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On Unbounded Composition Operators in L
2-Spaces

Piotr Budzyński, Zenon Jan Jab loński, Il Bong Jung, and Jan Stochel

Abstract. Fundamental properties of unbounded composition operators in
L2-spaces are studied. Characterizations of normal and quasinormal composi-
tion operators are provided. Formally normal composition operators are shown
to be normal. Composition operators generating Stieltjes moment sequences
are completely characterized. The unbounded counterparts of the celebrated
Lambert’s characterizations of subnormality of bounded composition operators
are shown to be false. Various illustrative examples are supplied.

1. Introduction

Composition operators (in L2-spaces over σ-finite spaces), which play an essen-
tial role in Ergodic Theory, turn out to be interesting objects of Operator Theory.
The questions of boundedness, normality, quasinormality, subnormality, hyponor-
mality etc. of such operators have been answered (cf. [17, 42, 34, 56, 23, 44,

30, 31, 32, 16, 19, 20, 43, 54, 10, 8, 9]; see also [18, 33, 45, 15, 47] for par-
ticular classes of composition operators). This means that the theory of bounded
composition operators on L2-spaces is well-developed.

The literature on unbounded composition operators in L2-spaces is meagre. So
far, only the questions of seminormality, k-expansivity and complete hyperexpan-
sivity have been studied (cf. [11, 24]). Very little is known about other properties
of unbounded composition operators. To the best of our knowledge, there is no
paper concerning the issue of subnormality of such operators. It is a difficult ques-
tion mainly because Lambert’s criterion for subnormality of bounded operators (cf.
[29]) is no longer valid for unbounded ones. In the present paper we show that the
unbounded counterparts of the celebrated Lambert’s characterizations of subnor-
mality of bounded composition operators given in [31] fail to hold. This is achieved
by proving that a composition operator satisfies the requirements of Lambert’s
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characterizations if and only if it generates Stieltjes moment sequences (see Defi-
nition 2.3 and Theorem 10.4). Thus, knowing that there exists a non-subnormal
composition operator which generates Stieltjes moment sequences (see [25, Theo-
rem 4.3.3]), we obtain the above-mentioned result (see Conclusion 10.5). We point
out that there exists a non-subnormal formally normal operator which generates
Stieltjes moment sequences (for details see [7, Section 3.2]). This is never the case
for composition operators because, as shown in Theorem 9.4, each formally nor-
mal composition operator is normal, and as such subnormal. We refer the reader
to [48, 49, 50, 51] for the foundations of the theory of unbounded subnormal
operators (for the bounded case see [21, 14]).

The above discussion makes plain the importance of the question of when C∞-
vectors of a composition operator form a dense subset of the underlying L2-space.
This and related topics are studied in Section 4. In Section 3, we collect some nec-
essary facts on composition operators. Illustrative examples are gathered in Section
5. In Section 6, we address the question of injectivity of composition operators. In
Section 7, we describe the polar decomposition of a composition operator. Next, in
Sections 8 and 9, we characterize normal, quasinormal and formally normal compo-
sition operators. Finally, in Section 10, we investigate composition operators which
generate Stieltjes moment sequences. We conclude the paper with two appendices.
In Appendix A we gather particular properties of L2-spaces exploited throughout
the paper. Appendix B is mostly devoted to the operator of conditional expectation
which plays an essential role in our investigations.

Caution. All measure spaces being considered in this paper, except for Appen-
dices A and B, are assumed to be σ-finite.

2. Preliminaries

Denote by C, R and R+ the sets of complex numbers, real numbers and non-
negative real numbers, respectively. We write Z+ for the set of all nonnegative
integers, and N for the set of all positive integers. The characteristic function of a
subset ∆ of a set X will be denoted by χ∆. We write ∆ △ ∆′ = (∆ \∆′)∪ (∆′ \∆)
for subsets ∆ and ∆′ of X . Given a sequence {∆n}

∞
n=1 of subsets of X and a

subset ∆ of X such that ∆n ⊆ ∆n+1 for every n ∈ N, and ∆ =
⋃∞
n=1∆n, we write

∆n ր ∆ (as n → ∞). Denote by card(X) the cardinal number of X . If X is a
topological space, then B(X) stands for the σ-algebra of Borel subsets of X .

Let A be an operator in a complex Hilbert space H (all operators considered
in this paper are linear). Denote by D(A), N(A), R(A), Ā and A∗ the domain,
the kernel, the range, the closure and the adjoint of A (in case they exist). If A is
closed and densely defined, then there exists a unique partial isometry U on H such
that A = U |A| and N(U) = N(A), where |A| stands for the square root of A∗A
(cf. [3, Section 8.1]). Set D∞(A) =

⋂∞
n=0 D(An). Members of D∞(A) are called

C∞-vectors of A. Denote by ‖ · ‖A the graph norm of A, i.e.,

‖f‖2
A := ‖f‖2 + ‖Af‖2, f ∈ D(A).

Given n ∈ Z+, we define the norm ‖ · ‖A,n on D(An) by

‖f‖2
A,n :=

n
∑

j=0

‖Ajf‖2, f ∈ D(An).
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Clearly, for every n ∈ N, (D(An), ‖ · ‖An) and (D(An), ‖ · ‖A,n) are inner product
spaces (with standard inner products). A vector subspace E of D(A) is called a
core for A if E is dense in D(A) with respect to the graph norm of A. Denote by I
the identity operator on H.

By applying Propositions 2.1 and 3.2, one may obtain a criterion for closedness
of a linear combination of composition operators.

Proposition 2.1. Let A1, . . . , An be closed operators in H (n ∈ N). Then
∑n
j=1 Aj is closed if and only if there exists c ∈ R+ such that

n
∑

j=1

‖Ajf‖
2 6 c

(

‖f‖2 + ‖

n
∑

j=1

Ajf‖
2

)

, f ∈

n
⋂

j=1

D(Aj). (2.1)

Proof. Define the vector space X =
⋂n
j=1 D(Aj) and the norm ‖ · ‖∗ on X by

‖f‖2
∗ = ‖f‖2 +

∑n
j=1 ‖Ajf‖

2 for f ∈ X . Since the operators A1, . . . , An are closed,

we deduce that (X , ‖ · ‖∗) is a Hilbert space. Recall that A :=
∑n

j=1Aj is closed

if and only if (X , ‖ · ‖A) is a Hilbert space. Since the identity map from (X , ‖ · ‖∗)
to (X , ‖ · ‖A) is continuous, we conclude from the inverse mapping theorem that
(X , ‖ · ‖A) is a Hilbert space if and only if (2.1) holds for some c ∈ R+. �

A densely defined operator N in H is said to be normal if N is closed and
N∗N = NN∗ (or equivalently if and only if D(N) = D(N∗) and ‖Nf‖ = ‖N∗f‖
for all f ∈ D(N), see [55, Proposition, p. 125]). We say that a densely defined
operator A in H is formally normal if D(A) ⊆ D(A∗) and ‖Af‖ = ‖A∗f‖ for all
f ∈ D(A) (cf. [12, 2]). A densely defined operator A in H is called hyponormal if
D(A) ⊆ D(A∗) and ‖A∗f‖ 6 ‖Af‖ for all f ∈ D(A) (cf. [27, 35, 53]). Clearly, a
closed densely defined operator A in H is normal if and only if both operators A
and A∗ are hyponormal. It is well-known that normality implies formal normality
and formal normality implies hyponormality, but none of these implications can be
reversed in general. We say that a densely defined operator S in H is subnormal

if there exist a complex Hilbert space K and a normal operator N in K such that
H ⊆ K (isometric embedding), D(S) ⊆ D(N) and Sf = Nf for all f ∈ D(S).

The members of the next class are related to subnormal operators. A closed
densely defined operator A in H is said to be quasinormal if A commutes with the
spectral measure E|A| of |A|, i.e., E|A|(∆)A ⊆ AE|A|(∆) for all ∆ ∈ B(R+) (cf.
[4, 48]). In view of [48, Proposition 1], a closed densely defined operator A in H is
quasinormal if and only if U |A| ⊆ |A|U , where A = U |A| is the polar decomposition
of A. This combined with [3, Theorem 8.1.5] shows that if A is a normal operator,
then A is quasinormal and N(A) = N(A∗). In turn, quasinormality together with
the inclusion N(A∗) ⊆ N(A) characterizes normality. This result can be found in
[52]. For the reader’s convenience, we include its proof.

Theorem 2.2. An operator A in H is normal if and only if A is quasinormal

and N(A∗) ⊆ N(A). Moreover, if A is normal, then N(A) = N(A∗).

Proof. In view of the above discussion it is enough to prove the sufficiency.
First we show that if A is quasinormal andA = U |A| is its polar decomposition, then
U |A| = |A|U . Indeed, by [48, Proposition 1], U |A| ⊆ |A|U . Taking adjoints, we get
U∗|A| ⊆ |A|U∗, which implies that U∗(D(|A|)) ⊆ D(|A|). Hence, if f ∈ D(|A|U),
then U∗Uf ∈ D(|A|). Since I − U∗U is the orthogonal projection of H onto
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N(|A|), we conclude that f = U∗Uf + (I − U∗U)f ∈ D(|A|). This shows that
D(|A|U) ⊂ D(U |A|), which implies that U |A| = |A|U .

Now suppose that A is quasinormal and N(A∗) ⊆ N(A). Since the operators

P := UU∗ and P⊥ := (I − P ) are the orthogonal projections of H onto R(A) and
N(A∗), respectively, we infer from the inclusion N(A∗) ⊂ N(A) that

R(P⊥) ⊂ N(A) = N(|A|) ⊂ D(|A|2). (2.2)

It follows from U |A| = |A|U and A∗ = |A|U∗ that

AA∗ = U |A|2U∗ = |A|2P. (2.3)

We will show that

|A|2P = |A|2. (2.4)

Indeed, if f ∈ H, then, by (2.2) and the equality f = Pf + P⊥f , we see that
Pf ∈ D(|A|2) if and only if f ∈ D(|A|2). This implies that D(|A|2P ) = D(|A|2).
Using (2.2) again, we see that |A|2f = |A|2Pf for every f ∈ D(|A|2). Hence the
equality (2.4) is valid. Combining (2.3) with (2.4), we get AA∗ = A∗A.

The “moreover” part is well-known and easy to prove. �

Recall that quasinormal operators are subnormal (see [4, Theorem 1] and [48,
Theorem 2]). The reverse implication does not hold in general. Clearly, subnormal
operators are hyponormal, but not reversely. It is worth pointing out that formally
normal operators may not be subnormal (cf. [13, 40, 46]).

A finite complex matrix [ci,j ]
n
i,j=0 is said to be nonnegative if

n
∑

i,j=0

ci,jαiᾱj > 0, α0, . . . , αn ∈ C.

If this is the case, then we write [ci,j ]
n
i,j=0 > 0. A sequence {γn}

∞
n=0 of real numbers

is said to be a Stieltjes moment sequence if there exists a positive Borel measure ρ
on R+ such that

γn =

∫

R+

sn dρ(s), n ∈ Z+.

A sequence {γn}
∞
n=0 ⊆ R is said to be positive definite if for every n ∈ Z+,

[γi+j ]
n
i,j=0 > 0. By the Stieltjes theorem (see [1, Theorem 6.2.5]), we have

a sequence {γn}
∞
n=0 ⊆ R is a Stieltjes moment sequence if and only if

the sequences {γn}
∞
n=0 and {γn+1}

∞
n=0 are positive definite.

(2.5)

Definition 2.3. We say that an operator S in H generates Stieltjes moment

sequences if D∞(S) is dense in H and {‖Snf‖2}∞n=0 is a Stieltjes moment sequence
for every f ∈ D∞(S).

It is well-known that if S is subnormal, then {‖Snf‖2}∞n=0 is a Stieltjes moment
sequence for every f ∈ D∞(S) (see [7, Proposition 3.2.1]; see also Proposition 2.4
below). Hence, if D∞(S) is dense in H and S is subnormal, then S generates
Stieltjes moment sequences. It turns out that the converse implication does not
hold in general (see [7, Section 3.2]).

The following can be proved analogously to [7, Proposition 3.2.1] by using (2.5).

Proposition 2.4. If S is a subnormal operator in H, then the following two

assertions hold :
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(i)
[

‖Si+jf‖2
]n

i,j=0
> 0 for all f ∈ D(S2n) and n ∈ Z+,

(ii)
[

‖Si+j+1f‖2
]n

i,j=0
> 0 for all f ∈ D(S2n+1) and n ∈ Z+.

For the reader’s convenience, we state a theorem which is occasionally called
the Mittag-Leffler theorem (cf. [41, Lemma 1.1.2]).

Theorem 2.5. Let {En}
∞
n=0 be a sequence of Banach spaces such that for every

n ∈ Z+, En+1 is a vector subspace of En, En+1 is dense in En and the embedding map

of En+1 into En is continuous. Then
⋂∞
n=0 En is dense in each space Ek, k ∈ Z+.

3. Basic properties of composition operators

From now on, except for Appendices A and B, (X,A , µ) always stands for a
σ-finite measure space. We shall abbreviate the expressions “almost everywhere
with respect to µ” and “for µ-almost every x” to “a.e. [µ]” and “for µ-a.e. x”,
respectively. As usual, L2(µ) = L2(X,A , µ) denotes the Hilbert space of all square
integrable complex functions on X . The norm and the inner product of L2(µ) are
denoted by ‖ · ‖ and 〈·, -〉, respectively. Let φ be an A -measurable transformation1

of X , i.e., φ−1(∆) ∈ A for all ∆ ∈ A . Denote by µ ◦ φ−1 the positive measure on
A given by µ ◦ φ−1(∆) = µ(φ−1(∆)) for all ∆ ∈ A . We say that φ is nonsingular

if µ ◦ φ−1 is absolutely continuous with respect to µ. It is easily seen that if φ is
nonsingular, then the mapping Cφ : L2(µ) ⊇ D(Cφ) → L2(µ) given by

D(Cφ) = {f ∈ L2(µ) : f ◦ φ ∈ L2(µ)} and Cφf = f ◦ φ for f ∈ D(Cφ), (3.1)

is well-defined and linear. Such an operator is called a composition operator induced
by φ; the transformation φ will be referred to as a symbol of Cφ. Note that if the
operator Cφ given by (3.1) is well-defined, then the transformation φ is nonsingular.

Convention. For the remainder of this paper, whenever Cφ is mentioned the
transformation φ is assumed to be nonsingular.

If φ is nonsingular, then by the Radon-Nikodym theorem there exists a unique
(up to sets of measure zero) A -measurable function hφ : X → [0,∞] such that

µ ◦ φ−1(∆) =

∫

∆

hφ dµ, ∆ ∈ A . (3.2)

Here and later on φn stands for the n-fold composition of φ with itself if n > 1 and
φ0 for the identity transformation of X . We also write φ−n(∆) := (φn)−1(∆) for
∆ ∈ A and n ∈ Z+. Note that hφ0 = 1 a.e. [µ]. It is clear that the composition
φ1 ◦ · · · ◦ φn of finitely many nonsingular transformations φ1, . . . , φn of X is a
nonsingular transformation and

Cφn · · ·Cφ1
⊆ Cφ1◦···◦φn , n ∈ N. (3.3)

Now we construct an A -measurable transformation φ of X such that φ is not
nonsingular while φ2 is nonsingular.

Example 3.1. Set X = {0} ∪ {1} ∪ [2, 3]. Let A = {∆ ∩ X : ∆ ∈ B(R+)}.
Define the finite Borel measure µ on X by

µ(∆) = χ∆(0) + χ∆(1) +m(∆ ∩ [2, 3]), ∆ ∈ A ,

where m stands for the Lebesgue measure on R. Let φ be an A -measurable trans-
formation of X given by φ(0) = 2, φ(1) = 1 and φ(x) = 1 for x ∈ [2, 3]. Since

1 By a transformation of X we understand a map from X to X.



6 P. BUDZYŃSKI, Z. J. JAB LOŃSKI, I. B. JUNG, AND J. STOCHEL

µ({2}) = 0 and (µ ◦ φ−1)({2}) = 1, we see that φ is not nonsingular. However, φ2

is nonsingular because φ2(x) = 1 for all x ∈ X and µ({1}) > 0.

Suppose that φ is a nonsingular transformation of X . In view of the measure
transport theorem ([22, Theorem C, p. 163]), we have
∫

X

|f ◦ φ|2 dµ =

∫

X

|f |2hφ dµ for every A -measurable function f : X → C. (3.4)

This implies that

D(Cφ) = L2((1 + hφ) dµ), ‖f‖2
Cφ

=

∫

X

|f |2(1 + hφ) dµ, (3.5)

D(Cnφ ) = L2
((

n
∑

j=0

hφj

)

dµ
)

, ‖f‖2
Cφ,n =

∫

X

|f |2
(

n
∑

j=0

hφj

)

dµ, n ∈ Z+. (3.6)

Moreover, if φ1, . . . , φn are nonsingular transformations of X (n ∈ N), then

D(Cφn · · ·Cφ1
) = L2((1 +

n
∑

j=1

hφ1◦···◦φj ) dµ). (3.7)

The following proposition is somewhat related to [17, p. 664] and [11, Lemma 6.1].

Proposition 3.2. Let φ be a nonsingular transformation of X. Then Cφ is a

closed operator and

D(Cφ) = χFφ
L2(µ) with Fφ =

{

x ∈ X : hφ(x) <∞
}

. (3.8)

Moreover, the following conditions are equivalent:

(i) Cφ is densely defined,

(ii) hφ <∞ a.e. [µ],
(iii) the measure µ ◦ φ−1 is σ-finite.

Proof. Applying (3.5), we get Cφ = Cφ and D(Cφ) ⊆ χFφ
L2(µ). To prove the

opposite inclusion χFφ
L2(µ) ⊆ D(Cφ), take f ∈ L2(µ) such that f |X\Fφ

= 0 a.e. [µ],
and set Xn = {x ∈ X : hφ(x) 6 n} for n ∈ N. Noting that Xn ր Fφ as n→ ∞, we
see that

∫

X
|χXnf |

2(1+hφ) dµ <∞ for all n ∈ N, and limn→∞

∫

X
|f−χXnf |

2 dµ =
0, which completes the proof of (3.8).

(i)⇔(ii) Employ (3.8).
(ii)⇔(iii) Apply (3.2) and the assumption that µ is σ-finite. �

Corollary 3.3. Suppose that φ1, . . . , φn are nonsingular transformations of

X and λ1, . . . , λn are nonzero complex numbers (n ∈ N). Then
∑n

j=1 λjCφj is

densely defined if and only if Cφk
is densely defined for every k = 1, . . . , n.

Proof. By (3.5), D(
∑n

j=1 λjCφj ) = L2((1 +
∑n

j=1 hφj ) dµ), and thus the “if”
part follows from Proposition 3.2 and Lemma A.1. The “only if” part is obvious. �

4. Products of composition operators

First we give necessary and sufficient conditions for a product of composition
operators to be densely defined.

Proposition 4.1. Let φ1, . . . , φn be nonsingular transformations of X (2 6

n <∞). Then the following assertions hold :

(i) Cφn · · ·Cφ1
is a closable operator,
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(ii) Cφn · · ·Cφ1
is densely defined if and only if Cφ1◦···◦φk

is densely defined

for every k = 1, . . . , n,
(iii) if Cφn−1

· · ·Cφ1
is densely defined, then

Cφ1◦···◦φk
= Cφk

· · ·Cφ1
, k = 1, . . . , n, (4.1)

(iv) if Cφ1◦···◦φn is densely defined, then so is the operator Cφn ,

(v) if Cφn · · ·Cφ1
is densely defined, then so are the operators Cφ1

, . . . , Cφn .

Proof. (i) Apply (3.3) and Proposition 3.2.
(ii) To prove the “if” part, assume that Cφ1◦···◦φk

is densely defined for k =
1, . . . , n. It follows from Proposition 3.2 that hφ1◦···◦φk

<∞ a.e. [µ] for k = 1, . . . , n.
Applying (3.7) and Lemma A.1 to ρ1 ≡ 1 and ρ2 = 1 +

∑n
j=1 hφ1◦···◦φj we get

D(Cφn · · ·Cφ1
) = L2(µ). The “only if” part follows from (3.3) and the fact that

the operators Cφk
· · ·Cφ1

, k = 1, . . . , n, are densely defined.

(iii) It follows from (ii) and Proposition 3.2 that h :=
∑n−1

j=1 hφ1◦···◦φj <∞ a.e.

[µ]. Set Y = {x ∈ X : hφ1◦···◦φn(x) < ∞} and AY = {∆ ∈ A : ∆ ⊆ Y }. Equip
D(Cφ1◦···◦φn) with the graph norm of Cφ1◦···◦φn and note that the mapping

Θ : D(Cφ1◦···◦φn) ∋ f 7−→ f |Y ∈ L2
(

Y,AY , (1 + hφ1◦···◦φn) dµ
)

is a well-defined unitary isomorphism (use (3.5)). It follows from Lemma A.1 that
L2

(

Y,AY , (1+h+hφ1◦···◦φn) dµ
)

is dense in L2
(

Y,AY , (1+hφ1◦···◦φn) dµ
)

. Since, by

(3.3) and (3.7), Θ(D(Cφn · · ·Cφ1
)) = L2

(

Y,AY , (1 + h+ hφ1◦···◦φn) dµ
)

, we deduce

that Cφn · · ·Cφ1
= Cφ1◦···◦φn . Applying the previous argument to the systems

(Cφ1
, . . . , Cφk

), k ∈ {1, . . . , n− 1}, we obtain (4.1).
(iv) It is sufficient to discuss the case of n = 2. Suppose that Cφ1◦φ2

is densely
defined. In view of Proposition 3.2, the measure µ ◦ (φ1 ◦ φ2)−1 is σ-finite. Since
µ◦ (φ1 ◦φ2)−1 = (µ◦φ−1

2 )◦φ−1
1 , we see that the measure µ◦φ−1

2 is σ-finite as well.
Applying Proposition 3.2 again, we conclude that Cφ2

is densely defined.
(v) Apply (ii) and (iv). �

Corollary 4.2. If Cn−1
φ is densely defined for some n ∈ N, then Cnφ = Cφn .

The following is an immediate consequence of (3.7) and Corollary A.4.

Proposition 4.3. If φ1, . . . , φm and ψ1, . . . , ψn are nonsingular transforma-

tions of X, then D(Cφn · · ·Cφ1
) ⊆ D(Cψm · · ·Cψ1

) if and only if there exists c ∈ R+

such that
∑m

j=1 hψ1◦···◦ψj 6 c
(

1 +
∑n
j=1 hφ1◦···◦φj

)

a.e. [µ].

Now we give necessary and sufficient conditions for a product of composition
operators to be closed.

Proposition 4.4. Let φ1, . . . , φn be nonsingular transformations of X (2 6

n <∞). Then the following three conditions are equivalent:

(i) Cφn · · ·Cφ1
= Cφ1◦···◦φn ,

(ii) D(Cφ1◦···◦φn) ⊆ D(Cφn · · ·Cφ1
),

(iii) there exists c ∈ R+ such that
∑n−1

j=1 hφ1◦···◦φj 6 c(1 + hφ1◦···◦φn) a.e. [µ].

Moreover, any of the conditions (i) to (iii) implies that

(iv) Cφn · · ·Cφ1
is closed.

If Cφn−1
· · ·Cφ1

is densely defined, then all the conditions (i) to (iv) are equivalent.
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Proof. The equivalence of (i) and (ii) is a direct consequence of (3.3). The
equivalence of (ii) and (iii) follows from Proposition 4.3. That (i) implies (iv) follows
from Proposition 3.2. Finally, if the product Cφn−1

· · ·Cφ1
is densely defined, then

(iv) implies (i) due to Proposition 4.1 (iii). �

Corollary 4.5. If φ is a nonsingular transformation of X, then the following

assertions hold for all n ∈ N:

(i) Cφn is densely defined if and only hφn <∞ a.e. [µ],
(ii) Cnφ is densely defined if and only

∑n
j=1 hφj <∞ a.e. [µ],

(iii) Cnφ = Cφn if and only if there exists c ∈ R+ such that hφk 6 c(1 + hφn)

a.e. [µ] for k = 1, . . . , n.

Proof. Use Propositions 3.2, 4.1 (ii) and 4.4 (for (ii) see also [24, p. 515]). �

Corollary 4.6. If φ is a nonsingular transformation of X and D(Cmφ ) =

L2(µ) for some m ∈ N, then there exists a sequence {Xn}
∞
n=1 ⊆ A such that

(i) Xn ր X as n→ ∞,

(ii) µ(Xn) <∞ for all n ∈ N,
(iii)

∑m
j=1 hφj (x) 6 n for µ-a.e. x ∈ Xn and n ∈ N.

The question of when C∞-vectors of an operator A in a Hilbert space H form
a dense subspace of H is of independent interest (cf. [39, 28]). If every power
of A is densely defined, then one could expect that D∞(A) is dense in H. This
is the case for any closed densely defined operator (even in a Banach space), the
resolvent set of which is nonempty2. As shown below, this is also the case for
composition operators. However, this seems to be not true in general. Dropping
the assumption of closedness, we can provide a simple counterexample. Indeed,
take an infinite dimensional separable Hilbert space H. Then there exists a dense
subset {en : n ∈ Z+} of H which consists of linearly independent vectors. Let A be
the operator in H whose domain is the linear span of {en : n ∈ N} and Aej = ej−1

for every j ∈ N. Since {en : n > k} is dense in H for every k ∈ Z+, we deduce that
the operator An is densely defined for every n ∈ Z+. However, D∞(A) = {0}.

Theorem 4.7. If φ is a nonsingular transformation of X, then the following

conditions are equivalent :

(i) D(Cnφ ) is dense in L2(µ) for every n ∈ N,

(ii) D∞(Cφ) is dense in L2(µ),
(iii) D∞(Cφ) is a core for Cnφ for every n ∈ Z+,

(iv) D∞(Cφ) is dense in (D(Cnφ ), ‖ · ‖Cφ,n) for every n ∈ Z+.

Proof. The implications (iv)⇒(iii), (iii)⇒(ii) and (ii)⇒(i) are obvious.
(i)⇒(iv) In view of Corollary 4.5 (ii), 0 6 hφn <∞ a.e. [µ] for all n ∈ N. Given

n ∈ Z+ we denote by Hn the inner product space (D(Cnφ ), ‖·‖Cφ,n). It follows from

(3.6) that Hn is a Hilbert space which coincides with L2((
∑n

j=0 hφj ) dµ). Hence, in
view of Lemma A.1, Hn+1 is a dense subspace of Hn. Clearly, the embedding map
of Hn+1 into Hn is continuous. Applying Theorem 2.5 to the sequence {Hn}

∞
n=0,

we conclude that D∞(Cφ) =
⋂∞
i=0 Hi is dense in D(Cnφ ) with respect to the norm

‖ · ‖Cφ,n for every n ∈ Z+. This completes the proof. �

2 This can be deduced from the fact that the intersection of ranges of all powers of a bounded
operator which has dense range is dense in the underlying space.



ON UNBOUNDED COMPOSITION OPERATORS 9

Regarding Theorem 4.7, we mention the following surprising fact which can be
deduced from [39, Theorem 4.5] by using Theorem 2.5 and [39, Corollaries 1.2 and
1.4].

Theorem 4.8. Let A be an unbounded selfadjoint operator in a complex Hilbert

space H and let N be a (possibly empty) subset of N\{1} such that N\N is infinite.

Then there exists a closed symmetric operator T in H such that T ⊆ A, D∞(T ) is

dense in H and for every k ∈ N, D∞(T ) is a core for T k if and only if k ∈ N \N.

5. Examples

We begin by showing that Corollary 4.2 is no longer true if the assumption that
Cn−1
φ is densely defined is dropped.

Example 5.1. We will demonstrate that there is a nonsingular transformation
φ such that Cφ is densely defined, Cφj and Cjφ are not densely defined for every j ∈

{2, 3, . . .}, and C3
φ  Cφ3 (however, by Corollary 4.2, C2

φ = Cφ2). For this, we will

re-examine Example 4.2 given in [24]. Suppose that {ai}
∞
i=0, {bi}

∞
i=0 and {ci,j}

∞
i,j=0

are disjoint sets of distinct elements. Set X = {ai}
∞
i=0 ∪ {bi}

∞
i=0 ∪ {ci,j}

∞
i,j=0 and

A = 2X . Let µ be a unique σ-finite measure on A determined by

µ
(

{x}
)

=











1 if x = ai for some i ∈ Z+,
1

2i+1 if x = bi for some i ∈ Z+,
1

2j+1 if x = ci,j for some i, j ∈ Z+.

Define a nonsingular transformation φ of X by

φ(x) =











ai+1 if x = ai for some i ∈ Z+,

a0 if x = bi for some i ∈ Z+,

bi if x = ci,j for some i, j ∈ Z+.

Then hφ < ∞ a.e. [µ], and thus by Proposition 3.2 the operator Cφ is densely
defined. Since hφ2(a0) = ∞, we infer from Proposition 3.2 that Cφ2 is not densely
defined. It follows from (3.7) that D(C3

φ) = L2((1 + hφ + hφ2 + hφ3) dµ). This and

hφ2(a0) = ∞ imply that f(a0) = 0 for every f ∈ D(C3
φ). Since the convergence

in the graph norm is stronger than the pointwise convergence, we deduce that

f(a0) = 0 for every f ∈ D(C3
φ). As D(Cφ3) = L2((1 + hφ3) dµ) (cf. (3.5)) and

hφ3(a0) = 0 (because φ−3({a0}) = ∅), we see that χ{a0} ∈ D(Cφ3)\D(C3
φ). Finally,

arguing as above and using the fact that hφj+2(aj) = ∞ for every j ∈ Z+, we
conclude that Cφj is not densely defined for every j ∈ {2, 3, . . .}. As a consequence,

Cjφ is not densely defined for every j ∈ {2, 3, . . .}.

The composition operator Cφ constructed in Example 5.1 is densely defined,
its square is not densely defined, however dimD(Cnφ ) = ∞ for all n ∈ N (because

χ{ai} ∈ D(Cnφ ) for all i > n− 1). In fact, there are more pathological examples.

Example 5.2. It was proved in [26, Theorem 4.2] that there exists a hyponor-
mal weighted shift S on a rootless and leafless directed tree with positive weights
whose square has trivial domain. By [25, Lemma 4.3.1], S is unitarily equivalent
to a composition operator C. As a consequence, C is injective and hyponormal,
and D(C2) = D

∞(C) = {0} (see also [6] for a recent construction).
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Regarding Proposition 4.1, we note that it may happen that the operators Cφ1

and Cφ2
are densely defined, while the operators Cφ1◦φ2

and Cφ2
Cφ1

are not (even
if φ1 = φ2, see Example 5.1). Below we will show that for some φ1 and φ2 the
composition operator Cφ1◦φ2

is densely defined (even bounded), while Cφ1
is not.

Example 5.3. Set X = Z+ and A = 2X . Let µ be the counting measure on
X and let φ1 and φ2 be the nonsingular transformations of X given by φ1(2n) =
n, φ1(2n + 1) = 0 and φ2(n) = 2n for n ∈ Z+. Then φ1 ◦ φ2 is the identity
transformation of X , and hence Cφ1◦φ2

is the identity operator on L2(µ). However,

since µ(φ−1
1 ({0})) = ∞, the measure µ◦φ−1

1 is not σ-finite, and thus by Proposition
3.2 the operator Cφ1

is not densely defined.

Our next aim is to provide examples showing that the equality Cnφ = Cφn which

appears in Corollary 4.5 (iii) does not hold in general even if D∞(Cφ) is dense in
L2(µ) (which is not the case for the operator given in Example 5.1).

Example 5.4. Set X = N and A = 2X . Let µ be a counting measure on X
and let {Jn}

∞
n=1 be a partition of X . Define a nonsingular transformation φ of X

by φ(x) = min Jn2 for x ∈ Jn and n ∈ N. Set Ns = {n2 : n ∈ N} and note that

X = {1} ⊔
⊔

q∈N\Ns

{

q2n

: n ∈ Z+

}

, (5.1)

where all terms in (5.1) are pairwise disjoint (they are equivalence classes under the
equivalence relation ∼ given by: p ∼ q if and only if p2m

= q2n

for some m,n ∈ Z+).
Since hφj (x) = card(φ−j({x})) for x ∈ X and j ∈ N, we infer from (5.1) that for
all j ∈ N and x ∈ X (m appearing below varies over the set of integers)

hφj (x) =











card(J1) if x = min J1,

card(Jq2m−j ) if x = min Jq2m with q ∈ N \ Ns and m > j,

0 otherwise.

(5.2)

By (5.1), (5.2), Proposition 3.2 and Theorem 4.7, the following are equivalent:

• card(Jk) < ℵ0 for every k ∈ N,
• Cφ is densely defined,
• Cnφ is densely defined for some n ∈ N,
• Cnφ is densely defined for every n ∈ N,

• D∞(Cφ) is dense in L2(µ).

It follows from (5.2) and Proposition 4.4 that for a given integer n > 2, Cnφ is closed
if and only if there exists c ∈ R+ such that

card(Jq2s ) 6 c, s = 0, . . . , n− 2, q ∈ N \ Ns,

card(Jq2s+1 ) 6 c
(

1 + card(Jq2s )
)

, s ∈ Z+, q ∈ N \ Ns.

Using this and an induction argument, one can prove that either Cnφ is closed for
every integer n > 1, or Cnφ is not closed for every integer n > 2. Summarizing,

if we choose a partition {Ji}
∞
i=1 of X such that Jn is finite for every n ∈ N, and

sup{card(Jq) : q ∈ N\Ns} = ℵ0 (which is possible), then D∞(Cφ) is dense in L2(µ)
and Cnφ is not closed for every integer n > 2. On the other hand, if κ > 2 is

any fixed integer and a partition {Ji}
∞
i=1 of X is selected so that J1 is finite and

card(Jq2n ) = κn for all n ∈ Z+ and q ∈ N\Ns (which is also possible), then D∞(Cφ)

is dense in L2(µ) and Cnφ is closed and unbounded for every n ∈ N.
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6. Injectivity of Cφ

In this section we provide necessary and sufficient conditions for a composi-
tion operator to be injective. The following set plays an important role in our
considerations.

Nφ = {x ∈ X : hφ(x) = 0}.

The following description of the kernel of Cφ follows immediately from (3.4).

Proposition 6.1. If φ : X → X is nonsingular, then N(Cφ) = χNφ
L2(µ).

Proposition 6.2. Let φ be a nonsingular transformation of X. Consider the

following four conditions:

(i) N(Cφ) = {0},
(ii) µ(Nφ) = 0,

(iii) χNφ
◦ φ = χNφ

a.e. [µ],
(iv) N(Cφ) ⊆ N(C∗

φ).

Then the conditions (i), (ii) and (iii) are equivalent. Moreover, if Cφ is densely

defined, then the conditions (i) to (iv) are equivalent.

Proof. (i)⇔(ii) Apply Proposition 6.1 and the σ-finiteness of µ.
(ii)⇒(iii) Since φ is nonsingular, we have µ(Nφ) = 0 and µ(φ−1(Nφ)) = 0,

which implies that µ(Nφ △ φ−1(Nφ)) = 0. The latter is equivalent to (iii).
(iii)⇒(ii) By the measure transport theorem, we have

µ(Nφ) =

∫

X

χNφ
dµ =

∫

X

χNφ
◦ φdµ =

∫

X

χNφ
hφ dµ = 0.

Now suppose that Cφ is densely defined.
(i)⇒(iv) Obvious.
(iv)⇒(ii) Let {Xn}

∞
n=1 be as in Corollary 4.6 (with m = 1). Then, by (3.4),

we see that χXn , χNφ∩Xn ∈ D(Cφ) and ‖Cφ(χNφ∩Xn)‖2 =
∫

Nφ∩Xn
hφ dµ = 0 for all

n ∈ N, which together with our assumption that N(Cφ) ⊆ N(C∗
φ) yields

0 = 〈χNφ∩Xn , CφχXn〉 =

∫

Nφ∩Xn

χXn ◦ φdµ = µ(Nφ ∩Xn ∩ φ−1(Xn))

for all n ∈ N. Since Nφ∩Xn∩φ
−1(Xn) ր Nφ as n→ ∞, the continuity of measure

implies that µ(Nφ) = 0. This completes the proof. �

Corollary 6.3. If Cφ is hyponormal, then N(Cφ) = {0}.

Proof. It follows from the definition of hyponormality that N(Cφ) ⊆ N(C∗
φ).

This and Proposition 6.2 complete the proof. �

Corollary 6.4. If Cφ is formally normal, then

D(Cφ) ∩N(C∗
φ) = {0}.

Proof. Indeed, if f ∈ D(Cφ)∩N(C∗
φ), then ‖Cφf‖ = ‖C∗

φf‖ = 0, which means

that f ∈ N(Cφ). Applying Corollary 6.3, completes the proof. �

It turns out that composition of hφ with φ is positive a.e. [µ] (see also the proof
of [23, Corollary 5]).

Proposition 6.5. If φ : X → X is nonsingular, then hφ ◦ φ > 0 a.e. [µ].
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Proof. Note that µ(φ−1(Nφ)) =
∫

X
χNφ

◦ φdµ =
∫

X
χNφ

hφ dµ = 0. This

combined with φ−1(Nφ) = {x ∈ X : hφ(φ(x)) = 0} completes the proof. �

Corollary 6.6. If φ is a nonsingular transformation of X and hφ ◦ φ = hφ

a.e. [µ], then N(Cφ) = {0}.

Proof. Apply Propositions 6.1 and 6.5. �

7. The polar decomposition

Given an A -measurable function u : X → C, we denote by Mu the operator of
multiplication by u in L2(µ) defined by

D(Mu) = {f ∈ L2(µ) : u · f ∈ L2(µ)},

Muf = u · f, f ∈ D(Mu).

The operator Mu is a normal operator (cf. [3, Section 7.2].
The polar decomposition of Cφ can be explicitly described as follows.

Proposition 7.1. Suppose that the composition operator Cφ is densely defined

and Cφ = U |Cφ| is its polar decomposition. Then

(i) |Cφ| = M
h
1/2
φ

,

(ii) the initial space of U is given by 3

R(|Cφ|) =
{

h
1/2
φ f : f ∈ L2(hφ dµ)

}

, (7.1)

(iii) the final space of U is given by

R(Cφ) =
{

f ◦ φ : f ∈ L2(hφ dµ)
}

, (7.2)

(iv) the partial isometry U is given by 4

Ug =
g ◦ φ

(hφ ◦ φ)1/2
, g ∈ L2(µ), (7.3)

(v) the adjoint U∗ of U is given by

U∗g = h
1/2
φ · V −1Pg, g ∈ L2(µ),

where V : L2(hφ dµ) → R(Cφ) is a unitary operator defined by V f = f ◦φ

for f ∈ L2(hφ dµ) and P is the orthogonal projection of L2(µ) onto R(Cφ).

Proof. (i) We will show that C∗
φCφ ⊆ Mhφ

. Let {Xn}
∞
n=1 be as in Corollary

4.6 (with m = 1). Take f ∈ D(C∗
φCφ) and fix n ∈ N. By (3.5), χ∆ ∈ D(Cφ)

whenever ∆ ∈ A and ∆ ⊆ Xn. Thus, for every such ∆, we have
∫

∆

C∗
φCφf dµ = 〈C∗

φCφf, χ∆〉 = 〈Cφf, Cφχ∆〉
(3.2)
=

∫

∆

fhφ dµ.

Since both functions (C∗
φCφf)χXn and (fhφ)χXn are in L1(µ), we deduce that

C∗
φCφf = fhφ a.e. [µ] on Xn. This and Xn ր X give C∗

φCφf = fhφ a.e. [µ]. As a
consequence, we have C∗

φCφ ⊆ Mhφ
. Since both are selfadjoint operators, they are

equal. Thus |Cφ| = M
1/2
hφ

= M
h
1/2
φ

.

3 Note that the mapping L2(hφ dµ) ∋ f 7→ h
1/2
φ f ∈ L2(µ) is an isometry.

4 Recall that hφ ◦ φ > 0 a.e. [µ] (cf. Proposition 6.5).
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(ii) By [3, Section 8.1] and Proposition 6.1, we have

R(|Cφ|) = N(|Cφ|)
⊥ = N(Cφ)⊥ = χX\Nφ

L2(µ), (7.4)

which as easily seen gives (7.1).

(iii) By (3.4) and (ii), the mapping W : R(|Cφ|) → L2(µ) given by

W (h
1/2
φ f) = f ◦ φ, f ∈ L2(hφ dµ). (7.5)

is a well-defined isometry. Using (i) we verify that W |R(|Cφ|) = U |R(|Cφ|), which

implies that R(Cφ) = R(U) = R(W ). Hence (iii) holds and, by (7.5), we have

U∗(f ◦ φ) = h
1/2
φ f, f ∈ L2(hφ dµ). (7.6)

(iv) Applying the measure transport theorem to the restriction of φ to the full
µ-measure set on which hφ ◦ φ is positive (cf. Proposition 6.5), we get

∫

X

|g ◦ φ|2

hφ ◦ φ
dµ =

∫

X\Nφ

|g|2 dµ, g ∈ L2(µ). (7.7)

This and Proposition 6.1 imply that the mapping Ũ : L2(µ) ∋ g 7→ g◦φ
(hφ◦φ)1/2

∈ L2(µ)

is a contraction such that N(Ũ) = χNφ
L2(µ) = N(|Cφ|). Hence, by (7.4) and (7.7),

Ũ is an isometry on R(|Cφ|). Clearly, by (i), Ũ |Cφ|g = Cφg for g ∈ D(Cφ) =

D(|Cφ|), which implies that U = Ũ .
(v) By (3.4) and (7.2), V is a well-defined unitary operator. If g ∈ L2(µ), then

by (iii), Pg = f ◦ φ a.e. [µ] for some f ∈ L2(hφ dµ). Thus, by N(U∗) = R(I − P )
and (7.6), we have

U∗g = U∗Pg = U∗(f ◦ φ) = h
1/2
φ f = h

1/2
φ · V −1Pg.

This completes the proof. �

Regarding Proposition 7.1, we note that the formulas for |Cφ| and R(Cφ) are
well-known in the case of bounded composition operators (cf. [23, Lemma 1]). The
formula (7.3) has appeared in [10, p. 387] in the context of bounded operators
without proof.

Corollary 7.2. Suppose that Cφ is densely defined and g ∈ L2(µ). Then g

belongs to R(Cφ) if and only if one of the following equivalent conditions holds5:

(i) there is an A -measurable function f : X → C such that g = f ◦φ a.e. [µ],
(ii) there is a φ−1(A )-measurable function f : X → C such that g = f a.e. [µ],

(iii) g is (φ−1(A ))µ-measurable,

(iv) for every Borel set ∆ in C there exists ∆′ ∈ A such that

µ
(

g−1(∆) △ φ−1(∆′)
)

= 0.

In particular, R(Cφ) = L2(µ|(φ−1(A ))µ).

Proof. Apply (3.4), (7.2), (B.1), (B.2) and Lemma B.3. �

5 See Appendix for definitions and notation.
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Corollary 7.3. If Cφ is densely defined, then the map V : L2(hφ dµ) → R(Cφ)
given by V f = f ◦ φ for f ∈ L2(hφ dµ) is a well-defined unitary operator such that

D(C∗
φ) =

{

g ∈ L2(µ) : hφ · V −1Pg ∈ L2(µ)
}

,

C∗
φg = hφ · V

−1Pg, g ∈ D(C∗
φ),

(7.8)

where P is the orthogonal projection of L2(µ) onto R(Cφ) = L2(µ|(φ−1(A ))µ).

Proof. If Cφ = U |Cφ| is the polar decomposition of Cφ, then C∗
φ = |Cφ|U

∗.
This, Proposition 7.1 and Corollary 7.2 complete the proof. �

Remark 7.4. Concerning Corollary 7.3, we observe that, in view of (B.3),
E(g) := E(g|φ−1(A )) = Pg a.e. [µ] and thus C∗

φg = hφ · (E(g) ◦ φ−1) for every

g ∈ D(C∗
φ), where E(g) ◦ φ−1 is understood as in [11, Lemma 6.4].

8. Normality and quasinormality

It turns out that the characterizations of quasinormality and normality of un-
bounded composition operators take the same forms as those for bounded ones.

Proposition 8.1. If Cφ is densely defined, then Cφ is quasinormal if and only

if hφ = hφ ◦ φ a.e. [µ].

Proof. Let Cφ = U |Cφ| be the polar decomposition of Cφ. Suppose that Cφ
is quasinormal. Then by [48, Proposition 1], U |Cφ| ⊆ |Cφ|U . Let {Xn}

∞
n=1 be as

in Corollary 4.6 (with m = 1). Then, by (3.5), {χXn}
∞
n=1 ⊆ D(Cφ), which together

with Proposition 7.1 implies that for every n ∈ N,

χXn ◦ φ = U |Cφ|χXn = |Cφ|UχXn =
(

hφ

hφ ◦ φ

)1/2

χXn ◦ φ a.e. [µ].

Since Xn ր X as n→ ∞, we conclude that hφ = hφ ◦ φ a.e. [µ].
For the converse, take f ∈ D(|Cφ|). By (7.3) and D(|Cφ|) = D(Cφ), we have

h
1/2
φ Uf =

(

hφ

hφ ◦ φ

)1/2

f ◦ φ = f ◦ φ ∈ L2(µ).

Hence, by Proposition 7.1 (i), f ∈ D(|Cφ|U) and |Cφ|Uf = Cφf = U |Cφ|f . There-
fore, U |Cφ| ⊆ |Cφ|U . Applying [48, Proposition 1] completes the proof. �

Proposition 8.2. If D(Cφ) = L2(µ), then the following are equivalent:

(i) Cφ is normal,

(ii) hφ = hφ ◦ φ a.e. [µ] and N(C∗
φ) ⊆ N(Cφ),

(iii) hφ = hφ ◦ φ a.e. [µ] and N(C∗
φ) = {0},

(iv) hφ = hφ ◦ φ a.e. [µ] and for every ∆ ∈ A there exists ∆′ ∈ A such that

µ(∆ △ φ−1(∆′)) = 0.

Moreover, if Cφ is normal, then N(Cφ) = {0} and hφ > 0 a.e. [µ].

Proof. (i)⇒(iii) Since normal operators are always quasinormal, we infer from
Proposition 8.1 that hφ = hφ ◦ φ a.e. [µ]. Clearly, N(Cφ) = N(C∗

φ). That N(C∗
φ) =

{0} follows from Corollary 6.6.
(iii)⇒(ii) Evident.
(ii)⇒(i) This is a direct consequence of Proposition 8.1 and Theorem 2.2.
(iii)⇔(iv) Since N(C∗

φ) = {0} if and only if R(Cφ) is dense in L2(µ), it suffices

to apply Corollary 7.2, Lemma B.2 and (B.1).
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The ”moreover” part follows from the above and Proposition 6.5. �

9. Formal normality

In this section we show that formally normal composition operators are auto-
matically normal. We begin by proving a result which is of measure-theoretical
nature. We refer the reader to Appendix B for the definition and basic properties
of E(·|φ−1(A )). For brevity, we write E(·) = E(·|φ−1(A )).

Lemma 9.1. If φ is a nonsingular transformation of X, then the following two

conditions are equivalent for every n ∈ N:

(i) hφn+1 = hφn · hφ a.e. [µ],
(ii) E(hφn) = hφn ◦ φ a.e. [µ|φ−1(A )].

Proof. (i)⇒(ii) Note that
∫

φ−1(∆)

E(hφn) dµ =

∫

φ−1(∆)

hφn dµ = µ((φ−n(φ−1(∆)))

= µ((φ−(n+1)(∆)) =

∫

∆

hφn+1 dµ =

∫

∆

hφn · hφ dµ

=

∫

X

(χ∆ ◦ φ)(hφn ◦ φ) dµ =

∫

φ−1(∆)

hφn ◦ φdµ, ∆ ∈ A ,

which, by the uniqueness assertion in the Radon-Nikodym theorem, implies (ii).
Arguing as above, we can prove the reverse implication. �

The next two lemmas are key ingredients of the proof of Theorem 9.4.

Lemma 9.2. Suppose that C2
φ is densely defined. Then the following two con-

ditions are equivalent:

(i) D(C2
φ) ⊆ D(C∗

φCφ) and ‖C2
φf‖ = ‖C∗

φCφf‖ for all f ∈ D(C2
φ),

(ii) hφ2 = h
2
φ a.e. [µ].

Moreover, if Cφ is formally normal, then (i) holds.

Proof. (i)⇒(ii) Take f ∈ D(C2
φ). Then, by Proposition 7.1(i), we have

∫

X

|f |2h2
φ dµ = ‖Mhφ

f‖2 = ‖C∗
φCφf‖

2 = ‖Cφ2f‖2 =

∫

X

|f |2hφ2 dµ. (9.1)

Let {Xn}
∞
n=1 be as in Corollary 4.6 (with m = 2). Then {χXn}

∞
n=1 ⊆ D(C2

φ) and
∫

∆

h
2
φ dµ

(9.1)
=

∫

∆

hφ2 dµ <∞, ∆ ∈ A , ∆ ⊆ Xn, n ∈ N,

which implies that h
2
φ = hφ2 a.e. [µ] on Xn for every n ∈ N. Hence (ii) holds.

(ii)⇒(i) Take f ∈ D(C2
φ). Then, by (3.6),

∫

X |fhφ|
2 dµ =

∫

X |f |2hφ2 dµ < ∞,

which means that f ∈ D(Mhφ
) = D(C∗

φCφ). Arguing as in (9.1), we obtain (i).
The “moreover” part is obvious. �

Lemma 9.3. If φ is nonsingular transformation of X, then the following con-

ditions are equivalent:

(i) Cφ is normal,

(ii) Cφ is formally normal and D(C2
φ) = L2(µ).
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Proof. (i)⇒(ii) Evident (since powers of normal operators are normal, cf. [3]).
(ii)⇒(i) First we will show that

D(Cφ) ∩ R(Cφ) = D(C∗
φ) ∩ R(Cφ). (9.2)

Indeed, if g ∈ D(C∗
φ) ∩ R(Cφ), then by (7.2) there exists f ∈ L2(hφ dµ) such that

g = f ◦ φ a.e. [µ]. It follows from Corollary 7.3 that hφf = hφV
−1g ∈ L2(µ). This

and Lemma 9.2 imply that
∫

X

|g ◦ φ|2 dµ =

∫

X

|f ◦ φ2|2 dµ =

∫

X

|f |2hφ2 dµ =

∫

X

|fhφ|
2 dµ <∞,

which means that g ∈ D(Cφ). This yields (9.2).

Let P be the orthogonal projection of L2(µ) onto R(Cφ). We will prove that

PD(Cφ) ⊆ D(Cφ). (9.3)

Indeed, take f ∈ D(Cφ). Since (I − P )f ∈ N(C∗
φ) and D(Cφ) ⊆ D(C∗

φ), we get

Pf ∈ D(C∗
φ) ∩ R(Cφ). Hence by (9.2), Pf ∈ D(Cφ), which proves (9.3).

It follows from (9.3) and Corollary 6.4 that

D(Cφ) ⊆
(

D(Cφ) ∩N(C∗
φ)
)

⊕
(

D(Cφ) ∩ R(Cφ)
)

= D(Cφ) ∩ R(Cφ),

which together with D(Cφ) = L2(µ) imply that R(Cφ) = L2(µ). Therefore, by
(9.2), D(Cφ) = D(C∗

φ), which completes the proof. �

As is shown below, the assumption D(C2
φ) = L2(µ) in Lemma 9.3 can be

dropped without spoiling its conclusion.

Theorem 9.4. Let φ be a nonsingular transformation of X. Then Cφ is normal

if and only if Cφ is formally normal.

Proof. It suffices to prove the “if” part. Suppose Cφ is formally normal.
Let {Xn}

∞
n=1 ⊆ A be as in Corollary 4.6 (with m = 1). Take ∆ ∈ A . Since

{χXn∩∆}
∞
n=1 ⊆ D(Cφ), we get (see also Remark 7.4)

∫

Xn∩∆

hφ dµ
(3.4)
= ‖Cφ(χXn∩∆)‖2 = ‖C∗

φ(χXn∩∆)‖2

(7.8)
=

∫

X

h
2
φ · |V

−1
E(χXn∩∆)|2 dµ

=

∫

X

(hφ ◦ φ)(E(χXn∩∆))2 dµ, n ∈ N.

Using (B.6) and Lebesgue’s monotone convergence theorem, we obtain
∫

∆

hφ dµ =

∫

X

(hφ ◦ φ)(E(χ∆))2 dµ, ∆ ∈ A ,

which yields
∫

φ−1(∆)

hφ dµ =

∫

φ−1(∆)

hφ ◦ φdµ, ∆ ∈ A .

This in turn implies that E(hφ) = hφ ◦ φ a.e. [µ|φ−1(A )]. By Lemma 9.1, hφ2 = h
2
φ

a.e. [µ]. Since hφ < ∞ a.e. [µ], we see that hφ + hφ2 <∞ a.e. [µ]. Using Corollary

4.5 (ii), we get D(C2
φ) = L2(µ). Applying Lemma 9.3 completes the proof. �
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Remark 9.5. Using an unpublished result from [52] (based on a model for
unbounded quasinormal operators), we can also prove Theorem 9.4 as follows. Sup-
pose Cφ is formally normal. Then, by the polarization formula, we have

∫

X

f ḡhφ dµ = 〈Cφf, Cφg〉 = 〈C∗
φf, C

∗
φg〉

(7.8)
=

∫

X

h
2
φ

(

V −1
E(f)

)(

V −1E(g)
)

dµ

=

∫

X

(hφ ◦ φ)E(f)E(g) dµ, f, g ∈ D(Cφ). (9.4)

By Propositions 3.2 and 6.1, and Corollary 6.3, we can assume that 0 < hφ(x) <∞
for all x ∈ X . Let {Xn}

∞
n=1 ⊆ A be as in Corollary 4.6 (with m = 1). Set

Yn = {x ∈ Xn : hφ(x) > 1/n} for n ∈ N. Clearly, Yn ր X as n→ ∞. Take ∆ ∈ A .

Since {χYn}
∞
n=1, {h

−1
φ · χYn∩∆}

∞
n=1 ⊆ D(Cφ), we can substitute f = h

−1
φ · χYn∩∆

and g = χYn into (9.4). What we get is

µ(Yn ∩∆) =

∫

X

(hφ ◦ φ)E(h−1
φ · χYn∩∆)E(χYn) dµ

(B.5)
=

∫

Yn∩∆

hφ ◦ φ

hφ
E(χYn) dµ, n ∈ N.

Using (B.6) and Lebesgue’s monotone convergence theorem, we obtain

µ(∆) =

∫

∆

hφ ◦ φ

hφ
dµ, ∆ ∈ A ,

which implies that hφ◦φ = hφ a.e. [µ]. By Proposition 8.1, Cφ is quasinormal. Since
quasinormal formally normal operators are normal (cf. [52]), the proof is complete.

10. Generating Stieltjes moment sequences

We begin by proving two lemmas which are main tools in the proof of Theorem
10.4 below.

Lemma 10.1. Suppose φ is a nonsingular transformation of X and {En}
∞
n=1 is

a sequence of subsets of L2(µ) satisfying the following three conditions:

(i) En fulfils (A.5), En ⊆ D(Cnφ ) and En = L2(µ) for all n ∈ N,

(ii)
[

‖Ci+jφ f‖2
]n

i,j=0
> 0 for all f ∈ E2n and n ∈ N,

(iii)
[

‖Ci+j+1
φ f‖2

]n

i,j=0
> 0 for all f ∈ E2n+1 and n ∈ N.

Then the following three assertions hold:

(a) {hφn(x)}∞n=0 is a Stieltjes moment sequence for µ-a.e. x ∈ X,

(b) Cnφ = Cφn for every n ∈ N,

(c) D∞(Cφ) is a core for Cnφ for every n ∈ Z+.

Proof. (a) By (i) and Corollary 4.5 (ii), there is no loss of generality in as-
suming that 0 6 hφn(x) <∞ for all x ∈ X and n ∈ Z+. Using (3.4), we obtain

∫

X

∣

∣

∣

n
∑

i,j=0

αiᾱjhφi+j

∣

∣

∣
|f |2 dµ <∞, f ∈ D(C2n

φ ), {αi}
n
i=0 ⊆ C, n ∈ Z+. (10.1)
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If {αi}
n
i=0 ⊆ C, then by (i) and (ii) we have

0 6

n
∑

i,j=0

‖Ci+jφ f‖2αiᾱj =

∫

X

(

n
∑

i,j=0

αiᾱjhφi+j

)

|f |2 dµ, f ∈ E2n, n ∈ N.

Combining (i), (10.1) and Corollary A.6 (with E = E2n), we see that

n
∑

i,j=0

αiᾱjhφi+j > 0 a.e. [µ] for all n ∈ N and {αi}
n
i=0 ⊆ C.

Let Q be a countable dense subset of C. Then there exists a set ∆0 ∈ A such that
µ(X \∆0) = 0 and

∑n
i,j=0 αiᾱjhφi+j(x) > 0 for all n ∈ N, {αi}

n
i=0 ⊆ Q and x ∈ ∆0.

As Q is dense in C, we conclude that [hφi+j (x)]ni,j=0 > 0 for all n ∈ N and x ∈ ∆0.

Using (iii) and applying a similar reasoning as above, we infer that there exists a
set ∆1 ∈ A such that µ(X \ ∆1) = 0 and [hφi+j+1(x)]ni,j=0 > 0 for all n ∈ N and

x ∈ ∆1. Employing (2.5) yields (a).
(b) By (a), there exists ∆ ∈ A such that µ(X \ ∆) = 0, hφ0(x) = 1 and

{hφn(x)}∞n=0 is a Stieltjes moment sequence for every x ∈ ∆. Hence, for every x ∈ ∆
there exists a Borel probability measure µx on R+ such that hφn(x) =

∫

R+
sn dµx(s)

for all n ∈ Z+. This yields
( n
∑

j=0

hφj

)

(x) =

∫

R+

( n
∑

j=0

sj
)

dµx(s)

=

∫

[0,1)

( n
∑

j=0

sj
)

dµx(s) +

∫

[1,∞)

( n
∑

j=0

sj
)

dµx(s)

6 (n+ 1)

∫

[0,1)

1 dµx(s) + (n+ 1)

∫

[1,∞)

sn dµx(s)

6 (n+ 1)(1 + hφn)(x), x ∈ ∆, n ∈ N.

Hence the domains of Cnφ and Cφn coincide for all n ∈ N. By (3.3), this gives (b).

(c) Apply (i) and Theorem 4.7. This completes the proof. �

Lemma 10.2. Suppose that φ is a nonsingular transformation of X satisfying

the following two conditions:

(i) D(Cnφ ) is dense in L2(µ) for every n ∈ N,

(ii)
[

‖Ci+jφ f‖2
]n

i,j=0
> 0 for all f ∈ D(C2n

φ ) and n ∈ N.

Then the assertions (a), (b) and (c) of Lemma 10.1 hold.

Proof. Set En = D(Cnφ ) for n ∈ N. According to (3.6), each En satisfies (A.5).

Substituting Cφf for f in (ii) implies that the hypothesis (iii) of Lemma 10.1 is
satisfied. Applying Lemma 10.1 completes the proof. �

Corollary 10.3. If Cφ is subnormal and D(Cnφ ) = L2(µ) for all n ∈ N, then

the assertions (a), (b) and (c) of Lemma 10.1 hold.

Proof. Apply Proposition 2.4 and Lemma 10.2. �

The following theorem completely characterizes composition operators that
generate Stieltjes moment sequences. It should be compared with Lambert’s char-
acterizations of bounded subnormal composition operators (cf. [31]).



ON UNBOUNDED COMPOSITION OPERATORS 19

Theorem 10.4. If φ is a nonsingular transformation of X, then the following

conditions are equivalent :

(i) Cφ generates Stieltjes moment sequences,

(ii) {hφn(x)}∞n=0 is a Stieltjes moment sequence for µ-a.e. x ∈ X,

(iii) D(Ckφ) = L2(µ) for all k ∈ N, and {µ(φ−n(∆))}∞n=0 is a Stieltjes moment

sequence for every ∆ ∈ A such that µ(φ−k(∆)) <∞ for all k ∈ Z+,

(iv) hφn < ∞ a.e. [µ] for all n ∈ N and L(p) > 0 a.e. [µ] whenever p(t) > 0
for all t ∈ R+, where L : C[t] → M is a linear mapping determined by6

L(tn) = hφn , n ∈ Z+;

here C[t] is the set of all complex polynomials in one real variable t and
M is the set of all A -measurable complex functions on X.

Moreover, if (i) holds, then Cnφ = Cφn and D∞(Cφ) is a core for Cnφ for all n ∈ Z+.

Proof. (i)⇒(ii) Set En = D∞(Cφ) for n ∈ N. By (2.5), (3.6) and Lemma
10.1, we see that the condition (ii) and the “moreover” part hold.

(ii)⇒(i) Take f ∈ D∞(Cφ), n ∈ Z+ and {αi}
n
i=0 ⊆ C. Then, by (2.5), we have

n
∑

i,j=0

αiαj‖C
i+j
φ f‖2 (3.4)

=

∫

X

( n
∑

i,j=0

αiαjhφi+j (x)

)

|f(x)|2 dµ(x) > 0.

Applying the above to Cφf in place of f , we deduce that the sequences {‖Ckφf‖
2}∞k=0

and {‖Ck+1
φ f‖2}∞k=0 are positive definite. Therefore, by (2.5), {‖Ckφf‖

2}∞k=0 is a

Stieltjes moment sequence. It follows from Corollary 4.5(ii) and Theorem 4.7 that
D∞(Cφ) is dense in L2(µ).

(i)⇒(iii) Evident (because χ∆ ∈ D∞(Cφ) for every ∆ as in (iii)).
(iii)⇒(i) By Theorem 4.7 the set D∞(Cφ) is dense in L2(µ). Consider a simple

A -measurable function u =
∑k
i=1 αiχ∆i , where {αi}

k
i=1 are positive real numbers

and {∆i}
k
i=1 are pairwise disjoint sets in A . Suppose that u is in D

∞(Cφ). Then,
by the measure transport theorem, {χ∆i}

k
i=1 ⊆ D∞(Cφ) and

‖Cnφu‖
2 =

k
∑

i,j=1

αiαj

∫

∆i∩∆j

hφn dµ =
k
∑

i=1

α2
i

∫

∆i

hφn dµ
(3.4)
=

k
∑

i=1

α2
iµ(φ−n(∆i))

for all n ∈ Z+. Hence, by (iii), we have

{‖Cnφu‖
2}∞n=0 is a Stieltjes moment sequence for every simple

nonnegative A -measurable function u ∈ D∞(Cφ).
(10.2)

Now take f ∈ D
∞(Cφ). Then there exists a sequence {un}

∞
n=1 of simple A -

measurable functions un : X → R+ such that un(x) 6 un+1(x) 6 |f(x)| and
limk→∞ uk(x) = |f(x)| for all n ∈ N and x ∈ X . This implies that {un}

∞
n=1 ⊆

D∞(Cφ) and, by Lebesgue’s monotone convergence theorem,

‖Cnφf‖
2 =

∫

X

|f |2hφn dµ = lim
k→∞

∫

X

u2
khφn dµ = lim

k→∞
‖Cnφuk‖

2, n ∈ Z+.

Since the class of Stieltjes moment sequences is closed under the operation of taking
pointwise limits (cf. (2.5)), we infer from (10.2) that {‖Cnφf‖

2}∞n=0 is a Stieltjes
moment sequence.

6 To make the definition of L correct we have to modify hφn so that 0 6 hφn (x) < ∞ for all

x ∈ X and n ∈ Z+.



20 P. BUDZYŃSKI, Z. J. JAB LOŃSKI, I. B. JUNG, AND J. STOCHEL

(ii)⇒(iv) If p ∈ C[t] is such that p(t) > 0 for all t ∈ R+, then there exist
q1, q2 ∈ C[t] such that p(t) = t|q1(t)|2 + |q2(t)|2 for all t ∈ R (see [36, Problem 45,
p. 78]). This fact combined with (2.5) implies that L(p) > 0 a.e. [µ].

(iv)⇒(ii) Let Q be a countable dense subset of C. If q ∈ C[t] is a polynomial
with coefficients in Q, then the polynomials p1 := |q|2 and p2 := t|q|2 are nonnega-
tive on R+. Hence L(pi) > 0 a.e. [µ] for i = 1, 2. Since Q is countable, this implies
that there exists ∆ ∈ A such that µ(X \∆) = 0,

0 ≤ hφn(x) <∞,

n
∑

i,j=0

αiαjhφi+j (x) > 0 and

n
∑

i,j=0

αiαjhφi+j+1(x) > 0 (10.3)

for all n ∈ Z+, {αi}
n
i=0 ⊆ Q and x ∈ ∆. As Q is dense in C, we see that (10.3) holds

for all n ∈ Z+, {αi}
n
i=0 ⊆ C and x ∈ ∆. This and (2.5) complete the proof. �

Conclusion 10.5. We close the paper by pointing out that there exists a
composition operator generating Stieltjes moment sequences which is not subnormal
and even not hyponormal. Such an operator can be constructed on the basis of a
weighted shift on a directed tree with one branching vertex (cf. [25, Section 4.3]).
In view of Theorem 10.4, any composition operator Cφ which generates Stieltjes
moment sequences, in particular the aforementioned, satisfies the conditions (ii),
(iii) and (iv) of this theorem as well as its “moreover” part (specifically, D∞(Cφ)
is a core for Cnφ for every n ∈ Z+, which is considerably more than is required in

Definition 2.3). Therefore, none of the Lambert characterizations of subnormality
of bounded composition operators (cf. [31]) is valid in the unbounded case. It is
worth mentioning that the above example is built over the discrete measure space.
However, it can be immediately adapted to the context of measures which are
equivalent to the Lebesgue measure on [0,∞) by applying [24, Theorem 2.7].

Appendix A.

Here we gather some useful properties of L2-spaces. The first two lemmas seem
to be folklore. For the reader’s convenience, we include their proofs.

Lemma A.1. Let (X,A , µ) be a measure space and let ρ1, ρ2 be A -measurable

scalar functions on X such that 0 < ρi <∞ a.e. [µ] for i = 1, 2. Then L2(ρ1 dµ)∩
L2(ρ2 dµ) is dense7 in L2(ρi dµ) for i = 1, 2.

Proof. Since L2(ρ1 dµ) ∩ L2(ρ2 dµ) = L2((ρ1 + ρ2) dµ), we can assume that
0 < ρ2(x) 6 ρ1(x) < ∞ for all x ∈ X . Take ∆ ∈ A such that χ∆ ∈ L2(ρ2 dµ).
Set ∆n =

{

x ∈ ∆ : ρ1(x) 6 n and 1
n 6 ρ2(x)

}

for n ∈ N. Note that {χ∆n}
∞
n=1 ⊆

L2(ρ1 dµ). Since ∆n ր ∆ as n → ∞, we see that {χ∆n}
∞
n=1 converges to χ∆ in

L2(ρ2 dµ). Applying [38, Theorem 3.13] completes the proof. �

Note that Lemma A.1 is no longer true if one of the density functions ρ1 and
ρ2 takes the value ∞ on a set of positive measure µ (even if ρ2 6 ρ1). Employing
Lemma A.1 and the Radon-Nikodym theorem, we get the following.

Corollary A.2. Let (X,A , µ1) and (X,A , µ2) be σ-finite measure spaces. If

the measures µ1 and µ2 are mutually absolutely continuous, then L2(µ1) ∩ L2(µ2)
is dense in L2(µi) for i = 1, 2.

Corollary A.2 is no longer true if one of the measures µ1 and µ2 is not σ-finite.

7 This makes sense because the measures ρ1 dµ and ρ2 dµ are mutually absolutely continuous.
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Lemma A.3. Let (X,A , µ) be a σ-finite measure space and ρ1, ρ2 be A -measur-

able scalar functions on X such that 0 < ρ1 6 ∞ a.e. [µ] and 0 6 ρ2 6 ∞ a.e. [µ].
Then the following two conditions are equivalent :

(i)
∫

X
|f |2ρ2 dµ < ∞ for every A -measurable function f : X → C such that

∫

X |f |2ρ1 dµ <∞,

(ii) there exists c ∈ R+ such that ρ2 6 cρ1 a.e. [µ].

Proof. (i)⇒(ii) Without loss of generality we can assume that ρ1 <∞ a.e. [µ].
We can also assume that ρ2 < ∞ a.e. [µ] (indeed, otherwise, since ρ1 < ∞ a.e. [µ]
and µ is σ-finite, there exist Ω ∈ A and k ∈ N such that ρ1(x) 6 k and ρ2(x) = ∞
for all x ∈ Ω, and 0 < µ(Ω) < ∞; hence

∫

Ω
ρ1 dµ < ∞ and

∫

Ω
ρ2 dµ = ∞, which

is a contradiction). Finally, replacing ρ2 by ρ2
ρ1

if necessary, we can assume that

ρ1(x) = 1 for all x ∈ X . Now applying the Landau-Riesz summability theorem (cf.
[5, Problem G, p. 398]), we obtain (ii). The implication (ii)⇒(i) is obvious. �

Corollary A.4. Let (X,A , µ) be a σ-finite measure space and ρ1, ρ2 be A -

measurable scalar functions on X such that 0 < ρi 6 ∞ a.e. [µ] for i = 1, 2. Then

L2(ρ1 dµ) ⊆ L2(ρ2 dµ) if and only if there exists c ∈ R+ such that ρ2 6 cρ1 a.e. [µ].

The implication (i)⇒(ii) of Lemma A.3 is not true if we drop the assumption
that ρ1 > 0 a.e. [µ]. Corollary A.4 is no longer true if µ is not σ-finite (e.g., X = N,
A = 2X , µ({1}) = 1, µ({i}) = ∞ for i > 2, ρ1 ≡ 1 and ρ2(n) = n for n ∈ X).

The following lemma generalizes [24, Lemma 2.1].

Lemma A.5. Let (X,A , µ) be a σ-finite measure space, E be a dense subset of

L2(µ) and h : X → C be an A -measurable function such that
∫

∆

|h||f |2 dµ <∞ and

∫

∆

h|f |2 dµ > 0 for all f ∈ E and ∆ ∈ A∗, (A.1)

where A∗ = {∆ ∈ A : µ(∆) <∞}. Then h > 0 a.e. [µ].

Proof. Set Ξf = {x ∈ X : |f(x)| > 0} for f ∈ E . First, we will show that

h(x) > 0 for µ-a.e. x ∈ Ξf and for every f ∈ E . (A.2)

Indeed, fix f ∈ E and set Ξf,k =
{

x ∈ X : |f(x)| > 1
k

}

for k ∈ N. It follows from
Chebyshev’s inequality that Ξf,k ∈ A∗ for k ∈ N. Applying (A.1), we deduce that

∫

Ξf,k

|h||f |2 dµ <∞ and

∫

Ξf,k∩∆

h|f |2 dµ > 0 for all ∆ ∈ A and k ∈ N.

This implies that h > 0 a.e. [µ] on Ξf,k for every k ∈ N. Since Ξf,k ր Ξf as
k → ∞, we conclude that h > 0 a.e. [µ] on Ξf .

Set Σ = {x ∈ X : h(x) > 0}. Suppose that, contrary to our claim, µ(X\Σ) > 0.
As µ is σ-finite, there exists a set Ω ∈ A such that Ω ⊆ X \Σ and 0 < µ(Ω) <∞.
This means that χΩ ∈ L2(µ). Since E is dense in L2(µ), there exists a sequence
{fn}

∞
n=1 ⊆ E which converges to χΩ in L2(µ). Passing to a subsequence if necessary,

we can assume that the sequence {fn}
∞
n=1 converges a.e. [µ] to χΩ, and thus

lim
n→∞

fn(x) = χΩ(x) = 1 for µ-a.e. x ∈ Ω. (A.3)

It follows from (A.2) that µ(Ω ∩ Ξf ) = 0 for every f ∈ E . Applying this property

to f = fn (n ∈ N), we see that µ
(

Ω ∩
⋃∞
n=1Ξfn

)

= 0, which means that

fn(x) = 0 for all n ∈ N and for µ-a.e. x ∈ Ω. (A.4)
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Combining (A.3) with (A.4), we conclude that µ(Ω) = 0, a contradiction. �

Applying Lemma A.5 to h and −h, we see that this lemma remains valid if
“>” is replaced by “=”.

Corollary A.6. Let (X,A , µ) be a σ-finite measure space and E be a dense

subset of L2(µ) such that

fχ∆ ∈ E for all f ∈ E and ∆ ∈ A∗. (A.5)

If h : X → C is an A -measurable function such that
∫

X |h||f |2 dµ < ∞ and
∫

X
h|f |2 dµ > 0 for all f ∈ E, then h > 0 a.e. [µ].

Appendix B.

In this appendix, we describe (mostly without proofs) some results from mea-
sure theory which play an important role in our analysis of composition operators.
Let (X,A , µ) be a fixed measure space and let B ⊆ A be a σ-algebra. We say
that B is relatively µ-complete if A0 ⊆ B, where A0 = {∆ ∈ A : µ(∆) = 0} (cf.
[23]). It is easily seen that the smallest relatively µ-complete σ-algebra containing
B, denoted by Bµ, coincides with the σ-algebra generated by B ∪ A0, and that

B
µ = {∆ ∈ A | ∃∆′ ∈ B : µ(∆ △ ∆′) = 0}. (B.1)

The Bµ-measurable functions are described below (cf. [38, Lemma 1, p. 169]).

Lemma B.1. A function f : X → C is Bµ-measurable if and only if there exists

a B-measurable function g : X → C such that f = g a.e. [µ].

By the above lemma L2(µ|B) is a subset of L2(µ) if and only if B = B
µ. The

question of when L2(µ|B) = L2(µ) has a simple answer (σ-finiteness is essential!).

Lemma B.2. If µ is σ-finite and B is relatively µ-complete, then L2(µ|B) =
L2(µ) if and only if B = A .

Proof. Suppose that L2(µ|B) = L2(µ) and ∆ ∈ A \ B. Since µ is σ-finite,
we may assume that µ(∆) <∞. Then χ∆ ∈ L2(µ) \ L2(µ|B), a contradiction. �

Given a transformation φ of X , we set φ−1(A ) = {φ−1(∆) : ∆ ∈ A }.

Lemma B.3. Suppose that φ : X → X is an A -measurable transformation and

f : X → C is an arbitrary function. Then f is (φ−1(A ))µ-measurable if and only

if there exists an A -measurable function u : X → C such that f = u ◦ φ a.e [µ].

Proof. Applying the following well-known fact

a function g : X → C is φ−1(A )-measurable if and only if there
exists an A -measurable function u : X → C such that g = u ◦ φ,

(B.2)

and Lemma B.1 completes the proof. �

Let PB be the orthogonal projection of L2(µ) onto its closed subspace L2(µ|Bµ).
Set B∗ = {∆ ∈ B : µ(∆) <∞}. It follows from Lemma B.1 that

for every f ∈ L2(µ) there exists a unique (up to sets of measure zero)
B-measurable function E(f |B) : X → C such that PBf = E(f |B) a.e. [µ].

(B.3)

This and the fact that 〈χ∆, f〉 = 〈χ∆, PBf〉 for all f ∈ L2(µ) and ∆ ∈ B∗ yield
∫

∆

f dµ =

∫

∆

E(f |B) dµ, f ∈ L2(µ), ∆ ∈ B∗. (B.4)
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Now suppose that µ|B is σ-finite. It follows from (B.4) that E(f |B) > 0 a.e. [µ]
whenever f > 0 a.e. [µ]. By applying the standard approximation procedure, we
see that for every A -measurable function f : X → [0,∞] there exists a unique (up
to sets of measure zero) B-measurable function E(f |B) : X → [0,∞] such that the
equality in (B.4) holds for every ∆ ∈ B. Thus for every A -measurable function
f : X → [0,∞] and for every B-measurable function g : X → [0,∞] we have

∫

X

gf dµ =

∫

X

gE(f |B) dµ. (B.5)

We call E(f |B) the conditional expectation of f with respect to B (cf. [37]). Clearly,

if 0 6 fn ր f are A -measurable, then E(fn|B) ր E(f |B), (B.6)

where gn ր g means that for µ-a.e. x ∈ X , the sequence {gn(x)}∞n=1 is monotoni-
cally increasing and convergent to g(x).

Concluding Appendix B, we note that if µ is σ-finite and φ : X → X is a
nonsingular transformation such that hφ < ∞ a.e. [µ] (equivalently, Cφ is densely
defined), then the measure µ|φ−1(A ) is σ-finite (cf. Proposition 3.2). Thus we may

consider the conditional expectation E(·|φ−1(A )) with respect to φ−1(A ).
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