(ϕY )ξν + 4αην(Y )ϕνξ

− 4kην(Y )ϕνξ + kην(ξ)ϕϕνϕY − kην(ξ)η(Y )ϕνξ

− kην(ξ)ην(ϕY )ξ + 4kην(ϕY )ξν + kην(ξ)ϕνY }
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for any tangent vector field Y on M . Taking the inner product with ξ in (1.4), this

becomes

4(α − k)η(X0)η(ξ1)g(Y, ϕ1X0) = 0

for any tangent vector field Y on M , since ϕξ1 = η(X0)ϕ1X0. Replacing Y by ϕ1X0

in the above equation, we obtain

(α − k)η(X0)η(ξ1) = 0.

Thus there are 3 cases:

Case 1 : η(X0) = 0, which means that ξ belongs to the distribution D⊥.

Case 2 : η(ξ1) = 0, which means that ξ belongs to the distribution D.

Finally, in the case of η(X0)η(ξ1) 6= 0, the only possible situation is the following

one:

Case 3 : α = k. In this case, α becomes a non-zero constant real number. From [3],

Section 4, we get

Y α = (ξα)η(Y ) − 4

3∑

ν=1

ην(ξ)ην(ϕY )

for any Y tangent to M . This gives

0 = η(ξ1)ϕξ1 = η(ξ1)ϕ1ξ = η(ξ1)η(X0)ϕ1X0.

Because of the assumptions in Case 3, this yields ϕ1X0 = 0. Therefore −X0 +

η(X0)ξ1 = 0. That is, X0 = η(X0)ξ1, which is impossible. Thus we have just proved

that the Reeb vector field ξ belongs either to the distribution D or the distribu-

tion D⊥.

First of all, we consider the case ξ ∈ D⊥. Without loss of generality, we may put

ξ = ξ1.

Lemma 1.1. Let M be a Hopf hypersurface of G2(Cm+2 ) with GTW parallel

normal Jacobi operator. If the Reeb vector field ξ belongs to the distribution D⊥,

then g(AD, D⊥) = 0.Proof. Since ξ belongs to the distribution D⊥, using (1.3) and the assump-

tion (∗), we have

0 =

3∑

ν=1

{3g(ϕνAX, Y )ξν + 3ην(Y )ϕνAX − 2ην(ϕAX)ϕνϕY(1.5)

+ 5ην(ϕAX)η(Y )ξν + g(ϕνAX, ϕY )ϕνξ + ην(ϕY )ϕνϕAX
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− αη(X)ην(ϕY )ξν + 3ην(ϕAX)ην(Y )ξ + ην(AX)ην(ϕY )ξ

− 4kη(X)ην(Y )ϕνξ + 4kη(X)ην(ϕY )ξν}
− g(ϕAX, ϕϕ1Y )ξ − 4η1(Y )ϕAX + kη(X)ϕϕ1ϕY

− 4g(ϕAX, Y )ξ1 + η(Y )ϕ1AX + kη(X)ϕ1Y

for any tangent vector fields X and Y on M.

Restricting Y to the distribution D, (1.5) can be read as

(1.6) 0 = 3g(ϕ1AX, Y )ξ1 + 3g(ϕ2AX, Y )ξ2 + 3g(ϕ3AX, Y )ξ3

− 2η2(ϕAX)ϕ2ϕY − 2η3(ϕAX)ϕ3ϕY − g(ϕ2AX, ϕY )ξ3

+ g(ϕ3AX, ϕY )ξ2 − g(AX, ϕ1Y )ξ − 4g(ϕAX, Y )ξ1

for any tangent vector field X on M.

Taking the inner product with ξ2, we get

3g(ϕ2AX, Y ) + g(ϕ3AX, ϕY ) = 0

for any tangent vector fields X on M and Y ∈ D, that is,

−3Aϕ2Y − Aϕ3ϕY = 0.

Replacing Y by ϕY ∈ D in the above equation, we obtain

(1.7) Aϕ3Y = 3Aϕ2ϕY.

Taking the inner product with ξ3 in (1.6), we get

3g(ϕ3AX, Y ) − g(ϕ2AX, ϕY ) = 0

for any tangent vector fields X on M and Y ∈ D. In other words,

(1.8) 3Aϕ3Y = Aϕ2ϕY.

Combining (1.7) and (1.8), we get

Aϕ3Y = 9Aϕ3Y

for any tangent vector field Y ∈ D.

Replacing Y by ϕ3Y in the above equation, we have

AY = 0.

Hence, g(AY, ξν) = 0 for ν = 1, 2, 3 and any Y ∈ D, that is, g(AD, D⊥) = 0. �
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In the case of ξ ∈ D, from [11] we know that M must be locally congruent to

a real hypersurface of type (B) under our assumptions. So, we see that M is locally

congruent to a model space either of type (A) or type (B) in Theorem A under the

assumption of our Main Theorem.

Hence it remains to check whether the normal Jacobi operator RN of real hyper-

surfaces of type (A) or type (B) satisfies the condition (∗) for any tangent vector
field Y on M or not.

Now, consider ξ ∈ D⊥. According to the following proposition from [3], a real

hypersurfaceM of type (A) has four distinct constant principal curvatures as follows:

Proposition A. Let M be a connected real hypersurface of G2(Cm+2 ). Suppose

that AD ⊂ D, Aξ = αξ, and ξ is tangent to D⊥. Let J1 ∈ J be the almost Hermitian

structure such that JN = J1N . ThenM has three (if r = p/2
√

8) or four (otherwise)

distinct constant principal curvatures

α =
√

8 cot(
√

8r), β =
√

2 cot(
√

2r), λ = −
√

2 tan(
√

2r), µ = 0

with some r ∈ (0, p/√8). The corresponding multiplicities are

m(α) = 1, m(β) = 2, m(λ) = 2m − 2 = m(µ),

and the corresponding eigenspaces are

Tα = Rξ = RJN = Rξ1 = Span{ξ} = Span{ξ1},
Tβ = C⊥ξ = C⊥N = Rξ2 ⊕ Rξ3 = Span{ξ2, ξ3},
Tλ = {X ; X ⊥ H ξ, JX = J1X},
Tµ = {X ; X ⊥ H ξ, JX = −J1X},

where Rξ, C ξ and H ξ denote, respectively, the real, complex and quaternionic span

of the structure vector field ξ and C⊥ξ denotes the orthogonal complement of C ξ

in H ξ.

Using this, we consider a unit eigenvector X ∈ Tλ, Y = ξ2 and assuming ξ = ξ1 ∈
D⊥, we obtain from (1.3)

3λϕ2X − λϕ3ϕX = 0.

Since X belongs to Tλ, ϕX is a tangent vector field on Tλ, that is, ϕX = ϕ1X.

Thus we have 2λϕ2X = 0. Taking the inner product with ϕ2X , we get λ = 0.

This gives a contradiction. So we know that no real hypersurface of type (A) in

G2(Cm+2 ) admits a GTW parallel normal Jacobi operator in the case of ξ belonging

to the distribution D⊥. We make the following remark.
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Remark 1.2. If the Reeb vector field ξ belongs to the distribution D⊥, then there

exists no hypersurface of type (A) in G2(Cm+2 ) with GTW parallel normal Jacobi

operator.

Now we check the case ξ ∈ D supposing thatM has a GTW parallel normal Jacobi

operator. In order to do this we introduce a proposition due to Berndt and Suh [3]:

Proposition B. Let M be a connected real hypersurface of G2(Cm+2 ). Suppose

that AD ⊂ D, Aξ = αξ, and ξ is tangent to D. Then the quaternionic dimension

m of G2(Cm+2 ) is even, say m = 2n, and M has five distinct constant principal

curvatures

α = −2 tan(2r), β = 2 cot(2r), γ = 0, λ = cot(r), µ = − tan(r)

with some r ∈ (0, p/4). The corresponding multiplicities are

m(α) = 1, m(β) = 3 = m(γ), m(λ) = 4n − 4 = m(µ)

and the corresponding eigenspaces are

Tα = Rξ = Span{ξ},
Tβ = JJξ = Span{ξν ; ν = 1, 2, 3},
Tγ = Jξ = Span{ϕνξ; ν = 1, 2, 3},
Tλ, Tµ,

where

Tλ ⊕ Tµ = (H C ξ)⊥ , JTλ = Tλ, JTµ = Tµ, JTλ = Tµ.

The distribution (H C ξ)⊥ is the orthogonal complement of H C ξ, whereH C ξ = Rξ ⊕ RJξ ⊕ Jξ ⊕ JJξ.

If we consider a unit eigenvector X ∈ Tλ, Y = ξ2 in (1.3), it becomes

3∑

ν=1

{3λην(ξ2)ϕνX + λg(ϕνX, ϕξ2)ϕνξ} = 0.

So we have

3λϕ2X = 0.

Taking the inner product with ϕ2X , we get λ = 0. This gives a contradiction. So

this case cannot occur. Also we make the following remark.
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Remark 1.3. If the Reeb vector field ξ belongs to the distribution D, then there

exists no hypersurface of type (B) in G2(Cm+2 ) with GTW parallel normal Jacobi

operator.

Hence summing up Lemma 1.1 and Remarks 1.2, 1.3, we complete the proof of

Main Theorem. �

2. GTW Reeb-parallel normal Jacobi operator

In this section, we consider a new notion which differs from the GTW parallel

normal Jacobi operator.

Let us assume that the normal Jacobi operator RN on Hopf hypersurfaces M in

complex two-plane Grassmann manifolds G2(Cm+2 ) is GTW Reeb-parallel defined

by

(2.1) (∇̂(k)
ξ RN )Y = 0

for any tangent vector field Y on M . From this notion, together with the proof of

Main Theorem we see that the Reeb vector field ξ belongs either to the distribution

D or the distribution D⊥. For ξ∈D⊥, we will prove that any Hopf hypersurface M

in G2(Cm+2 ) always has a GTW Reeb-parallel normal Jacobi operator.

Proposition 2.1. Let M be a Hopf hypersurface in G2(Cm+2 ), m > 3, such that

ξ ∈ D⊥. Then the normal Jacobi operator RN is GTW Reeb-parallel.Proof. Putting X = ξ and ξ = ξ1 in (1.3), it becomes

(∇̂(k)
ξ RN )Y =

3∑

ν=1

{3g(ϕνAξ, Y )ξν + 3ην(Y )ϕνAξ − 2ην(ϕAξ)ϕνϕY

+ 5ην(ϕAξ)η(Y )ξν + g(ϕνAξ, ϕY )ϕνξ + ην(ϕY )ϕνϕAξ

− αη(ξ)ην (ϕY )ξν + 3ην(ϕAξ)ην (Y )ξ − ην(ξ)g(ϕAξ, ϕνϕY )ξ

+ ην(ξ)ην (ϕAξ)η(Y )ξ − αην(ξ)η(ξ)ην (ϕY )ξ + ην(Aξ)ην(ϕY )ξ

− 4ην(ξ)ην(Y )ϕAξ − 4kη(ξ)ην(Y )ϕνξ + kην(ξ)η(ξ)ϕϕνϕY

− kην(ξ)η(ξ)η(Y )ϕνξ − kην(ξ)η(ξ)ην (ϕY )ξ + 4kη(ξ)ην(ϕY )ξν

− 4ην(ξ)g(ϕAξ, Y )ξν + ην(ξ)η(Y )ϕνAξ + kην(ξ)η(ξ)ϕνY }

for any tangent vector field Y on M . Together with the fact that M is Hopf, it can

be written as

(∇̂(k)
ξ RN )Y =

3∑

ν=1

{3αg(ϕνξ, Y )ξν + 3αην(Y )ϕνξ − 2αην(ϕξ)ϕνϕY
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+ 5αην(ϕξ)η(Y )ξν + αg(ϕνξ, ϕY )ϕνξ + αην(ϕY )ϕνϕξ

− αη(ξ)ην (ϕY )ξν + 3αην(ϕξ)ην(Y )ξ − αην(ξ)g(ϕξ, ϕνϕY )ξ

+ αην(ξ)ην(ϕξ)η(Y )ξ − αην(ξ)η(ξ)ην (ϕY )ξ + αην(ξ)ην (ϕY )ξ

− 4αην(ξ)ην (Y )ϕξ − 4kη(ξ)ην(Y )ϕνξ + kην(ξ)η(ξ)ϕϕνϕY

− kην(ξ)η(ξ)η(Y )ϕνξ − kην(ξ)η(ξ)ην (ϕY )ξ + 4kη(ξ)ην(ϕY )ξν

− 4αην(ξ)g(ϕξ, Y )ξν + αην(ξ)η(Y )ϕνξ + kην(ξ)η(ξ)ϕνY }

=
3∑

ν=1

{3αg(ϕνξ, Y )ξν + 3αην(Y )ϕνξ + αg(ϕνξ, ϕY )ϕνξ

− αην(ϕY )ξν − 4kην(Y )ϕνξ + kην(ξ)ϕϕνϕY

− kην(ξ)η(Y )ϕνξ − kην(ξ)ην(ϕY )ξ + 4kην(ϕY )ξν

+ αην(ξ)η(Y )ϕνξ + kην(ξ)ϕνY }

for any tangent vector field Y on M .

By using (2.1) and (2.8) in [11], Section 2, we have

(∇̂(k)
ξ RN )Y =

3∑

ν=1

{−4αην(ϕY )ξν + 4αην(Y )ϕνξ − 4kην(Y )ϕνξ + 4kην(ϕY )ξν}

for any tangent vector field Y on M .

Because of (2.3) in [11], Section 2, we get

(∇̂(k)
ξ RN )Y = − 4(α − k){η1(ϕY )ξ1 + η2(ϕY )ξ2 + η3(ϕY )ξ3

+ η1(Y )ϕ1ξ + η2(Y )ϕ2ξ + η3(Y )ϕ3ξ} = 0

for any tangent vector field Y on M . Thus from (2.1), the normal Jacobi operator

RN is GTW Reeb-parallel. �
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