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Abstract
The p-adic q-integral (sometimes called q-Volkenborn integration) was defined by
Kim. From p-adic q-integral equations, we can derive various q-extensions of Bernoulli
polynomials and numbers. DS Kim and T Kim studied Daehee polynomials and
numbers and their applications. Kim et al. introduced the q-analogue of Daehee
numbers and polynomials which are called q-Daehee numbers and polynomials. Lim
considered the modified q-Daehee numbers and polynomials which are different
from the q-Daehee numbers and polynomials of Kim et al. In this paper, we consider
(h,q)-Daehee numbers and polynomials and give some interesting identities. In case
h = 0, we cover the q-analogue of Daehee numbers and polynomials of Kim et al. In
case h = 1, we modify q-Daehee numbers and polynomials. We can find out various
(h,q)-related numbers and polynomials which are studied by many authors.
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1 Introduction
Let p be a fixed prime number. Throughout this paper, Zp, Qp and Cp will respectively
denote the ring of p-adic rational integers, the field of p-adic rational numbers and the
completion of algebraic closure of Qp. The p-adic norm is defined |p|p = 

p .
When one talks of q-extension, q is variously considered as an indeterminate, complex

q ∈ C, or p-adic number q ∈Cp. If q ∈ C, one normally assumes that |q| < . If q ∈Cp, then
we assume that |q – |p < p– 

p– so that qx = exp(x log q) for each x ∈ Zp. Throughout this
paper, we use the notation

[x]q =
 – qx

 – q
.

Note that limq→[x]q = x for each x ∈ Zp.
Let UD(Zp) be the space of a uniformly differentiable function on Zp. For f ∈ UD(Zp),

the p-adic q-integral on Zp is defined by Kim as follows:

Iq(f ) =
∫
Zp

f (x) dμq(x) = lim
N→∞


[pN ]q

pN –∑
x=

f (x)qx (see [, ]). ()
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Using this integration, the q-Daehee polynomials Dn,q(x) are defined and studied by Kim
et al. (see []), their generating function is as follows:

 – q + –q
log q log( + t)

 – q – qt
( + t)x =

∞∑
n=

Dn,q(x)
tn

n!
. ()

The generating function of the modified q-Daehee polynomials are defined and studied
by Lim (see []).

Fq(x, t) =
q – 
log q

log( + t)
t

( + t)x =
∞∑

n=

Dn(x|q)
tn

n!
(see [–]). ()

From (), we have the following integral identity:

qIq(f) – Iq(f ) =
q – 
log q

f ′() + (q – )f (), ()

where f(x) = f (x + ) and d
dx f (x) = f ′(x).

In a special case, for h ∈ Z+ (= N∪ {}), we apply f (x) = q–hxetx on (), we have

∫
Zp

q–hxext dμq(x) =
qh–(q – )

log q
t – (h – ) log q

et – qh– . ()

For h ∈ Z+, we define the (h, q)-Bernoulli number B(h)
n (q) as follows:

∞∑
n=

B(h)
n (q)

tn

n!
=

qh–(q – )
log q

t – (h – ) log q
et – qh– . ()

Indeed if q → , we have limq→ B(h)
n (q) = Bn. So we call this B(h)

n (q) the nth (h, q)-
Bernoulli number. And we define (h, q)-Bernoulli polynomials and the generating function
to be

qh–(q – )
log q

t – (h – ) log q
et – qh– ext =

∞∑
n=

B(h)
n (x|q)

tn

n!
. ()

When x = , B(h)
n (|q) = B(h)

n (q) are the nth (h, q)-Bernoulli numbers.
From () and (), we have

B(h)
n (x|q) =

∫
Zp

q–hy(x + y)n dμq(y).

From () we note that

B(h)
n (x|q) =

n∑
l=

(
n
l

)
B(h)

l (q)xn–l. ()
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For the case |t|p ≤ p– 
p– , the Daehee polynomials are defined as follows (see []):

∞∑
n=

Dn(x)
tn

n!
=

log( + t)
t

( + t)x. ()

From () and (), if q → , we have

lim
q→

Dn,q(x) = Dn(x)

and

lim
q→

Dn(x|q) = Dn(x).

The p-adic q-integral (or q-Volkenborn integration) was defined by Kim (see [, ]).
From p-adic q-integral equations, we can derive various q-extensions of Bernoulli polyno-
mials and numbers (see [–]). In [], DS Kim and T Kim studied Daehee polynomials
and numbers and their applications. In [], Kim et al. introduced the q-analogue of Daehee
numbers and polynomials which are called q-Daehee numbers and polynomials. Lim con-
sidered in [] the modified q-Daehee numbers and polynomials which are different from
the q-Daehee numbers and polynomials of Kim et al. In this paper, we consider (h, q)-
Daehee numbers and polynomials and give some interesting identities. In case h = , we
cover the q-analogue of Daehee numbers and polynomials of Kim et al. (see []). In case
h = , we have modified q-Daehee numbers and polynomials in []. We can find out vari-
ous (h, q)-related numbers and polynomials in [, , ].

2 (h, q)-Daehee numbers and polynomials
Let us now consider the p-adic q-integral representation as follows: for each h ∈ Z+,

∫
Zp

q–hy(x + y)n dμq(y)
(
n ∈ Z+ = N∪ {}), ()

where (x)n is known as the Pochhammer symbol (or decreasing factorial) defined by

(x)n = x(x – ) · · · (x – n + ) =
n∑

k=

S(n, k)xk , ()

and here S(n, k) is the Stirling number of the first kind (see [, ]).
From () we have

∞∑
n=

(∫
Zp

q–hy(y)n dμq(y)
)

tn

n!
=

∫
Zp

q–hy

( ∞∑
n=

(
y
n

)
tn

)
dμq(y)

=
∫
Zp

q–hy( + t)y dμq(y), ()

where t ∈Cp with |t|p < p– 
p– .
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For |t|p < p– 
p– , from () we have

∫
Zp

q–hy( + t)y dμq(y) =
qh–(q – )

log q

log +t
qh–

 + t – qh– . ()

Let

F (h)
q (t) =

qh–(q – )
log q

log +t
qh–

 + t – qh– =
∞∑

n=

D(h)
n (q)

tn

n!
. ()

Here, the numbers D(h)
n (q) are called the nth (h, q)-Daehee numbers of the first kind.

Moreover, we have

D(h)
n (q) =

∫
Zp

q–hy(y)n dμq(y). ()

From () and (), if h = , D()
n (q) is just the q-Daehee numbers which are defined by

Kim et al. in []. If h = , D()
n (q) is just the modified q-Daehee numbers which are studied

in [].
On the other hand, we can derive (h, q)-Daehee polynomials

∞∑
n=

(∫
Zp

q–hy(x + y)n dμq(y)
)

tn

n!
=

∫
Zp

q–hy

( ∞∑
n=

(
x + y

n

)
tn

)
dμq(y)

=
∫
Zp

q–hy( + t)x+y dμq(y)

=
qh–(q – )

log q
log ( + t) – (h – ) log q

 + t – qh– ( + t)x

=
∞∑

n=

D(h)
n (x|q)

tn

n!
, ()

where t ∈Cp with |t|p < p– 
p– .

When x = , D(h)
n (|q) = D(h)

n (q) is called the nth (h, q)-Daehee number.
Notice that F (h)

q (, t) seems to be a new q-extension of the generating function for Daehee
numbers of the first kind. Therefore, from () and the following fact, we get

lim
q→

F (h)
q (t) =

log( + t)
t

.

From () and (), we have

D(h)
n (x|q) =

∫
Zp

q–hy(x + y)n dμq(y) =
n∑

k=

S(n, k)B(h)
k (x|q), ()

where B(h)
k (x|q) are the (h, q)-Bernoulli polynomials introduced in ().

Thus we have the following theorem, which relates (h, q)-Bernoulli polynomials and
(h, q)-Daehee polynomials.
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Theorem  For n, m ∈ Z+, we have the following equalities:

D(h)
n (x|q) =

n∑
k=

S(n, k)B(h)
k (x|q)

and

D(h)
n (q) =

n∑
k=

S(n, k)B(h)
k (q).

From the generating function of the (h, q)-Daehee polynomials in D(h)
n (x|q) in (), by

replacing t to et – , we have

∞∑
n=

D(h)
n (x|q)

(et – )n

n!
=

qh–(q – )
log q

t – (h – ) log q
et – qh– ext

=
∞∑

n=

B(h)
n (x|q)

tn

n!
. ()

On the other hand,

∞∑
n=

D(h)
n (x|q)

(et – )n

n!
=

∞∑
m=

D(h)
m (x|q)

∞∑
n=

S(n, m)
tn

n!
. ()

Here, S(n, m) is the Stirling number of the second kind defined by the following gener-
ating series:

∞∑
n=m

S(n, m)
tn

n!
=

(et – )m

m!
cf. [, ]. ()

Thus by comparing the coefficients of tn, we have

B(h)
n (x|q) =

n∑
m=

D(h)
m (x|q)S(n, m).

Therefore, we obtain the following theorem.

Theorem  For n, m ∈ Z+, we have the following identity:

B(h)
n (x|q) =

n∑
m=

D(h)
m (x|q)S(n, m).

The increasing factorial sequence is known as

x(n) = x(x + )(x + ) · · · (x + n – ) (n ∈ Z+).

Let us define the (h, q)-Daehee numbers of the second kind as follows:

D̂(h)
n (q) =

∫
Zp

q–hy(–y)n dμq(y) (n ∈ Z+). ()
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It is easy to observe that

x(n) = (–)n(–x)n =
n∑

k=

S(n, k)(–)n–kxk . ()

From () and (), we have

D̂(h)
n (q) =

∫
Zp

q–hy(–y)n dμq(y)

=
∫
Zp

q–hyy(n)(–)n dμq(y)

=
n∑

k=

S(n, k)(–)kB(h)
k (q). ()

Thus, we state the following theorem, which relates (h, q)-Daehee numbers and (h, q)-
Bernoulli numbers.

Theorem  The following holds true:

D̂(h)
n (q) =

n∑
k=

S(n, k)(–)kB(h)
k (q).

Let us now consider the generating function of (h, q)-Daehee numbers of the second
kind as follows:

∞∑
n=

D̂(h)
n (q)

tn

n!
=

∞∑
n=

(∫
Zp

q–hy(–y)n dμq(y)
)

tn

n!

=
∫
Zp

q–hy

( ∞∑
n=

(
–y
n

)
tn

)
dμq(y)

=
∫
Zp

q–hy( + t)–y dμq(y). ()

From () and (), we have the generating function for (h, q)-Daehee numbers of the
second kind as follows:

∫
Zp

q–hy( + t)–y dμq(y) =
qh–(q – )

log q
log q – log( + t)

 + t – qh– . ()

Let us consider the (h, q)-Daehee polynomials of the second kind as follows:

∞∑
n=

D̂(h)
n (x|q)

tn

n!
=

∞∑
n=

∫
Zp

q–hy(x – y)n dμq(y)
tn

n!

=
∫
Zp

q–hy( + t)x–y dμq(y)

=
qh–(q – )

log q
log q – log( + t)

 + t – qh ( + t)x. ()
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From the (h, q)-Bernoulli polynomials in (),

qh
∞∑

n=

(–)nB(h)
n

(
x|q–) tn

n!
= qh q–h(q– – )

log q–
–t – log q–h

e–t – q–h e–xt

=
qh–(q – )

log q
t – log qh–

et – qh– e(–x)t

=
∞∑

n=

B(h)
n ( – x|q)

tn

n!
. ()

Thus, we have

qh(–)nB(h)
n

(
x|q–) = B(h)

n ( – x|q). ()

From (), the value at x = , we have

qh(–)nB(h)
n

(
|q–) = B(h)

n (q).

On the other hand, we note that

(–x)n = (–)nx(n) =
n∑

l=

S(n, l)(–x)l = (–)n
n∑

l=

∣∣S(n, l)
∣∣xl, ()

where n ≥  and |S(n, k)| is the unsigned Stirling number of the first kind.
From () and (),

D̂(h)
n (x|q) =

n∑
l=

∣∣S(n, l)
∣∣(–)l

∫
Zp

q–hy(–x + y)l dμq(y)

=
n∑

l=

∣∣S(n, l)
∣∣(–)lB(h)

l (–x|q)

= q–h
n∑

l=

∣∣S(n, l)
∣∣B(h)

l
(
x + |q–). ()

Thus, we have the following identity.

Theorem  For n ∈ Z+, the following is true:

D̂(h)
n (x|q) = q–h

n∑
l=

∣∣S(n, l)
∣∣B(h)

l
(
x + |q–).

On the other hand, we can check easily the following:

(x + y)n = (–)n(–x – y + n – )n ()

and

(x + y)n

n!
= (–)n

(
–x + y + n – 

n

)
. ()
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From (), (), () and (), we have

(–)n D(h)
n (x|q)

n!
=

∫
Zp

q–hy
(

–x – y + n – 
n

)
dμq(y)

=
n∑

m=

(
n – 
n – m

)∫
Zp

q–hy
(

–x – y
m

)
dμq(y)

=
n∑

m=

(
n – 
m – 

)
D̂(h)

m (–x|q)
m!

()

and

(–)n D̂(h)
n (x|q)

n!
= (–)n

∫
Zp

q–hy
(

–x + y
n

)
dμq(y)

=
∫
Zp

q–hy
(

–x + y + n – 
n

)
dμq(y)

=
n∑

m=

(
n – 
n – m

)∫
Zp

q–hy
(

–x + y
m

)
dμq(y)

=
n∑

m=

(
n – 
m – 

)
D(h)

m (–x|q)
m!

. ()

Therefore, we get the following theorem, which relates (h, q)-Daehee polynomials of the
first and the second kind.

Theorem  For n ∈ N, the following equalities hold true:

(–)n D(h)
n (x|q)

n!
=

n∑
m=

(
n – 
m – 

)
D̂(h)

m (–x|q)
m!

and

(–)n D̂(h)
n (x|q)

n!
=

n∑
m=

(
n – 
m – 

)
D(h)

m (–x|q)
m!

.
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