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A GENERAL THEORY OF ALMOST SPLITTING SETS

Jung Wook Lim
Department of Mathematics, Kyungpook National University, Daegu,
South Korea

Let ∗ be a star-operation of finite type on an integral domain D. In this paper,
we generalize and study the concept of almost splitting sets. We define a saturated
multiplicative subset S of D to be an almost g∗-splitting set of D if for each 0 �= d ∈
D, there exists an integer n = n�d� ≥ 1 such that dn = st for some s ∈ S and t ∈ D

with �t� s′�∗ = D for all s′ ∈ S. Among other things, we prove that every saturated
multiplicative subset of D is an almost g∗-splitting set if and only if D is an almost
weakly factorial domain (AWFD) with ∗-dim�D� = 1. We also give an example of an
almost g∗-splitting set which is not a g∗-splitting set.

Key Words: Almost g∗-splitting set; Almost weakly factorial domain; ∗-Complement; Star-operation
of finite type.

2010 Mathematics Subject Classification: 13A05; 13A15; 13F05; 13G05.

INTRODUCTION

Throughout this paper, D denotes an integral domain with quotient field K,
U�D� means the group of units of D, and S is a saturated multiplicative subset of D
(except for Proposition 2.5). Let N�S� = �0 �= x ∈ D � �x� s�v = D for all s ∈ S�. Then
N�S�, called the m-complement of S, is also a saturated multiplicative subset of D.
We say that S is a splitting set if for each 0 �= d ∈ D, we have d = st for some s ∈ S
and t ∈ N�S�. It is well known that if S is a splitting set, then N�S� is also a splitting
set and N�N�S�� = S. Also it is easy to see that S is a splitting set if and only if
SN�S� = D\�0�. In [12], Gilmer and Parker first introduced this concept to generalize
the Nagata theorem that if S is a splitting set generated by prime elements, then D
is a UFD if (and only if) DS is a UFD. In [6], Anderson et al. gave a generalized
version of splitting sets by using a star-operation of finite type. For a star-operation
∗ of finite type on D, they say that S is a g∗-splitting set if for each 0 �= d ∈ D, we can
write d = st for some s ∈ S and t ∈ N∗�D�S�, where N∗�D�S� = �0 �= x ∈ D � �x� s′�∗ =
D for all s′ ∈ S�. (For the sake of convenience, if the context is clear, then we
shall use the notation N∗�S� instead of N∗�D�S�.) It is easy to show that N∗�S� is
also a saturated multiplicative subset of D; we called N∗�S� the ∗-complement of S.
It is clear that S is a g∗-splitting set if and only if SN∗�S� = D\�0�, and if S is a
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346 LIM

g∗-splitting set, then N∗�S� is also a g∗-splitting set. Also, it is true that a g∗-splitting
set is a splitting set, but the converse is false [6, Example 2.8].

Motivated by the approach to g∗-splitting sets from splitting sets, we study a
general theory of almost splitting sets. In this article, we introduce the notion of an
almost g∗-splitting set that is a generalization of almost splitting sets, and investigate
several properties. As in [7, Definition 2.1], a saturated multiplicative subset S of D
is an almost splitting set of D if for each 0 �= d ∈ D, there is an integer n = n�d� ≥
1 such that dn = st for some s ∈ S and t ∈ N�S�. This notion was first utilized to
characterize when the composite polynomial ring D + XE�X� is an integrally closed
AGCD-domain, where D � E is an extension of integral domains [11, Theorem 3.1].
Clearly, a splitting set is an almost splitting set, but the converse is not true. Let ∗
be a star-operation of finite type on D. We call S an almost g∗-splitting set of D if
for each 0 �= d ∈ D, there exists an integer n = n�d� ≥ 1 such that dn = st for some
s ∈ S and t ∈ N∗�S�. It is obvious that if ∗ = t, then the concept of almost g∗-splitting
sets is precisely the same as that of almost splitting sets. Therefore we can regard an
almost g∗-splitting set as a star-operation analogue (or a generalization) of almost
splitting sets. Since I ⊆ I∗ ⊆ It for all nonzero fractional ideals I of D, an almost
g∗-splitting set is always an almost splitting set, but the converse does not hold.
Also, since an almost splitting set need not be a splitting set, an almost g∗-splitting
set also need not be a g∗-splitting set. (This is the case when ∗ = t.) More generally,
we give an example of an almost g∗-splitting set which is not a g∗-splitting set for
any star-operation ∗ of finite type (see Proposition 2.5).

This paper consists of three sections including introduction. In Section 1, we
study the ∗-complements of saturated multiplicative subsets. We show that for a
given star-operation ∗ of finite type on D, if P is a prime ∗-ideal of D and S =
D\P, then N∗�N∗�S�� = S if and only if P is a maximal ∗-ideal containing a nonzero
element d ∈ D which does not belong to any maximal ∗-ideal distinct from P. In
Section 2, we introduce the concept of almost g∗-splitting sets. We show that for a
star-operation ∗ of finite type on D, every saturated multiplicative subset of D is an
almost g∗-splitting set if and only if D is an AWFD with ∗-dim�D� = 1.

Now, we review some preliminaries. Let F�D� (resp. f�D�) be the set of
nonzero (resp., nonzero finitely generated) fractional ideals of D. A star-operation on
D is a mapping I �→ I∗ of F�D� into F�D� such that the following three properties
hold for all 0 �= x ∈ D and all I� J ∈ F�D�:

(1) �x�∗ = �x� and �xI�∗ = xI∗;
(2) I ⊆ I∗, and if I ⊆ J , then I∗ ⊆ J∗;
(3) �I∗�∗ = I∗.

The d-, v-, t-, and w-operations are well-known examples of star-operations.
The d-operation is the identity mapping on F�D�, i.e., Id = I for all I ∈
F�D�. The v-operation is defined by Iv = �I−1�−1, where I−1 �= �x ∈ K � xI ⊆ D�
and the t-operation is defined by It =

⋃
�Jv � J ⊆ I and J ∈ f�D��. The w-operation

is the mapping on F�D� defined by I �→ Iw = �x ∈ K � xJ ⊆ I for some J ∈
f�D� with J−1 = D�.

It is easy to see that if I ∈ f�D�, then It = Iv. An I ∈ F�D� is called a
∗-ideal if I∗ = I . It is well known that for a given star-operation ∗ on D, the
mapping I �→ I∗f =

⋃
�J∗ � J ⊆ I and J ∈ f�D�� is a star-operation on D, called the
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A GENERAL THEORY OF ALMOST SPLITTING SETS 347

star-operation of finite type associated to ∗ if ∗ = ∗f . A star-operation ∗ on D is said
to be of finite type if ∗ = ∗f . Recall that each prime ideal minimal over a ∗f -ideal is
a ∗f -ideal, and hence each height-one prime ideal is a ∗f -ideal. Moreover, if I is a
∗f -ideal, then

√
I is also a ∗f -ideal. Let ∗-Max�D� denote the set of ∗-ideals maximal

among proper integral ∗-ideals of D. A member in ∗-Max�D� is called a maximal
∗-ideal of D. It is well known that a maximal ∗-ideal is a prime ideal, and if D
is not a field, then each integral ∗f -ideal is contained in a maximal ∗f -ideal. The
∗-dimension of D, denoted by ∗-dim�D�, is defined by the supremum of �n �P1 �
· · · � Pn is a chain of prime ∗ -ideals of D�. Thus ∗-dim�D� = 1 if and only if each
maximal ∗-ideal of D has height-one. An I ∈ F�D� is said to be t-invertible if
�II−1�t = D (or equivalently, II−1 � M for all maximal t-ideals M of D. Let T�D� be
the abelian group of t-invertible fractional t-ideals of D under the t-multiplication
I ∗ J = �IJ�t and Prin�D� be the subgroup of T�D� of principal fractional ideals
of D. Then the t-class group of D is defined as Cl�D� = T�D�/Prin�D�.

Let ∗1 and ∗2 be star-operations of finite type on D. Following [1], we
say that ∗1 is coarser than ∗2 (denoted by ∗1 ≤ ∗2) if I∗1 ⊆ I∗2 for all I ∈ F�D�
(or equivalently, if each ∗2-ideal is a ∗1-ideal). Then ≤ is a partial order on the
star-operations on D. It is well known that d ≤ ∗f ≤ ∗ ≤ v for all star-operations ∗
on D, and d ≤ ∗ ≤ t ≤ v if ∗ is of finite type.

1. THE ∗-COMPLEMENTS

This section is devoted to study of the ∗-complements of multiplicative subsets.
We begin with a lemma collecting elementary properties. The first nine assertions
appear in [6, Lemma 2.1] and the remaining two assertions are straightforward.

Lemma 1.1. Let ∗, ∗1 and ∗2 be star-operations of finite type on D, � = �S	�	∈
 be
a family of saturated multiplicative subsets of D, and let S, S1 and S2 ∈ � . Then the
following statements hold:

(1) N∗�S� is a saturated multiplicative subset of D;
(2) S ∩ N∗�S� = U�D�;
(3) S ⊆ N∗�N∗�S��;
(4) If S1 ⊆ S2, then N∗�S2� ⊆ N∗�S1�;
(5) N∗�N∗�N∗�S��� = N∗�S�;
(6) If ∗1 ≤ ∗2, then N∗1�S� ⊆ N∗2�S� ⊆ N�S�;
(7) Let P be a prime ∗-ideal of D. Then either P ∩ S = ∅ or P ∩ N∗�S� = ∅;
(8) Let I be a ∗-ideal of D. Then I = IDS ∩ IDN∗�S�. In particular, D = DS ∩DN∗�S�;
(9) Let I and J be ∗-ideals of D. Then I = J if and only if IDS = JDS and IDN∗�S� =

JDN∗�S�;
(10) For any nonempty subset � of 
, N∗�

⋃
	∈� S	� =

⋂
	∈� N∗�S	�.

(11) N∗�S1S2� = N∗�S1� ∩ N∗�S2�.

Next, we give an equivalent condition to have N∗�N∗�S�� = S for a saturated
multiplicative subset S of D. To do this, we need the following lemma.

Lemma 1.2. Let P be a prime ∗-ideal of D, and let S �= D\P. Then either
N∗�N∗�S�� = S or N∗�N∗�S�� = D\�0�.
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348 LIM

Proof. Assume that S � N∗�N∗�S��, and choose any a ∈ N∗�N∗�S��\S. Then a ∈
P and �a� b�∗ = D for all b ∈ N∗�S�. Hence N∗�S� ⊆ D\P = S. By Lemma 1.1(2),
N∗�S� = U�D�, and thus N∗�N∗�S�� = D\�0�. �

Theorem 1.3. Let ∗ be a star-operation of finite type on D, P be a prime ∗-ideal of
D, and let S �= D\P. Then the following assertions are equivalent:

(1) N∗�N∗�S�� = S;
(2) P is a maximal ∗-ideal containing a nonzero element d ∈ D which does not belong

to any maximal ∗-ideal distinct from P.

Proof. �1� ⇒ �2� We first claim that P is a maximal ∗-ideal of D. If P is
not a maximal ∗-ideal, then there exists a maximal ∗-ideal M such that P � M .
Choose an element x ∈ M\P. Then x ∈ S. If U�D� � N∗�S�, then N∗�S�\U�D� ⊆ P
by Lemma 1.1(2). Hence D = �x� r�∗ ⊆ M for any r ∈ N∗�S�\U�D�. This contradicts
the fact that M is a maximal ∗-ideal. Therefore, N∗�S� = U�D�, and hence S =
N∗�N∗�S�� = D\�0�, which is impossible. Thus P is a maximal ∗-ideal of D. Next, we
show the existence of d. Note that U�D� � N∗�S�, because N∗�N∗�S�� = S �= D\�0�.
Hence N∗�S� ∩ P �= ∅. Let d ∈ N∗�S� ∩ P. If d belongs to a maximal ∗-ideal Q of D
which is distinct from P, then we have Q ∩ S �= ∅ and Q ∩ N∗�S� �= ∅. However, this
is absurd by Lemma 1.1(7). Thus P is the unique maximal ∗-ideal containing d.

�2� ⇒ �1� If P is the unique maximal ∗-ideal containing d, then �d� s�∗ =
D for all s ∈ S. Hence d ∈ N∗�S�. Since d is a nonunit in D, d �∈ N∗�N∗�S��. Thus
N∗�N∗�S�� = S by Lemma 1.2. �

When ∗ = t, we recover the following corollary.

Corollary 1.4 ([4, Proposition 2.7]). Let P be a prime t-ideal of D, and let S �= D\P.
Then N�N�S�� = S if and only if P is a maximal t-ideal and there exists an element
d ∈ D such that P is the unique maximal t-ideal containing d.

Following [5], we say that D is a generalized weakly factorial domain (GWFD)
if every nonzero prime ideal of D contains a primary element (Recall that a nonzero
nonunit x ∈ D is primary if �x� is a primary ideal.). It is known that if D is not a
field, then D is a GWFD if and only if t-dim�D� = 1 and for each P ∈ X1�D�, P is
the radical of a principal ideal, where X1�D� is the set of height-one prime ideals of
D [5, Theorem 2.2]. In [4, Proposition 2.5], Anderson and Chang showed that D is a
GWFD if and only if N�N�S�� = S for each saturated multiplicative subset S of D.
Now, we generalize this result to the ∗-complements of multiplicative subsets.

Corollary 1.5. Let ∗ be a star-operation of finite type on D. Then the following
statements are equivalent:

(1) D is a GWFD with ∗-dim�D� = 1;
(2) N∗�N∗�S�� = S for each saturated multiplicative subset S of D;
(3) N∗�N∗�S�� = S for each S = D\P, where P is a prime ∗-ideal of D.

Proof. �1� ⇒ �2� Let S be a saturated multiplicative subset of a GWFD D with
∗-dim�D� = 1 and � = �	 �P	 ∈ X1�D� and P	 ∩ S �= ∅�. Since a t-ideal is a ∗-ideal,
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A GENERAL THEORY OF ALMOST SPLITTING SETS 349

t-dim�D� = 1; so S = D\⋃	∈� P	. Since D is a GWFD, for each 	 ∈ � , there exists
an element x	 ∈ D such that P	 =

√
�x	� [5, Theorem 2.2]. Set T = �ux	1 · · · x	n � u ∈

U�D�, n ≥ 0 and x	i is an element of D such that
√
�x	i � = P	i

for some 	i ∈ ��.
We claim that N∗�T� = S. If a ∈ N∗�T�, then �a� x	�∗ = D for all x	 ∈ T , and hence
a �∈ P	 for all 	 ∈ � . Therefore, a ∈ S. For the reverse containment, let s ∈ S. Then
�x	� s�∗ = D for all x	 ∈ T , because ∗-dim�D� = 1. Hence s ∈ N∗�T�, which proves
our claim. Thus N∗�N∗�S�� = N∗�N∗�N∗�T��� = N∗�T� = S by Lemma 1.1(5).

�2� ⇒ �3� Trivial.

�3� ⇒ �1� We first show that ∗-dim�D� = 1. Suppose that ∗-dim�D� �= 1, and
take a prime ∗-ideal P of D which is not a maximal ∗-ideal. Choose any x ∈ P\�0�.
By the assumption, x �∈ N∗�N∗�D\P��, i.e., there exists an element t ∈ N∗�D\P� such
that �x� t�∗ � D. Let M be a maximal ∗-ideal of D such that �x� t�∗ ⊆ M . Since P
is not a maximal ∗-ideal of D, we can find an element 	 ∈ M\P. Keeping in mind
that t ∈ N∗�D\P�, it follows immediately that D = �	� t�∗ ⊆ M , a contradiction. Thus
∗-dim�D� = 1.

Next, we show that D is a GWFD. Note that t-dim�D� ≤ ∗-dim�D�; so
t-dim�D� = 1. Therefore, it remains to show that each height-one prime ideal is the
radical of a principal ideal. Let Q be a height-one prime ideal of D, and set S �= D\Q.
Then N∗�N∗�S�� = S by (3). Hence by Theorem 1.3, there exists a nonzero element
d ∈ D such that Q is the only prime ∗-ideal containing d. Note that

√
�d� = ⋂

	 P	,
where P	’s are prime ideals of D containing d. By shrinking P	’s to prime ideals
minimal over �d� [14, Theorem 10], we may assume that P	’s are prime ∗-ideals of D.
Thus Q = √

�d�, because Q is the unique prime ∗-ideal containing d. �

Let X be an indeterminate over D, D�X� be the polynomial ring over D, and ∗
be a star-operation on D�X�. Following [15, Proposition 2.1], the mapping ∗̄ on F�D�
defined by I∗ = �I�X��∗ ∩D is a star-operation on D. The author also showed in [15,
Proposition 2.1] that I�X�∗ = �I∗̄�X��∗ for each I ∈ F�D� and if ∗ is of finite type,
then so is ∗. Clearly, if ∗ is the d-operation on D�X�, then ∗ is the d-operation on D.
Moreover, it is known that if ∗ is the t-operation (resp., v-operation) on D�X�, then
∗ is the t-operation (resp., v-operation) on D [13, Proposition 4.3]. By the definition,
it can be easily shown that N∗�D�S� ⊆ N∗�D�X��S� and N∗�D�S� = N∗�D�X��S� ∩D. We
end this section by characterizing the ∗-complements of S in the polynomial ring
extension via the induced star-operation ∗ on D.

Proposition 1.6. Let ∗ be a star-operation of finite type on D�X�, ∗ be the induced
star-operation on D, and S be a saturated multiplicative subset of D. If Q = �Q ∩D��X�
for each maximal ∗-ideal Q of D�X� with Q ∩D �= �0�, then N∗�D�X��S� = �0 �= f ∈
D�X� � �cD�f�� s�∗ = D for all s ∈ S�, where cD�f� is the ideal of D generated by the
coefficients of f .

Proof. Let f ∈ N∗�D�X��S�. Then �f� s�∗ = D�X� for all s ∈ S. Note that �f� s�∗ ⊆
��cD�f�� s�D�X��∗ ⊆ D�X�; so ��cD�f�� s�D�X��∗ = D�X�. Hence �cD�f�� s�∗ =
��cD�f�� s�D�X��∗ ∩D = D. Conversely, if g is a nonzero element of D�X� such
that �g� s�∗ � D�X� for some s ∈ S, then there exists a maximal ∗-ideal Q of D�X�
containing �g� s�∗. Since Q ∩D �= �0�, Q = �Q ∩D��X� by the assumption; so

D
ow

nl
oa

de
d 

by
 [

K
yu

ng
po

ok
 N

at
io

na
l U

ni
ve

rs
ity

] 
at

 0
0:

15
 0

9 
A

pr
il 

20
15

 



350 LIM

�cD�g�� s�∗ ⊆ Q ∩D (note that Q ∩D is a prime ∗-ideal of D). This completes the
proof. �

Remark 1.7.

(1) In Proposition 1.6, the assumption that each maximal ∗-ideal Q of D�X� with
Q ∩D �= �0� is extended from D is essential. Let � be the ring of integers, S �=
�±2n � n ≥ 0�, and X be an indeterminate over �. Then it is easy to see that
X ∈ �0 �= f ∈ ��X� � �c��f�� s� = � for all s ∈ S�\Nd���X��S�. Indeed, �2� X� is a
maximal ideal of ��X� whose contraction to � is 2�, but �2� X� �= 2��X�.

(2) If ∗ is the t-operation (resp., w-operation) on D�X�, then ∗ is the t-operation
(resp., w-operation) on D [13, Proposition 4.3] (or [15, Remark 2.2]); so it
satisfies the assumption of Proposition 1.6.

2. ALMOST g∗-SPLITTING SETS

As mentioned in the introduction, a saturated multiplicative subset S of D is an
almost g∗-splitting set if for each 0 �= d ∈ D, there exists a positive integer n = n�d�
such that dn = st for some s ∈ S and t ∈ N∗�S�. In this section, we study an almost
g∗-splitting set which is a generalization of almost splitting sets. Our first result gives
the relationship between almost splitting sets and almost g∗-splitting sets for a given
star-operation ∗ of finite type on D.

Theorem 2.1. Let ∗1 ≤ ∗2 be star-operations of finite type on D, and let S be an
almost g∗1 -splitting set of D. Then the following statements hold:

(1) S is an almost g∗2 -splitting set of D;
(2) S is an almost splitting set of D;
(3) N∗1�S� = N∗2�S�. In particular, N∗1�S� = N�S�;
(4) N∗1�N∗1�S�� = S;
(5) N∗1�S� is an almost g∗1 -splitting set of D.

Proof. (1) Let 0 �= d ∈ D. Then there is an integer n = n�d� ≥ 1 such that dn = st
for some s ∈ S and t ∈ N∗1�S�. By Lemma 1.1(6), t ∈ N∗2�S�. Thus S is an almost
g∗2 -splitting set of D.

(2) This follows directly from (1) by taking ∗2 = t.

(3) By Lemma 1.1(6), we have N∗1�S� ⊆ N∗2�S�. For the reverse containment,
let d ∈ N∗2�S�. Since S is an almost g∗1 -splitting set, there exists a positive integer
n = n�d� such that dn = st for some s ∈ S and t ∈ N∗1�S�. Then �s� = �st� s�∗2 =
�dn� s�∗2 = D; so s is a unit of D. Since N∗1�S� is saturated, d ∈ N∗1�S�. Hence
N∗2�S� ⊆ N∗1�S�, and thus N∗1�S� = N∗2�S�. The second assertion is the case when
∗2 = t.

(4) By Lemma 1.1(3), S ⊆ N∗1�N∗1�S��. Let a ∈ N∗1�N∗1�S��. Since S is an
almost g∗1 -splitting set of D, there exists a positive integer n = n�a� such that
an = st for some s ∈ S and t ∈ N∗1�S�. Then �t� = t�s� t�∗1 = �st� t2�∗1 = �an� t2�∗1 =
D, because N∗1�S� and N∗1�N∗1�S�� are multiplicatively closed. Hence t is a unit
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of D, and thus an ∈ S. Since S is saturated, a ∈ S. Therefore, N∗1�N∗1�S�� ⊆ S. Thus
N∗1�N∗1�S�� = S.

(5) This is an immediate consequence of (4). �

Remark 2.2. Let ∗ be a star-operation of finite type on D. Note that N�D\�0�� =
N∗�D\�0�� = U�D�. Thus for any star-operation ∗ of finite type on D, D\�0� is both
almost splitting and almost g∗-splitting in D. By Theorem 2.1(5), the same situation
occurs for U�D�. This also shows that the converse of Theorem 2.1(3) does not
hold, i.e., for a saturated multiplicative subset S of D and star-operations ∗1 and
∗2 of finite type of D, N∗1�S� = N∗2�S� need not imply that ∗1 and ∗2 have an order
relationship under ≤.

Theorem 2.3. Let ∗1 and ∗2 be star-operations of finite type on D with ∗1 ≤ ∗2, and
S be an almost g∗2 -splitting set of D. Then the following statements are equivalent:

(1) S is an almost g∗1 -splitting set of D;
(2) N∗1�S� = N∗2�S�;
(3) For all prime ∗1-ideals P of D, either P ∩ S = ∅ or P ∩ N∗2�S� = ∅;
(4) For all maximal ∗1-ideals M of D, either M ∩ S = ∅ or M ∩ N∗2�S� = ∅.

Proof. �1� ⇒ �2� This implication was already shown in Theorem 2.1(3).

�2� ⇒ �3� Suppose to the contrary that there exist two elements s ∈ P ∩ S and
t ∈ P ∩ N∗2�S� for some prime ∗1-ideal P of D. Since N∗1�S� = N∗2�S�, t ∈ N∗1�S�; so
D = �s� t�∗1 ⊆ P∗1 = P, which is a contradiction.

�3� ⇒ �4� It suffices to note that each maximal ∗1-ideal is a prime ideal.
�4� ⇒ �1� Assume that S is an almost g∗2 -splitting set of D, and let 0 �= x ∈

D. Then there exists an integer n = n�x� ≥ 1 such that xn = st for some s ∈ S and
t ∈ N∗2�S�. If t � N∗1�S�, then there exists an element s′ ∈ S such that �s′� t�∗1 � D.
Let M be a maximal ∗1-ideal containing �s′� t�∗1 . Then we have neither M ∩ S = ∅
nor M ∩ N∗2�S� = ∅, which is absurd. Therefore, t ∈ N∗1�S�, and thus S is an almost
g∗1 -splitting set of D. �

When ∗2 = t, we have the following corollary.

Corollary 2.4. Let ∗ be a star-operation of finite type on D, and let S be an almost
splitting set of D. Then the following assertions are equivalent:

(1) S is an almost g∗-splitting set of D;
(2) N∗�S� = N�S�;
(3) Let P be a prime ∗-ideal of D. Then either P ∩ S = ∅ or P ∩ N�S� = ∅;
(4) Let M be a maximal ∗-ideal of D. Then either M ∩ S = ∅ or M ∩ N�S� = ∅.

Let �0 (resp., �) be the set of nonnegative integers (resp., integers).
A semigroup � is called a numerical semigroup if � is a subset of �0 containing 0
and generates � as a group. It is known that if � is a numerical semigroup, then � is
finitely generated and �0\� is a finite set. Hence there exists the largest nonnegative
integer which is not contained in � . This number is called the Frobenius number of
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� and is denoted by F���. Let D��� be a numerical semigroup ring of � over D and
�∗ = �\�0�.

For any star-operation ∗ of finite type, we give an example of almost g∗-
splitting sets that is not a g∗-splitting set.

Proposition 2.5 (cf. [10, Proposition 2.7]). Let � be a proper numerical semigroup,
�∗ = �\�0�, ∗ be a star-operation of finite type on D���, X be an indeterminate over D,
and S = �uXn � u ∈ U�D� and n ∈ ��. If char�D� �= 0, then the following conditions
hold:

(1) N�S� = D���\D��∗�;
(2) S is an almost splitting set of D���;
(3) S is not a g∗-splitting set of D���;
(4) If D is not a field, then S is not an almost gd-splitting set of D���;
(5) If D is a field, then S is an almost g∗-splitting set of D���.

Proof. Let p =char�D� and � = �0 = 	0� 	1�    � 	n� ∪ �k ∈ �0 � k ≥ F���+ 1� with
	i < 	j for i < j.

(1) Suppose that there exists an f ∈ N�S� with f�0� = 0. Then fXF��� ∈
D���. Note that XF���X	 ∈ D��� for any 	 ∈ �∗. But XF��� �∈ D���, which shows
that D��� � �f� X	�−1 for any 	 ∈ �∗. Hence f�0� �= 0. Conversely, let 	 ∈ � and
g = ∑n

i=0 g	iX
	i +∑l

i=F���+1 giX
i ∈ D��� with g0 �= 0. We claim that �g� X	�v = D���;

equivalently, �g� X	�−1 = D���. The containment D��� ⊆ �g� X	�−1 is obvious. For
the reverse inclusion, let h ∈ �g� X	�−1. Then X	h ∈ D���; so h = 1

X	 h
′ for some h′ ∈

D���. Since gh ∈ D��� and g0 �= 0, the initial term of h′ should have degree at least
	; so h ∈ D�X�. Now, we write h = ∑m

i=0 hiX
i. Note that

gh = g0h0 + g0

	1−1∑
i=1

hiX
i + �g0h	1

+ g	1h0�X
	1 + X	1+1h1

for some h1 ∈ D�X�. Since gh ∈ D��� and g0 �= 0, hi = 0 for all i = 1�    � 	1 − 1; so
h = h0 +

∑m
i=	1

hiX
i. Note that 2	1 ∈ �∗; so 2	1 ≥ F���+ 1 or 2	1 = 	p for some p =

2�    � n. If 2	1 ≥ F���+ 1, then we have

gh = g0h0 + �g0h	1
+ h0g	1�X

	1 + g0

	2−1∑
i=	1+1

hiX
i + �g0h	2

+ h0g	2�X
	2 + X	2+1h2

for some h2 ∈ D�X�. Again, since fg ∈ D��� and g0 �= 0, h	1+1 = · · · = h	2−1 = 0.
By repeating this process, we have hi = 0 for all i ∈ �0\� , and hence h ∈ D���.
Therefore �g� X	�−1 = D���. If 2	1 = 	p for some p = 2�    � n, then a simple
modification of the proof of the previous case leads to the same conclusion because
2	q ≥ F���+ 1 for some q ≤ n. Thus g ∈ N�S�.

(2) Clearly, S is a saturated multiplicative subset of D���. Let f ∈ D���.
Then f = Xmg for some g ∈ D�X� with g�0� �= 0. Since char�D� = p, gp

l ∈ D��� for
some positive integer l with pl ≥ F���+ 1. Now, we claim that fplD���S ∩D��� is
principal. Note that fplD���S ∩D��� = gp

l
D���S ∩D���. Hence it suffices to show

that gp
l
D���S ∩D��� = gp

l
D���. The containment gp

l
D��� ⊆ gp

l
D���S ∩D��� is clear.
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For the converse, let h = ∑n
i=0 h	i

X	i +∑l
i=F���+1 hiX

i ∈ gp
l
D���S ∩D���. Then X	h ∈

gp
l
D��� for some 	 ∈ � ; so h = 1

X	 gh1 for some h1 ∈ D���. Since h ∈ D��� and g�0� �=
0, 1

X	 h1 ∈ D�X�. Let 1
X	 h1 =

∑p
i=0 diX

i. Then we have

n∑
i=0

h	i
X	i +

l∑
i=F���+1

hiX
i = gp

l
p∑

i=0

diX
i

= g�0�p
l

d0 + g�0�p
l
F���∑
i=1

diX
i + XF���+1h2

for some h2 ∈ D�X�. Hence di = 0 for all i ∈ �1�    � F����\� . Therefore 1
X	 h1 ∈ D���,

and hence h ∈ gp
l
D���. Thus S is an almost splitting set of D��� [7, Proposition 2.7].

(3) Since d ≤ ∗, it is enough to show that S is not a splitting set of
D���. Let f = XF���+1�1+ X� ∈ D���. Then fD���S ∩D��� = �1+ X�D���S ∩D���. If
�1+ X�D���S ∩D��� = gD��� for some g ∈ D���, then 1+ �−1�	1X	1 = gh for some
h ∈ D���. Note that g is not a unit in D��� (for if g is a unit of D���, then 1 ∈
�1+ X�D���S ∩D���; so X	 = �1+ X�g1 for some 	 ∈ � and g1 ∈ D���, which is
impossible). Hence g = u�1+ �−1�	1X	1� for some u ∈ U�D����. Let m ∈ �∗ such
that m is not a multiple of 	1. Then an easy calculation shows that g cannot divide
1+ �−1�mXm in D���, which is a contradiction. Hence �1+ X�D���S ∩D��� is not
principal, and thus S is not a splitting set of D��� [2, Theorem 2.2]. Note that if
�	1�    � 	n� = ∅, then we can deduce the same conclusion with F���+ 1 instead
of 	1.

(4) Let a be a nonzero nonunit of D and 0 �= f ∈ D��∗�. If �a+ f�XF���+1� =
D���, then XF���+2 = �a+ f�g + XF���+1h for some g� h ∈ D���. Since a �= 0 and the
degree of the initial term of XF���+1h is at least F���+ 1, we can write g = XF���+1g1
for some g1 ∈ D�X�. Also, since 1 �∈ � , by comparing the coefficients of XF���+2 in
both sides, we have 1 = ab, where b is the coefficient of XF���+2 in g. This is absurd,
because a is nonunit. Therefore, �a+ f�XF���+1� � D���, which indicates that a+
f �∈ Nd�S�. Hence Nd�S� � N�S� by (1). Thus by Corollary 2.4, S is not an almost
gd-splitting set of D���.

(5) We first claim that S is an almost gd-splitting set of D���. By Corollary 2.4
and (2), it suffices to show that Nd�S� = N�S�. Let f = ∑m

i=0 fiX
i ∈ N�S� and fix

an integer n ∈ �∗. Note that �f� Xn� = �
∑n+F���

i=0 fiX
i� Xn�; so we may assume that

f = ∑n+F���
i=0 fiX

i. Now we find polynomials g = ∑n+F���
i=0 giX

i and h = ∑n+2F���
i=	1

hiX
i in

D��� such that fg + Xnh = 1, i.e., we solve a system of equations



f0g0 = 1∑
i+j=k

figj = 0 if 1 ≤ k ≤ n+ 	1 − 1

∑
i+j=k

figj + hk−n = 0 if n+ 	1 ≤ k ≤ 2n+ 2F���

To do this, take g0 = 1
f0

(note that f0 is a unit by (1)). If we have appropriate

g0� g1�    � gk for k ≤ n+ 	1 − 2, then we set gk+1 = −
∑k+1

i=1 figk+1−i

f0
. Choose gp = 1
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for all p ∈ �n+ 	1�    � n+ F���� ∩ � . Hence the existence of g is proved, and
consequently, we have the element h by defining hk = −∑

i+j=k+n figj for each
k = 	1�    � n+ 2F���. This means that f ∈ Nd�S�, which forces S to be an almost
gd-splitting set. Thus by Theorem 2.1(1), S is an almost g∗-splitting set of D���,
because d ≤ ∗. �

We say that D is a weakly Krull domain if D = ⋂
P∈X1�D� DP and this intersection

has finite character [8]; D is a weakly factorial domain (WFD) if each nonzero
nonunit of D is a product of primary elements; and D is an almost weakly factorial
domain (AWFD) if for each nonzero nonunit d ∈ D, there exists a positive integer
n = n�d� such that dn is a product of primary elements. It is known that D is a
weakly Krull domain (resp., WFD) if and only if every saturated multiplicative
subset of D is a t-splitting set (resp., splitting set) of D [3, p. 8] (resp., [9, Theorem]).
(Recall that a multiplicative subset S of D is a t-splitting set of D if for each nonzero
element d ∈ D, �d� = �AB�t for some integral ideals A and B of D, where At ∩ sD =
sAt (or equivalently, �A� s�t = D) for all s ∈ S and Bt ∩ S �= ∅.) Now, we give the
almost splitting set analogue of these results.

Lemma 2.6. The following conditions are equivalent:

(1) Every saturated multiplicative subset of D is an almost splitting set of D;
(2) D is a weakly Krull domain and Cl�D� is torsion;
(3) D is an AWFD;
(4) Let d be a nonzero nonunit of D and let P be a prime ideal of D minimal over �d�.

Then P ∈ X1�D� and there exists a positive integer n = n�d� such that dnDP ∩D is
principal.

Proof. �2� ⇒ �1� Note that if Cl�D� is torsion, then a t-splitting set of D is an
almost splitting set [10, Proposition 2.3]. Thus this implication is an immediate
consequence of [2, p. 8].

�1� ⇒ �4� Assume that every saturated multiplicative subset of D is an almost
splitting set of D. Since an almost splitting set is t-splitting, D is a weakly Krull
domain; so t-dim�D� = 1 [8, Lemma 2.1]. Let d be a nonzero nonunit of D and
let P be a prime ideal of D minimal over �d�. Then P is a t-ideal of D, and hence
P ∈ X1�D�. Let S �= D\P. Then by the assumption, S is an almost splitting set of
D. Thus there exists a positive integer n = n�d� such that dnDP ∩D = dnDS ∩D is
principal [7, Proposition 2.7].

�2� ⇔ �3� ⇔ �4� [8, Theorem 3.4]. �

It was shown that every saturated multiplicative subset of D is a g∗-splitting set
if and only if D is a WFD and ∗-dim�D� = 1 [6, Theorem 2.6]. We give the almost
g∗-splitting set analogue of this result.

Theorem 2.7. Let ∗ be a star-operation of finite type on D. Then the following
statements are equivalent:

(1) Every saturated multiplicative subset of D is an almost g∗-splitting set;
(2) D is an AWFD and ∗-dim�D� = 1.
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Proof. �1� ⇒ �2� Assume that every saturated multiplicative subset of D is an
almost g∗-splitting set. Since an almost g∗-splitting set is an almost splitting set by
Theorem 2.1(2), it follows from Lemma 2.6 that D is an AWFD. Suppose to the
contrary that ∗-dim�D� ≥ 2. Let �0� �= P � Q be prime ∗-ideals of D and let S =
D\P. Take a ∈ P\�0� and b ∈ Q\P. Note that S is a saturated multiplicative subset
of D; so S is an almost g∗-splitting set of D by the assumption. Hence there exists
an integer n = n�a� ≥ 1 such that an = st for some s ∈ S and t ∈ N∗�S�. Note that
t ∈ P because s �∈ P. Therefore D = �b� t�∗ ⊆ Q∗ = Q, which is a contradiction. Thus
∗-dim�D� = 1.

�2� ⇒ �1� Assume that D is an AWFD and ∗-dim�D� = 1. Then by
Lemma 2.6, every saturated multiplicative subset of D is an almost splitting set of
D. Let S be a saturated multiplicative subset of D. To show that S is an almost
g∗-splitting set of D, it is enough to prove that N∗�S� = N�S� by Corollary 2.4. If
N∗�S� � N�S�, then �s� t�∗ � D for some s ∈ S and t ∈ N�S�. Let M be a maximal
∗-ideal of D containing �s� t�∗. Since ∗-dim�D� = 1, M is a height-one prime ideal,
and hence M is a t-ideal. Hence D = �s� t�v ⊆ Mt = M , which is impossible. Thus
N∗�S� = N�S�. �

We have already observed in Theorem 2.1(2) that an almost g∗-splitting set is
an almost splitting set, but the converse does not hold (Proposition 2.5). However,
the proof of �2� ⇒ �1� in Theorem 2.7 shows that if ∗-dim�D� = 1, then an almost
splitting set of D is almost g∗-splitting. Thus we have the following corollary.

Corollary 2.8. Let ∗ be a star-operation of finite type on D with ∗-dim�D� = 1. Then
a saturated multiplicative subset S of D is an almost g∗-splitting set of D if and only if
S is an almost splitting set of D.

Let ∗ be a star-operation of finite type on an AWFD D with ∗-dim�D� ≥
2. Then by Lemma 2.6, every saturated multiplicative subset S of D is an almost
splitting set but by Theorem 2.7, some of them are not almost g∗-splitting sets. The
next example shows that this holds for D a quasi-local UFD with dim�D� ≥ 2 and
∗ = d.

Example 2.9. Let D be a quasi-local UFD with dim�D� ≥ 2. Let p ∈ D be a
prime and S �= �upn � u ∈ U�D� and n ≥ 0�. Then S is an almost splitting set in
D. Note that Nd�S� = �0 �= d ∈ D � �d� upn� = D for all upn ∈ S� = U�D�, and hence
Nd�Nd�S�� = D\�0� �= S. Thus by Theorem 2.1, S is not an almost gd-splitting set
of D.
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