Quadratically hyponormal weighted shifts with recursive tail

George R. Exner ${ }^{\text {a }}$, Il Bong Jung ${ }^{\text {b,*, }}$, Mi Ryeong Lee ${ }^{\text {b }}$, Sun Hyun Park ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, Bucknell University, Lewisburg, PA 17837, USA
${ }^{\text {b }}$ Department of Mathematics, Kyungpook National University, Daegu 702-701, Republic of Korea

A R TICLE INFO

Article history:

Received 11 August 2011
Available online 7 June 2013
Submitted by Lawrence A Fialkow

Keywords:

Weighted shift
Quadratic hyponormality
Positive quadratic hyponormality

Abstract

We characterize positive quadratic hyponormality of the weighted shift $W_{\alpha(x)}$ associated to the weight sequence $\alpha(x): 1,1, \sqrt{x},(\sqrt{u}, \sqrt{v}, \sqrt{w})^{\wedge}$ with Stampfli recursive tail, and produce an interval in x with non-empty interior in the positive real line for quadratic hyponormality but not positive quadratic hyponormality for such a shift.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

There has been considerable recent study of classes of operators on Hilbert spaces "weaker than subnormal" in some sense. Often these classes have been related in some way to the concept of hyponormality as defined in [18]. Let \mathscr{H} be a separable complex Hilbert space, and let $L(\mathscr{H})$ be the algebra of all bounded linear operators on \mathscr{H}. An operator T in $L(\mathscr{H})$ is normal if it commutes with its adjoint, subnormal if it is (unitary equivalent to) the restriction of a normal operator to an invariant subspace, and hyponormal if $T^{*} T \geq T T^{*}$. For $A, B \in L(\mathscr{H})$, we set $[A, B]:=A B-B A$. A k-tuple $\mathbf{T}=\left(T_{1}, \ldots, T_{k}\right)$ of operators in $L(\mathscr{H})$ is called hyponormal if the operator matrix $\left(\left[T_{j}^{*}, T_{i}\right]\right)_{i, j=1}^{k}$ is positive on the direct sum of k copies of \mathscr{H}. For $k \in \mathbb{N}$ and $T \in L(\mathscr{H}), T$ is said to be k-hyponormal if $\left(I, T, \ldots, T^{k}\right)$ is hyponormal. It is well known that $T \in L(\mathscr{H})$ is subnormal if and only if T is k-hyponormal for all $k \in \mathbb{N}$, where \mathbb{N} is the set of natural numbers [3,18]. A k-tuple $\mathbf{T}=\left(T_{1}, \ldots, T_{k}\right)$ is weakly hyponormal if $\lambda_{1} T_{1}+\cdots+\lambda_{k} T_{k}$ is hyponormal for every $\lambda_{i} \in \mathbb{C}, i=1, \ldots, k$, where \mathbb{C} is the set of complex numbers. An operator T is weakly k-hyponormal if $\left(T, T^{2}, \ldots, T^{k}\right.$) is weakly hyponormal; equivalently, for every complex polynomial p of degree k or less, $p(T)$ is hyponormal [5]. An operator T is polynomially hyponormal if, for every polynomial p with complex coefficients, $p(T)$ is hyponormal. In [5], Curto initiated the study of classes (actually or potentially) between hyponormal and subnormal with the following implications: "subnormal $\Rightarrow \cdots \Rightarrow$ 2-hyponormal \Rightarrow hyponormal"; the converse implications are not always true [6]. Also it holds obviously that "subnormal \Rightarrow polynomially hyponormal $\Rightarrow \cdots \Rightarrow$ weakly 2-hyponormal \Rightarrow hyponormal"; but the converse implications are not developed completely yet except for weak 2-and 3-hyponormalities $[2,12,19]$ and the foundational (negative) result that polynomial hyponormality does not imply subnormality or even 2-hyponormality (see $[13,14]$). In particular, the weak k-hyponormality case in which $k=2$ has received considerable attention (see, for example, $[6,10,11,15,17,16,20]$), and operators in this class are usually called quadratically hyponormal.

On the other hand, the study of flatness for weighted shifts is a good approach to detect operator gaps between subnormality and hyponormality [4,6,10,17,21]. It was shown in [6] that, if W_{α} is a 2-hyponormal weighted shift with $\alpha_{n}=\alpha_{n+1}$

[^0]for some $n \in \mathbb{N}_{0}:=\mathbb{N} \cup\{0\}$, then $\alpha_{1}=\alpha_{2}=\cdots$. But in general this flatness need not hold in the case of quadratic hyponormality; for example, if $\alpha: \sqrt{\frac{2}{3}}, \sqrt{\frac{2}{3}}, \sqrt{\frac{n+1}{n+2}}(n \geq 2)$, then W_{α} is quadratically hyponormal (see [6]). And so the following problem was posed in [7]: describe all quadratically hyponormal weighted shifts with first two weights equal. In [9,10,20], the recursively generated positively quadratically hyponormal weighted shifts with weight sequence $\alpha: 1,(1, \sqrt{x}, \sqrt{y})^{\wedge}$ were described, and it was proved that quadratic hyponormality of the weighted shift W_{α} with $\alpha: \sqrt{x},(\sqrt{u}, \sqrt{v}, \sqrt{w})^{\wedge}$ is equivalent to positive quadratic hyponormality, where $(\sqrt{u}, \sqrt{v}, \sqrt{w})^{\wedge}$ is the Stampfli subnormal completion of three values $\sqrt{u}, \sqrt{v}, \sqrt{w}$ (see [22]). And also, in [15,21], the recursively generated positively quadratically hyponormal weighted shifts with weight sequence $\alpha: \sqrt{x}, \sqrt{y},(\sqrt{u}, \sqrt{v}, \sqrt{w})^{\wedge}$ with Stampfli's tail were described, and it was proved that there exists a quadratically hyponormal but not positively quadratically hyponormal weighted shift W_{α}. In this note, we obtain a sufficient condition for quadratic hyponormality of weighted shifts, and compare positive quadratic hyponormality and quadratic hyponormality: in particular, for the weight sequence $\alpha(x): 1,1, \sqrt{x},(\sqrt{u}, \sqrt{v}, \sqrt{w})^{\wedge}$ for some u, v, w, we obtain an interval J in x with non-empty interior in the positive real line such that a weighted shift $W_{\alpha(x)}$ is quadratically hyponormal but not positively quadratically hyponormal on J.

Some of the calculations in this paper were aided by use of the software tool Mathematica [23].

2. Preliminaries and notation

The usual examples for the class of quadratically hyponormal operators on Hilbert spaces have come from weighted shifts, so we recall some notation that is by now standard. Let α denote a weight sequence, $\alpha: \alpha_{0}, \alpha_{1}, \alpha_{2}, \ldots$, where it is without loss of generality to assume that these are all positive. The weighted shift W_{α} acting on $\ell^{2}\left(\mathbb{N}_{0}\right)$, with standard basis e_{0}, e_{1}, \ldots, is defined by $W_{\alpha}\left(e_{j}\right)=\alpha_{j} e_{j+1}$ for all $j \in \mathbb{N}_{0}$. It is standard that W_{α} is quadratically hyponormal if and only if $W_{\alpha}+s W_{\alpha}^{2}$ is hyponormal for any $s \in \mathbb{C}$. Let P_{n} denote the orthogonal projection onto $\vee_{k=0}^{n}\left\{e_{k}\right\}$. For $s \in \mathbb{C}$ and $n \geq 0$, define D_{n} by

$$
\begin{align*}
D_{n} & :=D_{n}(s)=P_{n}\left[\left(W_{\alpha}+s W_{\alpha}^{2}\right)^{*}, W_{\alpha}+s W_{\alpha}^{2}\right] P_{n} \\
& =\left(\begin{array}{cccccc}
q_{0} & \bar{r}_{0} & 0 & \cdots & 0 & 0 \\
r_{0} & q_{1} & \bar{r}_{1} & \cdots & 0 & 0 \\
0 & r_{1} & q_{2} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & q_{n-1} & \bar{r}_{n-1} \\
0 & 0 & 0 & \cdots & r_{n-1} & q_{n}
\end{array}\right) \tag{2.1}
\end{align*}
$$

where $\alpha_{-1}=\alpha_{-2}:=0$ and, for $k \geq 0$,

$$
\begin{aligned}
& q_{k}=u_{k}+|s|^{2} v_{k}, \quad r_{k}=s \sqrt{w_{k}}, \quad u_{k}=\alpha_{k}^{2}-\alpha_{k-1}^{2} \\
& v_{k}=\alpha_{k}^{2} \alpha_{k+1}^{2}-\alpha_{k-1}^{2} \alpha_{k-2}^{2}, \quad w_{k}=\alpha_{k}^{2}\left(\alpha_{k+1}^{2}-\alpha_{k-1}^{2}\right)^{2}, \quad k \geq 0
\end{aligned}
$$

Since W_{α} is quadratically hyponormal if and only if $D_{n}(s) \geq 0$ for every $s \in \mathbb{C}$ and every $n \geq 0$, in anticipation of the usual use of Sylvester's criterion (which is sometimes called the Nested Determinant Test; for example, see [8, p. 213]) for positivity of a matrix, we consider $d_{n}(\cdot):=\operatorname{det}\left(D_{n}(\cdot)\right)$; d_{n} is actually a polynomial in $t:=|s|^{2}$ of degree $n+1$, having Maclaurin's expansion $d_{n}(t):=\sum_{i=0}^{n+1} c(n, i) t^{i}$. Since we usually work with these determinants, we abuse notation slightly to regard D_{n} as a function of $t=|s|^{2}$ and write, henceforth, $D_{n}(t)$.

By some standard computations (see [9]), it is known that

$$
\begin{equation*}
d_{0}=q_{0}, \quad d_{1}=q_{0} q_{1}-\left|r_{0}\right|^{2}, \quad d_{n+2}=q_{n+2} d_{n+1}-\left|r_{n+1}\right|^{2} d_{n}, \quad n \geq 0 \tag{2.2}
\end{equation*}
$$

and that also

$$
\begin{align*}
& c(0,0)=u_{0}, \quad c(0,1)=v_{0}, \quad c(1,0)=u_{1} u_{0}, \\
& c(1,1)=u_{1} v_{0}+u_{0} v_{1}-w_{0}, \quad c(1,2)=v_{1} v_{0}, \tag{2.3}\\
& c(n+2, i)=u_{n+2} c(n+1, i)+v_{n+2} c(n+1, i-1)-w_{n+1} c(n, i-1), \quad n \geq 0, \\
& c(n, n+1)=v_{0} v_{1} \cdots v_{n} \geq 0, \quad n \geq 0 .
\end{align*}
$$

Note also for future use that u_{n}, v_{n}, and w_{n} are non-negative for all $n \geq 0$, at least if we assume (as we shall discuss shortly) that the weights are strictly increasing. We will also have frequent occasion to use $z_{n}:=\frac{v_{n}}{u_{n}}, n \geq 0$. If we want all the d_{n} to be non-negative, surely there is an easy way this may occur: in [9], a weighted shift W_{α} is defined to be positively quadratically hyponormal if $c(n, n+1)>0$ and $c(n, i) \geq 0,0 \leq i \leq n, n \in \mathbb{N}_{0}$. This class of operators has been studied in, for example, [1,6,17,20].

We specialize to a class of shifts due to Stampfli and arising in his consideration of the problem of completing an initial finite sequence of weights to yield the weight sequence for a subnormal shift [22]. Given weights $0<\alpha_{0}<\alpha_{1}<\alpha_{2}$, there
is a canonical way to generate a satisfactory completion recursively: define

$$
\begin{equation*}
\widehat{\alpha}_{n}=\left(\Psi_{1}+\frac{\Psi_{0}}{\alpha_{n-1}^{2}}\right)^{1 / 2}, \quad n \geq 3 \tag{2.4}
\end{equation*}
$$

where $\Psi_{0}=-\frac{\alpha_{0}^{2} \alpha_{1}^{2}\left(\alpha_{2}^{2}-\alpha_{1}^{2}\right)}{\alpha_{1}^{2}-\alpha_{0}^{2}}$ and $\Psi_{1}=\frac{\alpha_{1}^{2}\left(\alpha_{2}^{2}-\alpha_{0}^{2}\right)}{\alpha_{1}^{2}-\alpha_{0}^{2}}$. This produces a bounded sequence $\widehat{\alpha}:=\left\{\widehat{\alpha}_{i}\right\}_{i=0}^{\infty}$, for which $\widehat{\alpha}_{i}=\alpha_{i}(0 \leq i \leq$ $2)$. We usually write the weight sequence $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}\right)^{\wedge}$ and the resulting weighted shift as $W_{\left(\alpha_{0}, \alpha_{1}, \alpha_{2}\right)^{\wedge}}$.

Throughout this paper, \mathbb{R}_{0} is the set of non-negative real numbers.

3. Positive quadratic hyponormality

Let W_{α} be the unilateral weighted shift with a weight sequence $\alpha:=\left\{\alpha_{i}\right\}_{i \in \mathbb{N}_{0}}$. Suppose that $\alpha_{k}=\alpha_{k+j}$ for some $k, j \in \mathbb{N}$. Then W_{α} is quadratically hyponormal if and only if $\alpha_{0} \leq \alpha_{1}=\alpha_{2}=\cdots$. Hence we assume throughout that $\alpha_{k}<\alpha_{k+1}$ for all $k \in \mathbb{N}$ to avoid the trivial case.

Let $\alpha: 1,1, \sqrt{x},(\sqrt{u}, \sqrt{v}, \sqrt{w})^{\wedge}$ with $1<x<u<v<w$. For our convenience, we recall from (2.4) that $\alpha_{n}^{2}=$ $\Psi_{1}+\frac{\Psi_{0}}{\alpha_{n-1}^{2}}(n \geq 6)$, where $\Psi_{1}=\frac{v(w-u)}{v-u}$ and $\Psi_{0}=-\frac{u v(w-v)}{v-u}$.

We now begin our work with the following lemma.
Lemma 3.1. Let $\alpha: 1,1, \sqrt{x},(\sqrt{u}, \sqrt{v}, \sqrt{w})^{\wedge}$ with $1<x<u<v<w$. Then, for $n \geq 5$, we have

$$
c(n, i)=\left\{\begin{array}{l}
v_{n} \cdots v_{4} c(3,4), \quad i=n+1, \\
u_{n} c(n-1, n)+v_{n} \cdots v_{5} \eta_{2}, \quad i=n, \\
u_{n} c(n-1, n-1)+v_{n} \cdots v_{5} \eta_{3}, \quad i=n-1, \\
u_{n} \cdots u_{i+2} c(i+1, i), \quad 3 \leq i \leq n-2, \\
u_{n} \cdots u_{5} c(4, i), \quad 0 \leq i \leq 2,
\end{array}\right.
$$

where $\eta_{2}=v_{4} c(3,3)-w_{3} c(2,3)$ and $\eta_{3}=v_{4} c(3,2)-w_{3} c(2,2)$.
Proof. We shall claim that, for $n \geq 5$ and $0 \leq i \leq n+1$,

$$
\begin{equation*}
c(n, i)=u_{n} c(n-1, i)+v_{n} \cdots v_{5}\left[v_{4} c(3, i-n+3)-w_{3} c(2, i-n+3)\right] . \tag{3.1}
\end{equation*}
$$

And we now recall from [10, Lemma 2.1] that

$$
\begin{equation*}
w_{n}=u_{n} v_{n+1}(n \geq 4) \tag{3.2}
\end{equation*}
$$

Then, for $n=5$ and $0 \leq i \leq 6$, we obtain

$$
\begin{align*}
c(5, i) & =u_{5} c(4, i)+v_{5} c(4, i-1)-w_{4} c(3, i-1) \\
& =u_{5} c(4, i)+v_{5}\left[v_{4} c(3, i-2)-w_{3} c(2, i-2)\right] . \tag{3.3}
\end{align*}
$$

Also, by the inductive hypothesis, (3.2) and (3.3), we have

$$
\begin{aligned}
c(n+1, i)= & u_{n+1} c(n, i)+v_{n+1} c(n, i-1)-w_{n} c(n-1, i-1) \\
= & u_{n+1} c(n, i)+\left(v_{n+1} u_{n}-w_{n}\right) c(n-1, i-1)+v_{n+1} \cdots v_{5}\left[v_{4} c(3, i-(n+1)+3)\right. \\
& \left.-w_{3} c(2, i-(n+1)+3)\right] \\
= & u_{n+1} c(n, i)+v_{n+1} \cdots v_{5}\left[v_{4} c(3, i-(n+1)+3)-w_{3} c(2, i-(n+1)+3)\right] .
\end{aligned}
$$

According to (3.1), we have that, for $n \geq 5$ and $0 \leq i \leq n+1$,

$$
c(n, i)=\left\{\begin{array}{l}
v_{n} \cdots v_{4} c(3,4), \quad i=n+1, \\
u_{n} c(n-1, n)+v_{n} \cdots v_{5} \eta_{2}, \quad i=n \\
u_{n} c(n-1, n-1)+v_{n} \cdots v_{5} \eta_{3}, \quad i=n-1, \\
u_{n} c(n-1, i), \quad 0 \leq i \leq n-2
\end{array}\right.
$$

Finally, observe that

$$
\begin{aligned}
c(n, i) & =u_{n} c(n-1, i)=u_{n} u_{n-1} c(n-2, i) \quad(0 \leq i \leq n-2) \\
& =u_{n} \cdots u_{i+2} c(i+1, i) \quad(3 \leq i \leq n-2)
\end{aligned}
$$

and $c(n, i)=u_{n} c(n-1, i)=u_{n} \cdots u_{5} c(4, i), i=0,1,2$. Hence the proof is complete.

Lemma 3.2. Under the same notation in the previous section, we have that

$$
K:=-\frac{\Psi_{1}^{2}}{\Psi_{0}} L^{2}=\lim _{n \rightarrow \infty} \frac{v_{n}}{u_{n}} \quad \text { with } L^{2}=\frac{\Psi_{1}+\sqrt{\Psi_{1}^{2}+4 \Psi_{0}}}{2},
$$

and more precisely that $K=\frac{A+\sqrt{ } v v(w-u)^{2}}{C}$, where $A=v^{2}(w-u)^{3}, B=v^{2}(w-u)^{2}-4 u v(w-v)(v-u)$, and $C=2 u$ $(v-u)^{2}(w-v)$.
Proof. See [9, Theorem 4.3].
Lemma 3.3. Using the notation above, we have that the expression

$$
g_{n}:=z_{n-1}+\left(z_{n}-z_{n-1}\right)+z_{n-1}\left(\frac{z_{n+1}-z_{n}}{z_{n}-z_{n-1}}\right)+\left(z_{n+1}-z_{n}\right)
$$

is constant in n for $n \geq 6$, with value

$$
\begin{equation*}
g_{n}=\frac{v^{2}(u-w)^{3}}{u(u-v)^{2}(v-w)}, \quad n \geq 6 . \tag{3.4}
\end{equation*}
$$

Proof. The proof is a straightforward adaptation of the proof of [17, Lemma 4.3].
Lemma 3.4. Using the notation above, the function

$$
\begin{equation*}
F\left(z_{n-1}, z_{n}\right):=\eta_{1}+z_{n-1} \eta_{2}+z_{n-1} z_{n} \eta_{3} \quad(n \geq 6) \tag{3.5}
\end{equation*}
$$

is either all increasing in n for $n \geq 6$ or is all decreasing in n for $n \geq 6$.
Proof. By computation in the proof of [17, Lemma 4.4], we obtain that, for $n \geq 6$,

$$
F\left(z_{n}, z_{n+1}\right)-F\left(z_{n-1}, z_{n}\right)=\left(z_{n}-z_{n-1}\right)\left(\eta_{2}+\eta_{3} g_{n}\right),
$$

where g_{n} is as in Lemma 3.3. The latter term is constant in n for $n \geq 6$, from Lemma 3.3 , since η_{2}, η_{3} have no n s. It is known that, for $n \geq 6, z_{n} \nearrow K\left[9\right.$, p. 397]. Obviously $F\left(z_{n-1}, z_{n}\right)$ is increasing $(n \geq 6)$ if $\eta_{2}+\eta_{3} g_{n}>0$ and decreasing $(n \geq 6)$ if $\eta_{2}+\eta_{3} g_{n}<0$.

Theorem 3.5. Let α : 1, $1, \sqrt{x},(\sqrt{u}, \sqrt{v}, \sqrt{w})^{\wedge}$, with $1<x<u<v<w$. Then W_{α} is positively quadratically hyponormal if and only if
(i) $c(3,2) \geq 0$ (i.e., $x \leq 2-\frac{1}{u}$);
(ii) $c(4,4) \geq 0, c(4,3) \geq 0$;
(iii) $c(5,5) \geq 0, c(5,4) \geq 0$;
(iv) it holds that
$1^{\circ} \eta_{2} \geq 0$, or
$2^{\circ}\left(\eta_{2}<0\right)$ and $K \leq \frac{\eta_{1}}{\left|\eta_{2}\right|}$,
where η_{2}, η_{3} are as in Lemma 3.1, and $\eta_{1}:=v_{4} c(3,4)$;
(v) it holds that
1° if $\eta_{2}+\frac{v^{2}(u-w)^{3}}{u(u-v)^{2}(v-w)} \eta_{3} \geq 0$, then $\eta_{1}+z_{5} \eta_{2}+z_{5} z_{6} \eta_{3} \geq 0$ or, equivalently, $c(6,5) \geq 0$,
2° if $\eta_{2}+\frac{v^{2}(u-w)^{3}}{u(u-v)^{2}(v-w)} \eta_{3}<0$, then $\eta_{1}+\eta_{2} K+\eta_{3} K^{2} \geq 0$.
Proof. According to Lemma 3.1, we have that W_{α} is positively quadratically hyponormal if and only if it satisfies the following three conditions:

$$
\begin{aligned}
& c(n, i) \geq 0 \quad(0 \leq n \leq 4,2 \leq i \leq n+1) \\
& c(n, n) \geq 0, \quad c(n, n-1) \geq 0 \quad(n \geq 5) .
\end{aligned}
$$

It is obvious from the above coefficients that $c(n, i) \geq 0(0 \leq n \leq 4,0 \leq i \leq n+1)$ if and only if (i) and (ii) hold.
Claim 1. $c(n, n) \geq 0(n \geq 5)$ if and only if $c(5,5) \geq 0$ and (iv) hold.
By Lemma 3.1, we have that

$$
\begin{aligned}
c(n, n) & =u_{n} c(n-1, n)+v_{n} \cdots v_{5} \eta_{2} \quad(n \geq 5) \\
c(n, n) & =u_{n} v_{n-1} \cdots v_{4} c(3,4)+v_{n} \cdots v_{5} \eta_{2} \quad(n \geq 6) \\
& =v_{n-1} \cdots v_{5}\left(u_{n} \eta_{1}+v_{n} \eta_{2}\right) \quad(n \geq 6) .
\end{aligned}
$$

Since $v_{n-1} \cdots v_{5}>0(n \geq 6), c(n, n) \geq 0(n \geq 6)$ is equivalent to $u_{n} \eta_{1}+v_{n} \eta_{2} \geq 0(n \geq 6)$. If $\eta_{2} \geq 0$, then $u_{n} \eta_{1}+v_{n} \eta_{2} \geq 0$. If $\eta_{2}<0$, then

$$
\begin{equation*}
z_{n}=\frac{v_{n}}{u_{n}} \leq \frac{\eta_{1}}{\left|\eta_{2}\right|} \quad(n \geq 6) \tag{3.6}
\end{equation*}
$$

Recalling $z_{n} \nearrow K$ [9, p. 397], the inequality (3.6) is equivalent to $K \leq \frac{\eta_{1}}{\left|\eta_{2}\right|}$.
Claim 2. $c(n, n-1) \geq 0(n \geq 5)$ if and only if $c(5,4) \geq 0, c(6,5) \geq 0$ and (v) holds.
Using Lemma 3.1, we have that

$$
\begin{aligned}
c(6,5) & =u_{6} c(5,5)+v_{6} v_{5} \eta_{3}=u_{6} u_{5} c(4,5)+u_{6} v_{5} \eta_{2}+v_{6} v_{5} \eta_{3} \\
& =u_{6} u_{5} v_{4} c(3,4)+u_{6} v_{5} \eta_{2}+v_{6} v_{5} \eta_{3}=u_{6} u_{5} \eta_{1}+u_{6} v_{5} \eta_{2}+v_{6} v_{5} \eta_{3} \\
& =u_{6} u_{5}\left(\eta_{1}+z_{5} \eta_{2}+z_{5} z_{6} \eta_{3}\right)
\end{aligned}
$$

using the definition of z_{i}, which easily implies that $\eta_{1}+z_{5} \eta_{2}+z_{5} z_{6} \eta_{3} \geq 0$ is equivalent to $c(6,5) \geq 0$.
For $n \geq 7$, by Lemma 3.1, we have that

$$
\begin{aligned}
c(n, n-1) & =u_{n} c(n-1, n-1)+v_{n} \cdots v_{5} \eta_{3} \\
& =u_{n} u_{n-1} c(n-2, n-1)+u_{n} v_{n-1} \cdots v_{5} \eta_{2}+v_{n} \cdots v_{5} \eta_{3} \\
& =u_{n} u_{n-1} v_{n-2} \cdots v_{4} c(3,4)+u_{n} v_{n-1} \cdots v_{5} \eta_{2}+v_{n} \cdots v_{5} \eta_{3} \\
& =v_{n-2} \cdots v_{5}\left(u_{n} u_{n-1} \eta_{1}+u_{n} v_{n-1} \eta_{2}+v_{n} v_{n-1} \eta_{3}\right) \\
& =v_{n-2} \cdots v_{5} u_{n} u_{n-1}\left(\eta_{1}+z_{n-1} \eta_{2}+z_{n} z_{n-1} \eta_{3}\right) .
\end{aligned}
$$

Since $v_{n-2} \cdots v_{5} u_{n} u_{n-1}>0(n \geq 7)$, we have that $\eta_{1}+z_{n-1} \eta_{2}+z_{n} z_{n-1} \eta_{3} \geq 0(n \geq 7)$ if and only if $c(n, n-1) \geq 0(n \geq 7)$. If $\eta_{2}+\eta_{3} g_{6} \geq 0$, it follows from Lemma 3.4 that $F\left(z_{n-1}, z_{n}\right)$ is increasing for $n \geq 6$, where $F\left(z_{n-1}, z_{n}\right)$ is as in (3.5). Thus

$$
F\left(z_{n-1}, z_{n}\right) \geq F\left(z_{5}, z_{6}\right)=\eta_{1}+z_{5} \eta_{2}+z_{5} z_{6} \eta_{3} \text { for all } n \geq 6
$$

Also, if $\eta_{2}+\eta_{3} g_{6}<0$, then $F\left(z_{n-1}, z_{n}\right)$ is decreasing in n for $n \geq 6$. Hence

$$
F(K, K) \leq \cdots \leq F\left(z_{n-1}, z_{n}\right) \leq \cdots \leq F\left(z_{5}, z_{6}\right) .
$$

Since $\lim _{n} z_{n}=K$, obviously we have that

$$
F\left(z_{n-1}, z_{n}\right) \geq 0 \quad(n \geq 6) \Longleftrightarrow F(K, K)=\eta_{1}+\eta_{2} K+\eta_{3} K^{2} \geq 0 .
$$

Hence the proof is complete.
We now discuss an example using Theorem 3.5.
Example 3.6. Let $\alpha: 1,1, \sqrt{x},(\sqrt{u}, \sqrt{v}, \sqrt{w})^{\wedge}$. Take $u=\frac{11}{10}, v=\frac{12}{10}$, and $w=\frac{15}{10}$. After some computations, we get the following (with only possibly relevant ranges presented).
(i) $x \leq 2-\frac{1}{u} \Longleftrightarrow 1<x \leq \frac{12}{11} \approx 1.09090 \cdots$.
(ii) $c(4,4) \geq 0, c(4,3) \geq 0 \Longleftrightarrow 1.00462 \cdots \leq x \leq \frac{841}{770} \approx 1.09220 \cdots$.
(iii) $c(5,5) \geq 0, c(5,4) \geq 0 \Longleftrightarrow 1.00349 \cdots \leq x \leq 1.09629 \cdots$.

Note that $c(6,5) \geq 0$ for $1.022 \cdots \leq x \leq 1.09312 \cdots$ is required for (v).
We now consider the following inequalities restricting our attention to only x with $1.00462 \cdots \leq x \leq \frac{12}{11}$.
(iv) Observe that $\eta_{2}<0 \Leftrightarrow 1.00462 \cdots \leq x<1.02095 \cdots$.

In this range, we get $\eta_{1}+K \eta_{2} \geq 0$ for $1.01499 \cdots \leq x<1.02095 \cdots$ (and $\eta_{1}+K \eta_{2}<0$ for $1.00462 \cdots \leq x<$ $1.01499 \cdots$). And observe that $\eta_{2} \geq 0 \Leftrightarrow 1.02095 \cdots \leq x \leq 1.09090 \cdots$. Hence (iv) holds $\Leftrightarrow 1.01499 \cdots \leq x \leq$ $1.09090 \cdots$.
(v) Observe that $\eta_{2}+\frac{v^{2}(u-w)^{3}}{u(u-v)^{2}(v-w)} \eta_{3} \geq 0 \Leftrightarrow 1.00568 \cdots \leq x \leq 1.06172 \cdots$.

As noted above, $c(6,5) \geq 0$ for $1.022 \cdots \leq x \leq 1.09312 \cdots$. And observe that, under the range of x with $1.00462 \cdots \leq x \leq \frac{12}{11}, \eta_{2}+\frac{v^{2}(u-w)^{3}}{u(u-v)^{2}(v-w)} \eta_{3}<0 \Leftrightarrow 1.00462 \cdots \leq x<1.00568 \cdots$ and $1.06172 \cdots<x \leq \frac{12}{11}$. And we obtain $\eta_{1}+\eta_{2} K+\eta_{3} K^{2} \geq 0$ for $1.00505 \cdots \leq x<1.06584 \cdots$; in our region of interest, the expression is negative to the left and right of these bounds. So (v) holds $\Leftrightarrow 1.00505 \cdots \leq x \leq 1.06583 \cdots$.

Combining (i)-(v), we have that W_{α} is positively quadratically hyponormal $\Leftrightarrow \delta_{1}=1.01499 \cdots \leq x \leq \delta_{2}=1.06583 \cdots$, where δ_{1} is the smallest positive root of $\eta_{1}+K \eta_{2}=0$, where

$$
\begin{aligned}
\eta_{1}+K \eta_{2}= & \frac{x}{12500}\left\{(52800 \sqrt{5}+226325) x^{3}-(226176 \sqrt{5}+963169) x^{2}\right. \\
& +(304512 \sqrt{5}+1291368) x-131328 \sqrt{5}-555012\}
\end{aligned}
$$

and δ_{2} is the second smallest positive root of $\eta_{1}+\eta_{2} K+\eta_{3} K^{2}=0$, where

$$
\begin{aligned}
\eta_{1}+\eta_{2} K+\eta_{3} K^{2}= & \frac{x}{7562500}\left\{(136926625+31944000 \sqrt{5}) x^{3}-(1349119805+428799360 \sqrt{5}) x^{2}\right. \\
& +(2355886536+784080768 \sqrt{5}) x-(1143988596+387341568 \sqrt{5})\} .
\end{aligned}
$$

Remark 3.7. Using some technical computations, it is possible to characterize the positive quadratic hyponormality of weighted shifts W_{α} with weight sequence $\alpha: \sqrt{y_{m}}, \sqrt{y_{m-1}}, \ldots, \sqrt{y_{1}},(\sqrt{u}, \sqrt{v}, \sqrt{w})^{\wedge}$ which generalizes Theorem 3.5.

4. Quadratic hyponormality

Recall that quadratic hyponormality of some weighted shift W_{α} is equivalent to the positivity of the matrices $D_{n}(s)$ for all $s \in \mathbb{C}$, as in Section 2 . As usual, for each n, this is equivalent to the positivity of the associated complex quadratic form. The consequence of Lemma 3.1 in [20] is that this is equivalent to the positivity of a real quadratic form associated with a slightly different matrix. Define, for $t \geq 0$, and for each n,

$$
A_{n}(t)=\left(\begin{array}{cccccc}
q_{0} & -\sqrt{w_{0} t} & 0 & \cdots & 0 & 0 \tag{4.1}\\
-\sqrt{w_{0} t} & q_{1} & -\sqrt{w_{1} t} & \cdots & 0 & 0 \\
0 & -\sqrt{w_{1} t} & q_{2} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & q_{n-1} & -\sqrt{w_{n-1} t} \\
0 & 0 & 0 & \cdots & -\sqrt{w_{n-1} t} & q_{n}
\end{array}\right)
$$

where the q_{i}, u_{i}, v_{i}, and w_{i} are as for D_{n} as in (2.1). Then, from Lemma 3.1 of [20], one obtains the following proposition.
Proposition 4.1. Let W_{α} be a weighted shift. Then, for each $n, D_{n}(s)$ is a (complex) positive quadratic form over \mathbb{C}^{n+1} for all $s \in \mathbb{C}$ if and only if $A_{n}(t)$ is a (real) positive quadratic form over \mathbb{R}^{n+1} for all $t \geq 0$.

Specialize to the case of the 3-length backstep extension of a Stampfli shift with weight sequence $\sqrt{y_{3}}, \sqrt{y_{2}}, \sqrt{y_{1}},(\sqrt{u}$, $\sqrt{v}, \sqrt{w})^{\wedge}$. We will follow the development in Sections 3 and 4 of [20], suitably generalized from a 1-length backstep extension to a 3-length backstep extension. To test positivity of the quadratic form for $A_{n}(t)$ at a vector $\left(x_{0}, \ldots, x_{n}\right)$ in \mathbb{R}_{0}^{n+1}, what arises is

$$
\begin{align*}
F_{n}\left(x_{0}, \ldots, x_{n}, t\right) & :=\sum_{i=0}^{n} u_{i} x_{i}^{2}-2 \sqrt{t} \sum_{i=0}^{n-1} \sqrt{w_{i}} x_{i} x_{i+1}+t \sum_{i=0}^{n} v_{i} x_{i}^{2} \\
& =f\left(x_{0}, \ldots, x_{4}, t\right)+\sum_{i=4}^{n-1}\left(\sqrt{u_{i}} x_{i}-\sqrt{v_{i+1} t} x_{i+1}\right)^{2}+u_{n} x_{n}^{2} \tag{4.2}
\end{align*}
$$

where

$$
f\left(x_{0}, \ldots, x_{4}, t\right):=\sum_{i=0}^{3} u_{i} x_{i}^{2}-2 \sqrt{t} \sum_{i=0}^{2} \sqrt{w_{i}} x_{i} x_{i+1}+t \sum_{i=0}^{4} v_{i} x_{i}^{2}
$$

note that the equality in (4.2) is the result of a simple computation and the use of $u_{i} v_{i+1}=w_{i}$ for $i \geq 5$.
Recall that $K=\lim _{n \rightarrow \infty} z_{n}$ with explicit expression as in Lemma 3.2. Continuing the argument as in [20], we arrive at the following, which is an analog of their Theorem 4.6.

Proposition 4.2. For the weight sequence $\sqrt{y_{3}}, \sqrt{y_{2}}, \sqrt{y_{1}},(\sqrt{u}, \sqrt{v}, \sqrt{w})^{\wedge}$ and its associated weighted shift W_{α}, the following assertions are equivalent:
(i) $F_{n}\left(x_{0}, \ldots, x_{n}, t\right) \geq 0$ for any x_{0}, \ldots, x_{n}, t in \mathbb{R}_{0} and $\frac{1}{K}<t$ for all $n \geq 5$;
(ii) $f\left(x_{0}, \ldots, x_{4}, t\right) \geq 0$ for all x_{0}, \ldots, x_{4}, t in \mathbb{R}_{0} and $\frac{1}{K}<t$.

We now discuss gaps between the quadratic and positive quadratic hyponormalities. For given u, v, w with $1<u<$ $v<w$, let $\alpha:=\alpha(x): 1,1, \sqrt{x},(\sqrt{u}, \sqrt{v}, \sqrt{w})^{\wedge}$ with $1<x<u$. Applying this case to Proposition 4.2 and (4.2), we obtain that, if $f\left(x_{0}, \ldots, x_{4}, t\right) \geq 0$, then W_{α} is quadratically hyponormal. Observe that the quadratic function of $f\left(x_{0}, \ldots, x_{4}, t\right)$ corresponds to the symmetric matrix

$$
\Delta(t)=\left(\begin{array}{ccccc}
u_{0}+v_{0} t & -\sqrt{w_{0} t} & 0 & 0 & 0 \tag{4.3}\\
-\sqrt{w_{0} t} & u_{1}+v_{1} t & -\sqrt{w_{1} t} & 0 & 0 \\
0 & -\sqrt{w_{1} t} & u_{2}+v_{2} t & -\sqrt{w_{2} t} & 0 \\
0 & 0 & -\sqrt{w_{2} t} & u_{3}+v_{3} t & -\sqrt{w_{3} t} \\
0 & 0 & 0 & -\sqrt{w_{3} t} & v_{4} t
\end{array}\right) ;
$$

also, see (4.1). Hence, it follows from the positivity of $\Delta(t)$ that W_{α} is quadratically hyponormal. Recall the upper left $n \times n$ proper submatrices of $\Delta(t)$ are exactly $A_{n-1}(t), n=1,2,3,4$, which are as in (4.1).

Theorem 4.3. Let $\alpha(x): 1,1, \sqrt{x},(\sqrt{u}, \sqrt{v}, \sqrt{w})^{\wedge}$ with $1<x<u<v<w$. If $\phi_{1}(t):=c(3,4) t^{2}+c(3,3) t+c(3,2)>0$ and $\phi_{2}(t):=\eta_{1} t^{2}+\eta_{2} t+\eta_{3} \geq 0$ for all $t>0$, then $W_{\alpha(x)}$ is quadratically hyponormal.

Proof. To show that $\Delta(t) \geq 0$, we use the Nested Determinant Test. Since $\operatorname{det} A_{1}(t)=((x-1)+x t) t>0$ and $\operatorname{det} A_{2}(t)=$ $(t x(u x-1)+u x(x-1)) t^{2}>0$ for $t>0$, it is sufficient to consider $\operatorname{det} A_{3}(t)>0$ and $\operatorname{det} \Delta(t) \geq 0$. By (2.1) and (4.3), $\operatorname{det} A_{3}(t)=\operatorname{det} D_{3}(t)$ and

$$
\begin{equation*}
\operatorname{det} A_{3}(t)=\left(c(3,4) t^{2}+c(3,3) t+c(3,2)\right) t^{2} \tag{4.4}
\end{equation*}
$$

And, by (4.3) and (4.4), we obtain that

$$
\begin{aligned}
\operatorname{det} \Delta(t) & =v_{4} t \cdot d_{3}(t)+\sqrt{w_{3} t} \cdot \operatorname{det}\left(\begin{array}{cccc}
u_{0}+v_{0} t & -\sqrt{w_{0} t} & 0 & 0 \\
-\sqrt{w_{0} t} & u_{1}+v_{1} t & -\sqrt{w_{1} t} & 0 \\
0 & -\sqrt{w_{1} t} & u_{2}+v_{2} t & -\sqrt{w_{2} t} \\
0 & 0 & 0 & -\sqrt{w_{3} t}
\end{array}\right) \\
& =v_{4} t \cdot d_{3}(t)+\sqrt{w_{3} t}\left(0-\sqrt{w_{3} t} \cdot d_{2}(t)\right) \\
& =v_{4} t\left(c(3,4) t^{4}+c(3,3) t^{3}+c(3,2) t^{2}\right)-w_{3} t\left(c(2,3) t^{3}+c(2,2) t^{2}\right) \\
& =t^{3}\left(v_{4} c(3,4) t^{2}+\left(v_{4} c(3,3)-w_{3} c(2,3)\right) t+\left(v_{4} c(3,2)-w_{3} c(2,2)\right)\right) \\
& =t^{3}\left(\eta_{1} t^{2}+\eta_{2} t+\eta_{3}\right)
\end{aligned}
$$

Thus the proof is complete.

Example 4.4 (Continued from Example 3.6). Let $\alpha(x): 1,1, \sqrt{x},(\sqrt{u}, \sqrt{v}, \sqrt{w})^{\wedge}$. Take $u=\frac{11}{10}, v=\frac{12}{10}$, and $w=\frac{15}{10}$. After some direct computations, we obtain that

$$
\begin{aligned}
& \eta_{1}=\frac{x}{2500}\left(-5940+14664 x-11693 x^{2}+3025 x^{3}\right), \\
& \eta_{2}=\frac{x}{2500}\left(-7524+17446 x-12958 x^{2}+3025 x^{3}\right), \\
& \eta_{3}=\frac{x}{2500}\left(-1044+2034 x-990 x^{2}\right) .
\end{aligned}
$$

If one of the following two cases holds:
(i) $\eta_{2}, \eta_{3} \geq 0$ (note: $\eta_{1}>0$),
(ii) $\eta_{3} \geq 0$ and the discriminant $\eta_{2}^{2}-4 \eta_{1} \eta_{3} \leq 0$,
then $\phi_{2}(t) \geq 0$ for all $t \geq 0$ and all x satisfying (i)-(ii). By direct computation, we obtain the range $1.00544 \cdots \leq x \leq$ $1.05454 \cdots$ for x satisfying (i)-(ii) (with only possibly relevant ranges presented).

Similarly, applying $\phi_{1}(t)$ with the same method above, we obtain a range $1<x<\frac{12}{11}$ for $\phi_{1}(t) \geq 0$ for all t.
According to Theorem 4.3, if we take x satisfying $1.00544 \cdots \leq x \leq 1.05454 \cdots$, then W_{α} is quadratically hyponormal. Hence, with the range of x for the positive quadratic hyponormality in Example 3.6, we obtain a range $1.00544 \cdots \leq x \leq$ $1.06583 \cdots$ for the quadratic hyponormality of $W_{\alpha(x)}$. Thus the open interval $\left(\frac{100545}{100000}, \frac{10149}{10000}\right)$ is a range in x for quadratic hyponormality but not positive quadratic hyponormality of $W_{\alpha(x)}$.

Observe finally that the test in Theorem 4.3 is clearly sufficient, but not necessary, for quadratic hyponormality, as evidenced by the interval $1.05454 \cdots \leq x \leq 1.06583 \cdots$ in the example above.

Acknowledgments

The second and fourth authors were supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education Science and Technology (2012R1A2A2A02008590). The third author was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0025830). Some of this work was done when the first author visited Kyungpook National University in summer 2011, and he wishes to thank the Department of Mathematics for its kind hospitality. The authors would like to thank the referee for careful reading of the paper and helpful comments.

References

[1] J.Y. Bae, G. Exner, I.B. Jung, Criteria for positively quadratically hyponormal weighted shifts, Proc. Amer. Math. Soc. 130 (2002) $3287-3294$.
[2] S. Baek, I.B. Jung, G.Y. Moon, An algorithm for quartically hyponormal weighted shifts, Kyungpook Math. J. 51 (2011) 187-194.
[3] J. Bram, Subnormal operators, Duke Math. J. 22 (1955) 15-94.
[4] Y.B. Choi, A propagation of quadratically hyponormal weighted shifts, Bull. Korean Math. Soc. 37 (2000) 347-352.
[5] R. Curto, Joint hyponormality: a bridge between hyponormality and subnormality, Proc. Sympos. Pure Math. 51 (1990) 69-91
[6] R. Curto, Quadratically hyponormal weighted shifts, Integral Equations Operator Theory 13 (1990) 49-66.
[7] R. Curto, Polynomially hyponormal operators on Hilbert space, in: Proceedings of ELAM VII, in: Rev. Un. Mat. Argentina, vol. 37, 1991, pp. 29-56.
[8] R. Curto, L. Fialkow, Recursively generated weighted shifts and the subnormal completion problem, Integral Equations Operator Theory 17 (1993) 202-246.
[9] R. Curto, L. Fialkow, Recursively generated weighted shifts and the subnormal completion problem, II, Integral Equations Operator Theory 18 (1994) 369-426.
[10] R. Curto, I.B. Jung, Quadratically hyponormal weighted shifts with two equal weights, Integral Equations Operator Theory 37 (2000) $208-231$.
[11] R. Curto, W.Y. Lee, Solution of the quadratically hyponormal completion problem, Proc. Amer. Math. Soc. 131 (2003) $2479-2489$.
[12] R. Curto, S.H. Lee, Quartically hyponormal weighted shifts need not be 3-hyponormal, J. Math. Anal. Appl. 314 (2006) 455-463.
[13] R. Curto, M. Putinar, Existence of non-subnormal polynomially hyponormal operators, Bull. Amer. Math. Soc. 25 (1991) 373-378.
[14] R. Curto, M. Putinar, Nearly subnormal operators and moment problems, J. Funct. Anal. 115 (1993) 480-497.
[15] Y. Dong, G. Exner, I.B. Jung, C. Li, Quadratically hyponormal recursively generated weighted shifts, Oper. Theory Adv. Appl. 187 (2008) $141-155$.
[16] G. Exner, I.B. Jung, S.S. Park, Weakly n-hyponormal weighted shifts and their examples, Integral Equations Operator Theory 54 (2006) $215-233$.
[17] G. Exner, I.B. Jung, D.W. Park, Some quadratically hyponormal weighted shifts, Integral Equations Operator Theory 60 (2008) 13-36.
[18] P. Halmos, Normal dilations and extensions of operators, Summa Brasil. Math. 2 (1950) 51-65.
[19] I.B. Jung, S.S. Park, Cubically hyponormal weighted shifts and their examples, J. Math. Anal. Appl. 247 (2000) 557-569.
[20] I.B. Jung, S.S. Park, Quadratically hyponormal weighted shifts and their examples, Integral Equations Operator Theory 36 (2000) 480-498.
[21] Y.T. Poon, J. Yoon, Quadratically hyponormal recursively generated weighted shifts need not be positively quadratically hyponormal, Integral Equations Operator Theory 58 (2007) 551-562.
[22] J. Stampfli, Which weighted shifts are subnormal, Pacific J. Math. 17 (1966) 367-379.
[23] Wolfram Research, Inc. Mathematica, Version 8.0, Wolfram Research Inc., Champaign, IL, 2010.

[^0]: * Corresponding author.

 E-mail addresses: exner@bucknell.edu (G.R. Exner), ibjung@knu.ac.kr (I.B. Jung), leemr@knu.ac.kr (M.R. Lee), sm1907s4@knu.ac.kr (S.H. Park).

