
Chapter 14 The Fundamental Group

1 The Nature of Algebraic Topology

• In the first eight chapters we have dealt almost exclusively with

point-set topology. This chapter introduces the fundamental

group which, as the term “group” suggests, is an algebraic

concepts.

• The purpose of algebraic topology is to describe the structure of

topological spaces by algebraic means, usually groups, rings, or

modules.

• Algebraic topology was introduced in a series of papers during

the years 1895-1901 by H. Poincaré(1854 ∼ 1912).
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• Algebraic topology did not develop as an outgrowth of point set

topology.

Although algebraic topology and point-set topology share the

common goal of classifying spaces by topological properties,

the subjects are quite distinct in their historical development,

emphasis, and methods.

(i) Poincaré’s first paper preceded Fréchet’s work on general metric

space by 11 years, and Hausdorff’s definition of general

topological spaces by 19 years.

(ii) Poincaré’s work on the fundamental group and other aspects of

algebraic topology was not influenced by Cantor’s theory of sets.

• Algebraic topology developed in response to specific geometric

problems in Euclidean spaces, to describe the connectivity or the

“hole in the space” by algebraic methods.
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• This chapter is restricted to the fundamental group, the first

algebraic structure associated by Poincaré with topological

spaces, and to its applications.
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2 The Fundamental Group

The following two examples in Example 2, which deal with

integration on multiply connected domains and with the classification

of surfaces, are intended to illustrate the kind of analysis that led to

the development of the fundamental group.

For this, we recall the following theorem of calculus.

Theorem 1 (Green’s Theorem). Let C be a simple closed curve in

the plane and let D be the simple connected region enclosed by C. If

f(x, y) and g(x, y) have their continuous partial derivatives in a

closed set containing D, then∫
C

f(x, y)dx+ g(x, y)dy =

∫∫
D

(
∂g

∂x
− ∂f

∂y
)dxdy

where C is oriented counterclockwise.
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Example 2. (a) Let F (x, y) = (p(x, y), q(x, y)) be a continuous

vector field defined on an open set containing the annulus of

Figure 1 and satisfying the exactness condition:
∂p

∂y
=

∂q

∂x
.

��

oo
oo

A

B C

•

Figure 1: annulus in the plane
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i.e., ∃f(x, y) · · df ≡ fxdx+ fydy = pdx+ qdy.

⇒
∫
A

pdx+ qdy = 0 and

∫
B

pdx+ qdy =

∫
C

pdx+ qdy

by the Green’s Theorem(Theorem 1).

⇒ From the point of view of integrating exact vector fields,

(i) Path A is trivial in the sense

∫
A

pdx+ qdy = 0.

(ii) Paths B and C are equivalent.(
(∵) (i) A can be shrunk to a point in the annulus.

(ii) B and C are homotopic paths in the annulus.
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(b) The difference between S2 and T2 = S1 × S1.
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Figure 2: S2 and T2
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(i) T2 encloses an inner region and has a “doughnut hole” and

S2 only encloses an inner region.

But the inner region enclosed by S2 is different from the one

enclosed by T2.

(The difference is difficult to describe at the moment.)

(ii) Every closed path in S2 is homotopic to a constant path

while T2 has two basic types of paths,

the meridian circle C1 and the longitudinal circle C2,

which are not homotopic to constant paths.

(We will see later.)

Paths and path connected spaces are extended to the ideas to

describe the concepts of simple and multiple connectedness for

general topological spaces in this section. Throughout this chapter,

the closed unit interval [0, 1] is denoted by I and ∂I = {0, 1}.
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Definition 3. Let X be a topological space.

(1) Let α, β : I → X be two paths in X. Then α and β are said to be

homotopic if ∃ a continuous function F : I× I → X such that

F (s, 0) = α(s) and F (s, 1) = β(s) for all s ∈ I.

The continuous function F is called a homotopy or a free

homotopy between the paths α and β.

(2) Let α, β : I → X be two paths with α(0) = β(0) and α(1) = β(1).

Then α and β are said to be equivalent or homotopic modulo end

points or homotopic relative to {0, 1} if ∃ a continuous function

F : I× I → X such that

(i) F (s, 0) = α(s) and F (s, 1) = β(s) for all s ∈ I,

(ii) F (0, t) = α(0) = β(0) and F (1, t) = α(1) = β(1)∀t ∈ I.

The continuous function F is called a homotopy (relative to

{0, 1}) between the paths α and β. For t ∈ I, the restriction of F

to I× {t}, denoted F (∗, t), is called the t-level of the homotopy.
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(3) A path α : I → X with α(0) = α(1) = x0 ∈ X is called a loop at

x0 in X. We write Ω1(X,x0) = {α : I → X | α is a loop at x0}.

• Two loops α, β ∈ Ω1(X,x0) are said to be equivalent or

homotopic modulo x0, denoted α ≃x0 β, if there exists a

homotopy F : I× I → X such that

(i) F (s, 0) = α(s) and F (s, 1) = β(s) for all s ∈ I,

(ii) F (0, t) = F (1, t) = x0 for all t ∈ I.

• Such a homotopy F is called a base point preserving homotopy or

F is said to stay fixed through the homotopy.

The usual practice in studying the loops in a space X is to

specify a point x0 in X to serve as the base point for the loops

under consideration.

• This point x0 is called the base point of X.
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(4) The loop cx0 : I → X, defined by cx0(s) = x0 for all s ∈ I, is

called the constant loop at x0 ∈ X.

• A loop that is equivalent to the constant loop is said to be

null-homotopic.
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Example 4. Consider the annulus X shown in Figure 3 with base

point x0 and closed curves A,B,C which are the images of paths α, β

and γ, respectively.

��

oo

oo

A

B

C

x0•α

γ

β

Figure 3: annulus in the plane
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Here α, β, and γ are vector-valued functions, and we assume that the

parametrizations for β and γ are chosen in such a way that the line

segment tγ(s) + (1− t)β(s)(0 ≤ t ≤ 1) from β(s) to γ(s), for each

s ∈ I, lies in the annulus. Then

(1) The loop α is null-homotopic by the homotopy F : I× I → X,

defined by F (s, t) = (1− t)α(s) + tx0 for all (s, t) ∈ I× I.

(∵) Clearly F : I× I → X is well-defined and continuous.

F (s, 0) = α(s) and F (s, 1) = x0 = cx0(s) for all s ∈ I.

F (0, t) = (1− t)α(0) + tx0 = (1− t)x0 + tx0 = x0,

F (1, t) = (1− t)α(1) + tx0 = x0 for all t ∈ I.

⇒ F : α ≃x0 cx0 . i.e., α is null-homotopic by F.

(2) The loops β and γ are equivalent by the homotopy G : I× I → X,

defined by G(s, t) = tγ(s) + (1− t)β(s) for all (s, t) ∈ I× I.

(∵) Omit.
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Lemma 5 (Pasting Lemma for closed sets). Let X = A ∪B, where

A and B are closed in X. If f : A → Y , g : B → Y are continuous

functions · · f(x) = g(x) ∀x ∈ A ∩B, then h : X → Y defined by

h(x) =

{
f(x) if x ∈ A,

g(x) if x ∈ B,

is a well-defined continuous function.

Proof. Since f(x) = g(x) for all x ∈ A∩B, h : X → Y is well-defined.

To show h : X → Y is continuous, let C be a closed subset of Y.

⇒ Since f : A → Y and g : B → Y are continuous,

f−1(C) and g−1(C) are closed in A and B respectively.

⇒ Since A, B are closed in X, f−1(C) and g−1(C) are closed in X.

⇒ h−1(C) = f−1(C) ∪ g−1(C) is closed in X.

⇒ h : X → Y is continuous.
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Lemma 6 (Pasting Lemma for open sets). Let X =
∪

α∈A

Uα, where

Uα is open in X for each α ∈ A . If fα : Uα → Y are continuous

functions such that fα(x) = fβ(x) for all x ∈ Uα ∩ Uβ , then

h : X → Y defined by h(x) = fα(x) for x ∈ Uα is a well-defined

continuous function.

Proof. It is similar to that of Lemma 5.

Corollary 7. Let X be a topological space and let A and B be closed

subsets of X whose union is X. Let h : X → Y be a function. If the

restrictions h|A : A → Y and h|B : B → Y are continuous, then

h : X → Y is continuous.

Proof. It follows from Lemma 5.
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Corollary 8. Let X be a topological space and let Uα, α ∈ A be open

subsets of X whose union is X. Let h : X → Y be a function. If all

the restrictions h|Uα : Uα → Y are continuous, then h : X → Y is

continuous.

Proof. It follows from Lemma 6.
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Theorem 9. Let X be a topological space.

(1) The relation of equivalence for paths is an equivalence relation on

the set of all paths in X.

(2) The relation of equivalence ≃x0 for loops at x0 ∈ X is an

equivalence relation on Ω1(X,x0).

Proof. The proof of (1) is omitted.

(2) Let X be a topological space and fix a base point x0 ∈ X.

(i) ≃x0 is reflexive on Ω1(X,x0).

(∵) Let α ∈ Ω1(X,x0).

⇒ Define H : I× I → X by H(s, t) = α(s) for all (s, t) ∈ I× I.

⇒ H(s, 0) = α(s) and H(s, 1) = α(s) for all s ∈ I.

H(0, t) = α(0) = x0 and H(1, t) = α(1) = x0 for all t ∈ I.

⇒ α ≃x0 α by the homotopy H.
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(ii) ≃x0 is symmetric on Ω1(X,x0).

(∵) Let α, β ∈ Ω1(X,x0) and assume that α ≃x0 β.

⇒ There exists a homotopy H : I× I → X such that

H(s, 0) = α(s), H(s, 1) = β(s) for all s ∈ I and

H(0, t) = x0 = H(1, t) for all t ∈ I.

⇒ Define G : I× I → X by G(s, t) = H(s, 1− t)

for all (s, t) ∈ I× I.

⇒ G is a well-defined continuous function and

G(s, 0) = H(s, 1) = β(s),

G(s, 1) = H(s, 0) = α(s) for all s ∈ I and

G(0, t) = H(0, 1− t) = x0,

G(1, t) = H(1, 1− t) = x0 for all t ∈ I.

⇒ β ≃x0 α by the homotopy G.
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(iii) ≃x0 is transitive on Ω1(X,x0).

(∵) Let α, β, γ ∈ Ω1(X,x0) and assume that α ≃x0 β, β ≃x0 γ.

⇒ There exist homotopies H : I× I → X,G : I× I → X · ·
H(s, 0) = α(s), H(s, 1) = β(s) for all s ∈ I and

G(s, 0) = β(s), G(s, 1) = γ(s) for all s ∈ I and

H(0, t) = H(1, t) = G(0, t) = G(1, t) = x0 for all t ∈ I.

⇒ Define K : I× I → X by

K(s, t) =


H(s, 2t) if 0 ≤ s ≤ 1, 0 ≤ t ≤ 1

2
and

G(s, 2t− 1) if 0 ≤ s ≤ 1,
1

2
≤ t ≤ 1.

⇒ Since H(s, 2
1

2
) = β(s) = G(s, 0) = G(s, 2

1

2
− 1) for all s ∈ I,

K : I× I → X is well-defined and continuous by Lemma 5,

K(s, 0) = H(s, 0) = α(s) and K(s, 1) = G(s, 1) = γ(s)∀s ∈ I
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K(0, t) =


H(0, 2t) = x0 if 0 ≤ t ≤ 1

2
,

G(0, 2t− 1) = x0 if
1

2
≤ t ≤ 1,

K(1, t) =


H(1, 2t) = x0 if 0 ≤ t ≤ 1

2
,

G(1, 2t− 1) = x0 if
1

2
≤ t ≤ 1.

i.e., K(0, t) = K(1, t) = x0 for all t ∈ I.

⇒ α ≃x0 γ by the homotopy K.
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Definition 10. Let X be a topological space with a base point

x0 ∈ X and let α, β ∈ Ω1(X,x0).

The product of loops α and β is the loop α ∗ β : I → X defined by

α ∗ β(s) =


α(2s), if 0 ≤ s ≤ 1

2
,

β(2s− 1), if
1

2
≤ s ≤ 1.

Note that α(1) = β(0) and that α ∗ β is just the path product in

Definition 5.41.

Lemma 11. Let X be a topological space with a base point x0 ∈ X

and let α, β ∈ Ω1(X,x0). If α ≃x0 α′ and β ≃x0 β′, then

α ∗ β ≃x0 α′ ∗ β′.

Proof. Let α, α′, β, β′ ∈ Ω1(X,x0) with α ≃x0
α′ and β ≃x0

β′.

⇒ There exist base point preserving homotopies F,G : I× I → X
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from α to α′ and from β to β′, respectively.

⇒ F (s, 0) = α(s), F (s, 1) = α′(s), G(s, 0) = β(s), G(s, 1) = β′(s)∀s,
F (0, t) = F (1, t) = G(0, t) = G(1, t) = x0 for all t ∈ I.

⇒ Define H : I× I → X by

H(s, t) =

{
F (2s, t), 0 ≤ s ≤ 1/2, 0 ≤ t ≤ 1,

G(2s− 1, t), 1/2 ≤ s ≤ 1, 0 ≤ t ≤ 1.

⇒ H : I× I → X is a well-defined continuous function by Lemma 5,

H(s, 0) =

{
F (2s, 0) = α(2s), 0 ≤ s ≤ 1/2,

G(2s− 1, 0) = β(2s− 1), 1/2 ≤ s ≤ 1

= (α ∗ β)(s) for all s ∈ I and

H(s, 1) =

{
F (2s, 1) = α′(2s), 0 ≤ t ≤ 1/2,

G(2s− 1, 1) = β′(2s− 1), 1/2 ≤ s ≤ 1

= (α′ ∗ β′)(s) for all s ∈ I
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H(0, t) = F (0, t) = x0,H(1, t) = G(1, t) = x0∀t ∈ I.

Pictorially, the base point preserving homotopy H from α ∗ β to

α′ ∗ β′ can be described as in Figure 4.

// // //

// //

// //

OO

(0, 0) ( 12 , 0) (1, 0)

(0, 1)
( 12 , 1) (1, 1)

t

s

α β

F

α′ β′

Gcx0 cx0

Figure 4: α ∗ β ≃x0 α′ ∗ β′
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Definition 12. Let X be a topological space with a base point x0.

(1) For α ∈ Ω1(X,x0), [α] = {β ∈ Ω1(X,x0) | α ≃x0 β} is called the

homotopy class or equivalence class of α.

(2) π1(X,x0) = Ω1(X,x0)/≃x0
= {[α] | α ∈ Ω1(X,x0)} is called the

fundamental group, the Poincaré group or the first homotopy

group of X at x0, where the group operation · of π1(X,x0), called

the product, is defined by

[α] · [β] = [α ∗ β] for all [α], [β] ∈ π1(X,x0).

Lemma 13. The product operation · of π1(X,x0) is well-defined.

Proof. Let [α], [α′], [β], [β′] ∈ π(X,x0) with [α] = [α′] and [β] = [β′].

⇒ α ≃x0 α′ and β ≃x0 β′. Thus by Lemma 11, α ∗ β ≃x0 α′ ∗ β′.

⇒ [α] · [β] = [α ∗ β] = [α′ ∗ β′] = [α′] · [β′].

⇒ The product operation · of π1(X,x0) is well-defined.
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Lemma 14. The product operation · of π1(X,x0) is associative.

Proof. For three loops α, β, γ in X at x0, define F : I× I → X by

F (s, t) =


α( 4s

t+1 ), 0 ≤ s ≤ 1
4 (t+ 1), 0 ≤ t ≤ 1,

β(4s− t− 1), 1
4 (t+ 1) ≤ s ≤ 1

4 (t+ 2), 0 ≤ t ≤ 1,

γ( 4s−t−2
2−t ), 1

4 (t+ 2) ≤ s ≤ 1, 0 ≤ t ≤ 1.

⇒ F : I× I → X is a well-defined continuous function by Lemma 5,

F (s, 0) = ((α ∗β) ∗ γ)(s) and F (s, 1) = (α ∗ (β ∗ γ))(s) for all s ∈ I,

F (0, t) = α(0) = x0 and F (1, t) = γ(1) = x0 for all t ∈ I.

⇒ (α ∗ β) ∗ γ ≃x0 α ∗ (β ∗ γ) by the homotopy F.

⇒ ([α] · [β]) · [γ] = [(α ∗ β) ∗ γ] = [α ∗ (β ∗ γ)] = [α] · ([β] · [γ]).
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Pictorially, the homotopy F : (α ∗ β) ∗ γ ≃x0 α ∗ (β ∗ γ), can be

described as in Figure 5.

// // // //

// // //

// // //

OO

��
��
��
��
��
��
��
��
��
� �������������������

(0, 0) ( 14 , 0) ( 12 , 0) (1, 0)

(0, 1)
(1, 1)( 12 , 1) ( 34 , 1)

t

s

α β γ

α β γ

α β γ

cx0 cx0

t=4s−1 t=4s−2

Figure 5: (α ∗ β) ∗ γ ≃x0 α ∗ (β ∗ γ)
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Lemma 15. The class [cx0 ] of the constant loop at x0 is the identity

element of π1(X,x0) under the product ·, where cx0
denotes the

constant loop at the point x0.

i.e., ∀[α] ∈ π1(X,x0), [α] · [cx0
] = [α] = [cx0

] · [α]. or,

α ∗ cx0 ≃x0 α ≃x0 cx0 ∗ α.

Proof. Define F : I× I → X by

F (s, t) =

{
α( 2s

t+1 ), 0 ≤ s ≤ t+1
2 , 0 ≤ t ≤ 1,

x0,
t+1
2 ≤ s ≤ 1, 0 ≤ t ≤ 1.

⇒ F : I× I → X is a well-defined continuous function by Lemma 5,

F (s, 0) = (α ∗ cx0
)(s) and F (s, 1) = α(s) for all s ∈ I,

F (0, t) = α(0) = x0 and F (1, t) = x0 for all t ∈ I.

⇒ α ∗ cx0 ≃x0 α by the homotopy F.
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The homotopy F : α ∗ cx0 ≃x0 α, can be described as in Figure 6.

// // //

// //

//

OO


(0, 0) ( 12 , 0) (1, 0)

(0, 1)
(1, 1)

t

s
α

α

α

cx0

cx0cx0 cx0

t=2s−1

Figure 6: α ∗ cx0 ≃x0 α

⇒ [α] · [cx0 ] = [α ∗ cx0 ] = [α].

Similarly we can show that [α] = [cx0 ] · [α] and it is left for the

readers.
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Lemma 16. For each [α] ∈ π1(X,x0), [α] is the inverse of [α].

i.e., [α] · [α] = [cx0 ] = [α] · [α] or, α ∗ α ≃x0 cx0 ≃x0 α ∗ α.

Proof. Let [α] ∈ π1(X,x0), represented by a loop α : I → X at x0.

Define F : I× I → X by

F (s, t) =


α(2s), 0 ≤ 2s ≤ t, 0 ≤ t ≤ 1,

α(t) = α(1− t), t ≤ 2s ≤ 2− t, 0 ≤ t ≤ 1,

α(2s− 1), 2− t ≤ 2s ≤ 2, 0 ≤ t ≤ 1.

⇒ F : I× I → X is a well-defined continuous function by Lemma 5,

F (s, 0) = α(0) = x0 = cx0(s) and F (s, 1) = (α ∗ α)(s) for all s ∈ I,

F (0, t) = α(0) = x0 and F (1, t) = α(1) = x0 for all t ∈ I.

⇒ cx0 ≃x0 α ∗ α by the homotopy F.

⇒ [α] · [α] = [cx0 ].
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Pictorially, the homotopy F : cx0 ≃x0 α ∗ α, can be described as in

Figure 7.

// //

// // //

// //

OO

��
��
��
��
��
��
��
��
��
��
��
�

::
::

::
::

::
::

::
::

::
::

::
:

(0, 0)

(0, 1)

(1, 0)

(1, 1)( 12 , 1)
t

scx0

α α

α cα(t) α

t=2s t=2−2s

cx0 cx0

Figure 7: cx0 ≃x0 α ∗ α

Similarly we can show that [cx0 ] = [α] · [α] and it is left for the

readers.
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Theorem 17. Let X be a topological space with a base point x0.

Then π1(X,x0) together with the multiplication · is a group, called

the fundamental group of X based at x0, in which the identity

element is the class of the constant loop at x0.

Proof. It follows from Lemmas 13, 14, 15, and 16.

Theorem 18. Let X be a path connected space and let x0, x1 ∈ X.

Then there exists a group isomorphism of π1(X,x0) onto π1(X,x1).

In this case, we often write simply π1(X) for π1(X,x0) and call it the

fundamental group of X.

Proof. Let X be a path connected space and let x0, x1 ∈ X.

Choose a path α in X from x0 to x1.

⇒ Define a function α♯ : π1(X,x0) → π1(X,x1) by setting

α♯([σ]) = [α ∗ σ ∗ α] for [σ] ∈ π1(X,x0).
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⇒ (i) α♯ : π1(X,x0) → π1(X,x1) is well-defined by Lemma 11.

(ii) α♯ : π1(X,x0) → π1(X,x1) is a homomorphism.

(∵) Let [σ], [τ ] ∈ π1(X,x0) represented by loops σ, τ ∈ Ω1(X,x0).

⇒ α♯([σ] · [τ ]) = α♯([σ ∗ τ ]) = [α ∗ (σ ∗ τ) ∗ α]
= [α ∗ (σ ∗ (α ∗ α) ∗ τ) ∗ α]
= [(α ∗ σ ∗ α) ∗ (α ∗ τ ∗ α)] = α♯([σ]) · α♯([τ ]).

(iii) (α♯)
−1 = α♯. i.e., α♯ ◦ α♯ = 1π1(X,x1) and α♯ ◦ α♯ = 1π1(X,x0).

(∵) Let [ρ] ∈ π1(X,x1) represented by a loop ρ ∈ Ω(X,x1).

⇒ (α♯ ◦ α♯)([ρ]) = α♯([α ∗ ρ ∗ α]) = [α ∗ α ∗ (ρ ∗ α) ∗ α]
= [(α ∗ α) ∗ ρ ∗ (α ∗ α)] = [ρ] = 1π1(X,x1)([ρ]).

⇒ α♯ ◦ α♯ = 1π1(X,x1).

Similarly we can show that α♯ ◦ α♯ = 1π1(X,x0).

⇒ α♯ : π1(X,x0) → π1(X,x1) is an isomorphism by (i), (ii), (iii).
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Remark 19. (1) By Theorem 18, it is common practice to omit

mention of the base point for the fundamental group of a path

connected space X. Thus we shall sometimes refer π1(X), the

fundamental group of X, since the fundamental group π1(X,x0)

does not depend on the choice of base point x0 ∈ X.

(2) Note that Theorem 18 does not guarantee that the isomorphism

between π1(X,x0) and π1(X,x1) is unique. Different paths can

produce different isomorphisms.

(3) In some application, specification of the base point is important.

For example, when comparing fundamental groups of spaces X

and Y on the basis of a continuous function f : X → Y, it is

usually necessary to specify base points x0 in X and y0 in Y and

to assume that f(x0) = y0.
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Definition 20. The isomorphism α♯ : π1(X,x0) → π1(X,x1) in the

proof of Theorem 18 is called the isomorphism induced by the path α.

Definition 21. Let X be a topological space.

(1) X is said to be simply connected if it is path connected and

π1(X) is the trivial group consisting of the identity element only.

(2) X is said to be contractible to a point x0 in X provided that

there is a continuous function F : X × I → X such that

F (x, 0) = x, F (x, 1) = x0, F (x0, t) = x0 for all x ∈ X for all t ∈ I.

The function F is called a contraction of X to the point x0.

(3) X is said to be contractible if there exists a point x0 in X for

which X is contractible to x0.
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Remark 22. In general, for a fixed point x0 of a space X, we define

Ωn(X,x0) = {α : Sn → X | α is continuous and α(∗) = x0)},

where ∗ = (1, 0, · · · , 0) ∈ Sn and define πn(X,x0) = Ωn(X,x0)/∼=x0
.

Then

• π0(X,x0) can be identified with the number of path components

of a space X and

• π1(X,x0) in the above notion can be identified with the

fundamental group π1(X,x0) in Definition 12.

• It is known that πn(X,x0) admits an abelian group structure for

each n ≥ 2 and

• πn(X,x0) is called the n-th homotopy group for n ≥ 1.

Furthermore, we have the following;
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(1) X is path connected if and only if π0(X,x0) = 1. Sometimes a

path connected space is called a 0-connected space.

(2) X is simply connected if and only if π0(X,x0) = 1 and

π1(X) = 1, where the second 1 denotes the trivial group.

Sometimes a simply connected space is called a 1-connected space.

(3) A space X is said to be n-connected if πk(X,x0) = 1 for all k ≤ n.

Example 23. A closed interval [a, b] on R is contractible to a.

Proof. Define F : [a, b]× I → [a, b] by

F (x, t) = ta+ (1− t)x for all (x, t) ∈ [a, b]× I.

⇒ F : [a, b]× I → [a, b] is a well-defined continuous function and

F (x, 0) = x, F (x, 1) = a, F (a, t) = a for all x ∈ [a, b] and ∀t ∈ I.

⇒ [a, b] is contractible to a. In fact, an analogous argument shows

that [a, b] is contractible to each of its point.
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Theorem 24. A convex subset A of Rn is contractible to each point

x0 of A.

Proof. Let A be a convex subset of Rn and let x0 ∈ A.

⇒ Define H : A× I → A as follows:

Let a ∈ A and choose the straight line αa : I → A in A connecting

a to x0, i.e., αa(t) = (1− t)a+ tx0.

Define H(a, t) = αa(t) = (1− t)a+ tx0∀(a, t) ∈ A× I.

⇒ H : A× I → A is a well-defined continuous function and

H(a, 0) = a,H(a, 1) = x0 for all a ∈ A and H(x0, t) = x0∀t ∈ I.

⇒ A is contractible to the point x0.
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Theorem 25. Every contractible space is simply connected.

Proof. Let X be a contractible space.

⇒ There exists a point x0 ∈ X such that X is contractible to x0.

⇒ There exists a continuous function F : X × I → X such that

F (x, 0) = x, F (x, 1) = x0, F (x0, t) = x0 for all x ∈ X for all t ∈ I.

(i) X is path connected.
(∵) ∀x ∈ X, Define fx : I → X by fx(t) = F (x, t)∀t ∈ I.

⇒ ∀x ∈ X, fx is a path from x to x0.

⇒ ∀x, y ∈ X, fx ∗ fy is a path from x to y.
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(ii) π1(X,x0) = {[cx0 ]}.

(∵) Let [α] ∈ π1(X,x0).

⇒ Define H : I× I → X by

H(s, t) = F (α(s), t) for all (s, t) ∈ I× I.

⇒ H : I× I → X is continuous,

H(s, 0) = F (α(s), 0) = α(s), H(s, 1) = F (α(s), 1) = x0,

H(0, t) = F (α(0), t) = F (x0, t) = x0 for all t ∈ I,

H(1, t) = F (α(1), t) = F (x0, t) = x0 for all t ∈ I.

⇒ H : α ≃x0 cx0 , i.e., [α] = [cx0 ].

⇒ π1(X,x0) = {[cx0 ]}.

⇒ X is simply connected by (i) and (ii) above.

39



Remark 26. From Theorems 24 and 25, we conclude that

a single point, an interval, the real line R1, a disk, a rectangle,

Euclidean n-space Rn, and all other convex subspaces of Rn have

trivial fundamental group.

Our first nontrivial example of a fundamental group occurs for the

unit circle S1 in the next section.
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Exercises 2

1. Prove that the relation of free homotopic paths in a topological space

X is an equivalence relation on the set of all paths in X.

2. Prove that the equivalence of paths in a topological space X is an

equivalence relation on the set of all paths in X with a fixed initial

point x0 ∈ X and a fixed terminal point x1 ∈ X.

3. Let γ be a loop in X with a base point x0. Show that γ♯ = 1π1(X,x0) if

and only if [γ] belongs to the center of π1(X,x0).

4. Let α and β be equivalent paths in a space X from x0 to x1. Show

that α♯ = β♯.

5. (1) Let α and β be paths in a space X having common initial point x0

and common terminal point x1. Prove that α and β are equivalent

if and only if the product α ∗ β is equivalent to the constant loop

cx0 at x0.
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(2) Let X be a path connected space.

Prove that X is simply connected if and only if each pair of paths

in X having the same initial point and same terminal point

are equivalent.

6. Prove that the following spaces are contractible.

(1) The n-dimensional upper hemisphere Un of Sn:

Un = {x = (x1, · · · , xn+1) ∈ Sn | xn+1 ≥ 0}.
(2) The “punctured n-sphere” Sn \ {p}, where p is any point in Sn.

(3) The topologist’s comb.

7. Definition. A space X is said to be weakly contractible provided that

there is a point x0 in X and a continuous function F : X × I → X

such that F (x, 0) = x, F (x, 1) = x0 for all x ∈ X.

The function F is called a weak contraction.

Thus a difference between a contraction on X and a weak contraction

on X is in the fact that a weak contraction is not required to leave the

base point x0 fixed.
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(1) Give an example of a weakly contractible space that is not

contractible.

(2) Prove that each weakly contractible space is simply connected.
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3 The Fundamental Group of S1

Definition 27. (1) The function p : R → S1 defined by

p(s) = (cos 2πs, sin 2πs) ∈ S1 ⊂ R2 for all s ∈ R
is called the covering projection of R over S1.

Note that p(k) = (1, 0) ∈ S1 for all k ∈ Z ⊂ R and that p

functions [k, k + 1] around S1 exactly once in the

counterclockwise direction.

Also note that p(s+ t) = (cos 2π(s+ t), sin 2π(s+ t)) =

(cos 2πs, sin 2πs)(cos 2πt, sin 2πt) = p(s)p(t) for all s, t ∈ R,
where (a, b)(c, d) = (ac− bd, ad+ bc) ∀(a, b), (c, d) ∈ S1 ⊂ R2.

1 ≡ (1, 0) ∈ S1(⊂ R2) will be designated as a base point of S1.
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(2) Let X be a topological space and let f : X → S1 be a continuous

function. A continuous function f̃ : X → R is called a lifting of f

to R or covering function of f if p ◦ f̃ = f,

i.e., the following diagram commutes.

R

p

��

X

f̃

88qqqqqqqqqqqqqq

f
// S1.

In particular when X = I, the lifting α̃ : I → R of a path

α : I → S1 is usually called a covering path of α.

Remark 28. We shall be particularly interested in lifting a path

α : I → S1 to a covering path α̃ : I → R and a homotopy

F : I× I → S1 to a covering homotopy F̃ : I× I → R.
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Lemma 29. There is a pair U1, U2 of subsets of S1 satisfying the

following conditions:

(1) U1, U2 are path connected and open in S1.

(2) S1 = U1 ∪ U2.

(3) p : R → S1 functions each path component of p−1(Ui)

homeomorphically onto Ui, ∀i = 1, 2.

Proof. There are many possible ways to choose U1 and U2,

one of which is the following as depicted in as in Figure 8.

U1 = the open arc on S1 beginning at the point (−1, 0) and

extending counterclockwise to the point (0, 1),

U2 = the corresponding open arc beginning at the point (1, 0) and

extending counterclockwise to the point (0,−1).
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(0,1)

(−1,0)

U1

(1,0)=1

(0,−1)

U2

Figure 8: U1 and U2
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⇒ (1) U1 and U2 are clearly path connected open subsets of S1.

(2) Clearly U1 ∪ U2 = S1.

By the definition of the covering projection p, we have

p−1(U1) =

∞∪
k=−∞

(k − 1

2
, k +

1

4
), p−1(U2) =

∞∪
k=−∞

(k, k +
3

4
).

(3) Note that the path components of p−1(U1) are the open

intervals (k − 1

2
, k +

1

4
), k ∈ Z and

p sends each interval (k− 1

2
, k+

1

4
) homeomorphically onto U1.

Similarly the path components of p−1(U2) are the open

intervals (k, k +
3

4
), k ∈ Z and p sends each interval (k, k +

3

4
)

homeomorphically onto U2.
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For an open cover O of a metric space X, recall that a Lebesgue

number for O is a positive number ϵ > 0 such that every subset A of

X with diam(A) < ϵ is contained in some member of O.

Lebesgue Number Theorem. Let X be a compact metric space.

Then every open cover of X has a Lebesgue number.

Theorem 30 (Covering Path Property). Let α : I → S1 be a path

with α(0) = 1 ∈ S1. Then there exists a unique lifting α̃ : I → R of α

with α̃(0) = 0.

i.e., there exists a unique continuous function α̃ : I → R such that

α̃(0) = 0 and the following diagram commutes.

R

p

��

I

α̃

88qqqqqqqqqqqqqq

α
// S1.
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Proof. Let α : I → S1 be a path with α(0) = 1 ∈ S1. Choose the

path connected open subsets U1 and U2 of the Figure 8.

Note that p−1(U1) =
·∪

k∈Z
(k− 1

2
, k+

1

4
), p−1(U2) =

·∪
k∈Z

(k, k+
3

4
),

and that p|(k− 1
2 ,k+

1
4 )

: (k − 1

2
, k +

1

4
) → p((k − 1

2
, k +

1

4
)) and

p|(k,k+ 3
4 )

: (k − 1

2
, k +

1

4
) → p((k, k +

3

4
)) are homeomorphisms,

where
·∪
means a disjoint union.

⇒ {α−1(U1), α
−1(U2)} is an open cover of the compact metric space

I.

⇒ By the Lebesgue Number Theorem, there exists a Lebesgue

number ϵ > 0 for the open covering {α−1(U1), α
−1(U2)} of I.

i.e., ∀ A ⊂ I with diam(A) < ϵ, A ⊂ α−1(U1) or A ⊂ α−1(U2).
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⇒ Subdivide the interval I into subintervals

0 = t0 < t1 < · · · < tn = 1 such that ti − ti−1 < ϵ∀i = 1, 2, · · · , n.
⇒ Since α(t0) = α(0) = 1 ∈ U1 \ U2, α([t0, t1] ⊂ U1.

⇒ Define α̃1 : [t0, t1] → R by α̃1(t) = (p|(− 1
2 ,

1
4 )
)−1 ◦ α(t)∀t ∈ [t0, t1].

i.e. the following diagrams commute.

(−1

2
,
1

4
)

p|
��

� � // R

p

��

[t0, t1]

α̃1

77ppppppppppppp

α|[t0,t1]

// U1
� � // S1

⇒ α̃1 : [t0, t1] → R is a continuous function,

α̃1(0) = p|−1
(− 1

2 ,
1
4 )
(α(0)) = 0 and p ◦ α̃1(t) = α(t) for all t ∈ [t0, t1].
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Note that α̃1 : [t0, t1] → R is uniquely determined by the choice of

the unique path component (−1

2
,
1

4
) of p−1(U1) containing 0.

⇒ α̃1 : [t0, t1] → R is a unique continuous function such that

α̃1(0) = 0 and p ◦ α̃1(t) = α(t) for all t ∈ [t0, t1].

To proceed by induction, assume that for i ≥ 1, we have defined a

unique continuous function α̃i : [t0, ti] → R such that α̃i(0) = 0

and p ◦ α̃i(t) = α(t) for all t ∈ [t0, ti].

Note that α([ti, ti+1]) ⊂ U1 or α([ti, ti+1]) ⊂ U2.

Let U = U1 or U2, such that α([ti, ti+1]) ⊂ U.

⇒ Let Si+1 be the path component of p−1(U), containing α̃i(ti)

so that p|Si+1 : Si+1 → U is a homeomorphism.

⇒ Define α̃i+1 : [t0, ti+1] → R by setting
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α̃i+1(t) =

{
α̃i(t) if t ∈ [t0, ti] and

(p|Si+1)
−1 ◦ α(t) if t ∈ [ti, ti+1].

⇒ α̃i+1 : [t0, ti+1] → R is continuous by the pasting lemma,

α̃i+1(0) = α̃i(0) = 0 and p ◦ α̃i+1(t) = α(t) for all t ∈ [t0, ti+1].

Note that α̃i+1 is uniquely determined by α̃i+1(0) = α̃1(0) = 0.

⇒ By induction argument, we have a unique continuous function

α̃ ≡ α̃n : [0, 1] → R such that α̃(0) = 0 and p ◦ α̃ = α.
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Theorem 31 (Covering Homotopy Property). Let H : I× I → S1 be

a homotopy such that H(0, 0) = 1 ∈ S1. Then there exists a unique

lifting H̃ : I× I → R such that p ◦ H̃ = H and H̃(0, 0) = 0.

i.e., there exists a unique continuous function H̃ : I → R such that

H̃(0, 0) = 0 and the following diagram commutes.

R

p

��

I× I

H̃

77ooooooooooooo

H
// S1.

Proof. Let H : I× I → S1 be a homotopy with H(0, 0) = 1 ∈ S1.

Choose the path connected open subsets U1 and U2 of the

Figure 8 as in Theorem 30.

⇒ {H−1(U1),H
−1(U2)} is an open cover of the compact metric space
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I× I.

⇒ By the Lebesgue Number Theorem, there exists a Lebesgue

number ϵ > 0 for the open covering {H−1(U1),H
−1(U2)} of I× I.

⇒ Subdivide the interval I into subintervals

0 = s0 < s1 < · · · < sm = 1 and 0 = t0 < t1 < · · · < tn = 1 · ·
diam([si, si+1]× [tj , tj+1]) < ϵ(0 ≤ i ≤ m− 1, 0 ≤ j ≤ n− 1),

⇒ [si, si+1]× [tj , tj+1] ⊂ H−1(U1) or [si, si+1]× [tj , tj+1] ⊂ H−1(U2)

for each pair (i, j) with 0 ≤ i ≤ m− 1 and 0 ≤ j ≤ n− 1.

⇒ H([si, si+1]× [tj , tj+1]) ⊂ U1 or H([si, si+1]× [tj , tj+1]) ⊂ U2

for each pair (i, j) with 0 ≤ i ≤ m− 1 and 0 ≤ j ≤ n− 1.

⇒ Since H(0, 0) = H(s0, t0) = 1 ∈ U1 \ U2, H([s0, s1]× [t0, t1]) ⊂ U1.

⇒ Define H̃(1,1) : [s0, s1]× [t0, t1] → R by

H̃(1,1)(s, t) = (p|(− 1
2 ,

1
4 )
)−1 ◦H(s, t)∀(s, t) ∈ [s0, s1]× [t0, t1].
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i.e. the following diagrams commute.

(− 1
2 ,

1
4 )

p|
��

� � // R

p

��

[s0, s1]× [t0, t1]

H̃(1,1)

55lllllllllllllll

H|[s0,s1]×[t0,t1]

// U1
� � // S1

⇒ H̃(1,1) : [s0, s1]× [t0, t1] → R is a continuous function,

H̃(1,1)(0, 0) = (p|(− 1
2 ,

1
4 )
)−1(H(0, 0)) = (p|(− 1

2 ,
1
4 )
)−1(1) = 0 and

p ◦ H̃(1,1)(s, t) = H(s, t) for all (s, t) ∈ [s0, s1]× [t0, t1].

⇒ H̃(1,1) : [s0, s1]× [t0, t1] → R is a continuous function such that

H̃(1,1)(0, 0) = 0 and p ◦ H̃(1,1)(s, t) = H(s, t)

for all (s, t) ∈ [s0, s1]× [t0, t1].
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Note that H̃(1,1) : [s0, s1]× [t0, t1] → R is uniquely determined by

the initial point H̃(1,1)(0, 0) = 0.

Proceeding inductively as in the proof of Theorem 30,

we have a unique continuous function H̃ ≡ H̃(m,n) : I× I → R such

that p ◦ H̃ = H and H̃(0, 0) = 0.

The details are left for the readers.

Definition 32. Let α : I → S1 be a loop in S1, based at 1 ∈ S1.

Then by the Covering Path Property(Theorem 30), there exists a

unique lifting α̃ : I → R of α such that α̃(0) = 0.

Since p(α̃(1)) = α(1) = 1, α̃(1) ∈ Z.

The integer α̃(1) is called the degree of the loop α and is denoted by

deg(α).

57



Theorem 33. Let α, β : I → S1 be two loops in S1, based at 1 ∈ S1.

Then [α] = [β] in π1(S
1, 1) if and only if deg(α) = deg(β).

Proof. Let α, β : I → S1 be two loops in S1, based at 1 ∈ S1.

⇒ There exist liftings α̃, β̃ : I → R of α, β : I → S1, respectively such

that α̃(0) = β̃(0) = 0 by the Covering Path Property.

(only if) Assume that [α] = [β] in π1(S
1, 1).

⇒ There exists a homotopy H : I× I → S1 such that

H(s, 0) = α(s),H(s, 1) = β(s),H(0, t) = H(1, t) = 1 for all s, t ∈ I.

⇒ By the Covering Homotopy Property(Theorem 31),

there exists a unique lifting H̃ : I× I → R of H · · H̃(0, 0) = 0.

⇒ For all t ∈ I, since p(H̃(0, t)) = H(0, t) = 1, H̃(0, t) ∈ Z.
⇒ H̃|{0}×I : {0} × I → Z is a well-defined continuous function.

⇒ Since {0} × I is connected, H̃({0} × I) is a connected subset of Z.

58



⇒ Since Z is discrete, H̃({0} × I) is a single point.

⇒ H̃(0, t) = H̃(0, 0) = 0,∀t ∈ I. Similarly, H̃(1, t) = H̃(1, 0)∀t ∈ I.

⇒ Since p◦ H̃(s, 0) = H(s, 0) = α(s) and p◦ H̃(s, 1) = H(s, 1) = β(s),

H̃(s, 0) = α̃(s) and H̃(s, 1) = β̃(s) for all s ∈ I

by the uniqueness of the path liftings starting at 0.

⇒ deg(α) = α̃(1) = H̃(1, 0) = H̃(1, 1) = β̃(1) = deg(β).

(if) Assume that deg(α) = deg(β).

⇒ α̃(1) = β̃(1). Define G : I× I → R by

G(s, t) = (1− t)α̃(s) + tβ̃(s) for all (s, t) ∈ I× I.

⇒ G is a well-defined continuous function,

G(s, 0) = α̃(s) and G(s, 1) = β̃(s) for all s ∈ I,

G(0, t) = (1− t)α̃(0) + tβ̃(0) = 0 for all t ∈ I and

G(1, t) = (1− t)α̃(1) + tβ̃(1) = α̃(1) = β̃(1) for all t ∈ I.
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⇒ p ◦G : I× I → S1 is a continuous function and

p ◦G(s, 0) = p(α̃(s)) = α(s) and

p ◦G(s, 1) = p(β̃(s)) = β(s) for all s ∈ I,

p ◦G(0, t) = p(0) = 1 and p ◦G(1, t) = p(α̃(1)) = α(1) = 1∀t ∈ I.

⇒ p ◦G : α ≃1 β. i.e., [α] = [β] in π1(S
1, 1).

Theorem 33 shows how to associate each homotopy class of loops in

π1(S
1, 1) with an integer.

The next theorem demonstrates that this correspondence is an

isomorphism.
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Theorem 34. The fundamental group π1(S
1, 1) is isomorphic to the

group of integers. i.e., π1(S
1, 1) ∼= Z.

Proof. Define d : π1(S
1, 1) → Z by d([α]) = deg(α)∀[α] ∈ π1(S

1, 1).

⇒ (1) d is well-defined and injective by Theorem 33.

(2) d is surjective.



(∵) Let k ∈ Z.
⇒ Define α̃k : I → R and αk : I → S1 by

α̃k(s) = ks and αk(s) = (p ◦ α̃k)(s) = p(ks)∀s ∈ I, resp.

⇒ [αk] ∈ π1(S
1, 1) and α̃k is the lifting of αk

starting at α̃k(0) = 0.

⇒ d([αk]) = deg(αk) = α̃k(1) = k.
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(3) d is a homomorphism.

(∵) Let [σ], [τ ] ∈ π1(S
1, 1) and let σ̃, τ̃ , denote the unique

liftings of σ, τ starting at 0, respectively.

⇒ Define a path α : I → R by

α(s) =


σ̃(2s) if 0 ≤ s ≤ 1

2
,

σ̃(1) + τ̃(2s− 1) if
1

2
≤ s ≤ 1.

⇒ α : I → R is continuous by the pasting lemma and

p ◦ α(s) = (σ ∗ τ)(s) for all s ∈ I, α(0) = σ̃(0) = 0.

⇒ α : I → R is a lifting of σ ∗ τ starting at 0.

⇒ deg(σ ∗ τ) = α(1) = σ̃(1) + τ̃(1) = deg(σ) + deg(τ).

⇒ d([σ] · [τ ]) = d([σ ∗ τ ]) = deg(σ ∗ τ)
= deg(σ) + deg(τ) = d([σ]) + d([τ ]).
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Exercises 3

1. Complete the inductive definition of the covering homotopy in the

proof of the Covering Homotopy Property(Theorem 31).

2. Consider S1 as the set z = x+ iy of complex numbers having modulus

1. Then the covering projection p : R → S1 is, by definition of the

exponential function for complex variables,

p(s) = cos 2πs+ i sin 2πs = e2πis for all s ∈ R.
Use this representation to prove the unique assertion of the Covering

Path Property(Theorem 30) by showing the following:

(1) For a given loop α in S1 with base point 1, let α̃1 and α̃2 be

covering paths of α with initial point 0. Show that the composition

of p with α̃1 − α̃2 is a constant path.

(2) Conclude from part (1) that α̃1 − α̃2 has only integral values. Use

the connectedness of I to show that α̃1 − α̃2 has only the value 0.
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4 The Induced Homomorphisms and

Homotopies

Theorem 35. Let X and Y be topological spaces with base points x0

and y0, respectively and let f : X → Y be a continuous function such

that f(x0) = y0. Define f∗ : π1(X,x0) → π1(Y, y0) by f∗([α]) = [f ◦ α]
for each [α] ∈ π1(X,x0), represented by a loop α : I → X at x0. Then

f∗ : π1(X,x0) → π(Y, y0) is a group homomorphism.
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Proof. (1) f∗ : π1(X,x0) → π(Y, y0) is well-defined.

(∵) Let [σ], [τ ] ∈ π1(X,x0) and assume that σ ≃x0 τ.

⇒ There exists a homotopy H : I× I → X such that

H(s, 0) = σ(s), H(s, 1) = τ(s) for all s ∈ I,

H(0, t) = H(1, t) = x0 for all t ∈ I.

⇒ f ◦H : I× I → Y is a continuous function and

f ◦H(s, 0) = f(H(s, 0)) = f(σ(s)) = f ◦ σ(s),
f ◦H(s, 1) = f(H(s, 1)) = f(τ(s)) = f ◦ τ(s),
f ◦H(0, t) = f(x0) = y0 = f ◦H(1, t) for all t ∈ I.

⇒ f ◦ σ ≃y0 f ◦ τ by homotopy f ◦H.

⇒ [f ◦ σ] = [f ◦ τ ] ∈ π1(Y, y0).
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(2) f∗ : π1(X,x0) → π(Y, y0) is a homomorphism.
(∵) Let [σ], [τ ] ∈ π1(X,x0).

⇒ f∗([σ] · [τ ]) = f∗([σ ∗ τ ]) = [f ◦ (σ ∗ τ)]
= [(f ◦ σ) ∗ (f ◦ τ)] = [f ◦ σ] · [f ◦ τ ]
= f∗([σ]) · f∗([τ ]).

Definition 36. Let f : X → Y be a continuous function such that

f(x0) = y0. The homomorphism f∗ : π1(X,x0) → π(Y, y0) of

Theorem 35, defined by

f∗([α]) = [f ◦ α] for each [α] ∈ π1(X,x0),

is called the induced homomorphism of f : X → Y .
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Theorem 37. We have the following properties of the induced

homomorphisms.

(1) (1(X,x0))∗ = 1π1(X,x0) for any space X with a base x0.

(2) Let f : X → Y and g : Y → Z be two continuous functions such

that f(x0) = y0 and g(y0) = z0.

⇒ (g ◦ f)∗ = g∗ ◦ f∗ : π1(X,x0) → π1(Z, z0).

i.e., the following triangle is commutative;

π1(X,x0)
f∗ //

(g◦f)∗
##F

FF
FF

FF
FF

F
π1(Y, y0)

g∗
||yy
yy
yy
yy
yy

π1(Z, z0).

Proof. It follows directly from the definition.
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Definition 38. Let X and Y be topological spaces and let

f, g : X → Y be two continuous functions.

(1) f, g : X → Y are said to be homotopic, written f ≃ g, if there

exists a continuous function H : X × I → Y such that

H(x, 0) = f(x) and H(x, 1) = g(x) for all x ∈ X.

Note that ≃ is an equivalence relation on the set of all

continuous functions from X to Y.

Such a continuous function H : X × I → Y is called a homotopy

from f to g, written H : f ≃ g. In this case, we say that f is

deformed to g via a homotopy H.

The equivalence class of a continuous function f : X → Y under

≃, called the homotopy class of f, will be denoted by [f ].
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(2) Let A be a subspace of X and assume that f(a) = g(a) for all

a ∈ A. Then f, g : X → Y are said to be homotopic relative to A,

written f ≃A g, if there exists a continuous function

H : X × I → Y such that

(i) H(x, 0) = f(x) and H(x, 1) = g(x) for all x ∈ X.

(ii) H(a, t) = f(a) = g(a) for all a ∈ A and for all t ∈ I.

Note that ≃A is an equivalence relation on the set of all

continuous functions from X to Y .

Such a continuous function H : X × I → Y is called a homotopy

relative to A from f to g, written H : f ≃A g.

The equivalence classes under ≃A, are called the relative

homotopy class.

The set of relative homotopy classes will be denoted by [X,Y ]A.

If A = ∅, we omit the phrase “relative to ∅” and

note that ≃∅ = ≃ .

69



(3) Assume that f, g : X → Y are homeomorphisms. We say that

f, g : X → Y are isotopic, written f ∼= g, if there exists a

continuous function H : X × I → Y, called an isotopy from f to

g, written H : f ∼= g, such that

(i) H(x, 0) = f(x) and H(x, 1) = g(x) for all x ∈ X,

(ii) Ht : X → Y, defined by Ht(x) = H(x, t) for all x ∈ X, is a

homeomorphism for each t ∈ I.

In this case, we say that f is isotoped to g via an isotopy H.

Note that ∼= is an equivalence relation on the set of all

homeomorphisms from X to Y .

The equivalence class of f under ∼= is called the isotopy class of f.
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(4) Assume that f, g : X → Y are homeomorphisms. Let A be a

subspace of X and assume that f(a) = g(a) for all a ∈ A. We say

that f, g : X → Y are isotopic relative to A, written f ∼=A g if

there exists a continuous function H : X × I → Y, called an

isotopy relative to A from f to g written H : f ∼=A g, such that

(i) H(x, 0) = f(x) and H(x, 1) = g(x) for all x ∈ X,

(ii) H(a, t) = f(a) = g(a) for all (a, t) ∈ A× I and

(iii) Ht : X → Y, defined by Ht(x) = H(x, t) for all x ∈ X, is a

homeomorphism for each t ∈ I.

In this case, we say that f is isotoped to g via H relative to A.

Note that ∼=A is an equivalence relation on the set Homeo(X,Y )

of all homeomorphisms from X to Y . The equivalence class of f

under ∼=A is called the isotopy class relative to A of f. Again if

A = ∅, we omit the phrase “relative to ∅” and note that ∼=∅ = ∼= .
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Remark 39. For two loops σ, τ : I → X with

σ(0) = τ(0) = σ(1) = τ(1) = x0,

the notation σ ≃{0,1} τ is the same as the previous notation σ ≃x0 τ.

We will use both notations.

Definition 40. (1) A continuous function f : X → Y is called a

homotopy equivalence if there is a continuous function g : Y → X

such that g ◦ f ≃ 1X and f ◦ g ≃ 1Y . If such an f exists, we say

that X and Y are of the same homotopy type or that X is

homotopically equivalent to Y and write X ≃ Y .

(2) A continuous function f : X → Y is said to be null-homotopic if

it is homotopic to a constant function.
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(3) A topological space X is said to be weakly contractible if X is of

the same homotopy type as a single point x0 ∈ X.

In other words, X is weakly contractible if there exist continuous

functions H : X × I → X and G : {x0} × I → {x0} such that

H : i{x0} ◦ c{x0} ≃ 1X and G : c{x0} ◦ i{x0} ≃ 1{x0}(automatic),

where i{x0} : {x0} → X denotes the inclusion function and

c{x0} : X → {x0} denotes the constant function. Thus X is

weakly contractible if ∃ a point x0 ∈ X and a continuous

function H : X × I → X such that H(x, 0) = x0 and H(x, 1) = x

for all x ∈ X.
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Recall that a topological space X is contractible to a point x0 ∈ X

if there exist a continuous function H : X × I → X such that

H(x, 0) = x0 and H(x, 1) = x for all x ∈ X and H(x0, t) = x0 for all

t ∈ I.

Thus every contractible space is weakly contractible.

A difference between a contractible space and a weakly contractible

space is in the fact that the homotopy for a weakly contractible space

is not required to leave the base point x0 fixed.
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Definition 41. Let A be a subspace of X and let i : A → X denote

the inclusion function of a subspace A into X. Then

(1) A is called a retract of X if there exists a continuous function

r : X → A such that r ◦ i = 1A.

In this case, r : X → A is called a retract function of X into A.

(2) A is called a deformation retract of X if there exists a continuous

function r : X → A such that r ◦ i = 1A and i ◦ r ≃ 1X .

In this case, r : X → A is called a deformation retract function of

X into A.

Or equivalently, A is a deformation retract of X if there there

exists a continuous function H : X × I → X such that

H(x, 0) ∈ A and H(x, 1) = 1X(x) = x for all x ∈ X.

The homotopy H : X × I → X is called a deformation retraction

of X onto A. In this situation, note that r : X → A and

H : X × I → X are related by r(x) = H(x, 0) for all x ∈ X.
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(3) A is called a strong deformation retract of X if there exists a

continuous function r : X → A such that r ◦ i = 1A and

i ◦ r ≃A 1X .

In this case, r : X → A is called a strong deformation retract

function of X into A.

Or equivalently, A is a strong deformation retract of X if there

there exists a continuous function H : X × I → X such that

(i) H(x, 0) ∈ A and H(x, 1) = 1X(x) = x for all x ∈ X,

(ii) H(a, t) = a for all (a, t) ∈ A× I.

The homotopy H is called a strong deformation retraction of X

onto A.

Since for each a in A, H(a, t) = a for each t ∈ I, it is sometimes

said that the points of A stay fixed throughout the deformation

retraction. In this situation, note that r : X → A and

H : X × I → X are related by r(x) = H(x, 0) for all x ∈ X.
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Remark 42. Let A be a subspace of X.

(1) There exists a continuous function r : X → A such that

r ◦ i = 1A and i ◦ r ≃ 1X if and only if

there exists a continuous function H : X × I → X such that

(i) H(x, 0) ∈ A and H(x, 1) = x for all x ∈ X,

(ii) H(a, 0) = a for all a ∈ A.

(2) There exists a continuous function r : X → A such that

r ◦ i = 1A and i ◦ r ≃A 1X if and only if

there exists a continuous function H : X × I → X such that

(i) H(x, 0) ∈ A and H(x, 1) = x for all x ∈ X,

(ii) H(a, t) = a for all (a, t) ∈ A× I.
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Example 43. (1) In an annulus, both the inner and outer circles

are retracts.

(2) A closed subinterval [c, d] of a given interval [a, b] is a retract of

[a, b].

(3) The set of endpoints A = {a, b} is not a retract of a closed

interval [a, b], where a < b, for the following reason:

Since [a, b] is connected and A is not, there is no continuous

function from [a, b] onto A.

(4) The closed n-dimensional unit ball Dn is a strong deformation

retract of Rn.

(5) The n-dimensional unit sphere Sn is a strong deformation retract

of Rn+1 \ {0} for each n ∈ N.
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Theorem 44. Let X be a space and let x0 ∈ X. Let cx0 : X → {x0}
denote the constant function and ix0 : {x0} → X denote the inclusion

function. Then the following are equivalent.

(1) X is weakly contractible to x0.

(2) 1X ≃ ix0 ◦ cx0 .

(3) cx0 : X → {x0} is a homotopy equivalence.

(4) ix0 : {x0} → X is a homotopy equivalence.

(5) {x0} is a deformation retract of X.

(6) X and {x0} are of the same homotopy type.

Proof. ((1) ⇒ (2), (3), (4), (5), (6))

Assume that X is weakly contractible to x0.

⇒ There exists a continuous function H : X × I → X such that

H(x, 0) = x and H(x, 1) = x0 for all x ∈ X.
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⇒ H(x, 0) = 1X(x),H(x, 1) = ix0 ◦ cx0(x) for all x ∈ X.

⇒ (2) 1X ≃ ix0 ◦ cx0 .

Since cx0 ◦ ix0 = 1{x0} automatically,

1X ≃ ix0 ◦ cx0 implies (3), (4), (5) and (6).

The proofs of other implications are left for the readers.

Example 45. Since the function H : Rn × I → Rn defined by

H(x, t) = tx for all (x, t) ∈ Rn × I is continuous,

H(x, 0) = 0 = (0, 0, · · · , 0) ∈ Rn and H(x, 1) = x for all x ∈ Rn,

Rn is weakly contractible to the origin 0 = (0, 0, · · · , 0) ∈ Rn and

hence Rn and {0} are of the same homotopy type by Theorem 44.

The following Theorem 46 is simply the restatement of (1) ⇔ (2) in

Theorem 44.
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Theorem 46. A space X is weakly contractible if and only if the

identity function 1X : X → X is homotopic to a constant function.

Proof. It follows from (1) ⇔ (2) of Theorem 44.

(only if) Suppose that X is weakly contractible.

⇒ There exists a continuous function H : X × I → X such that

H(x, 0) = x and H(x, 1) = x0 for all x ∈ X.

⇒ Since H(x, 0) = x = 1X(x) and H(x, 1) = x0 = cx0
(x) for all

x ∈ X, where cx0 : X → X is the constant function from X to X

defined by cx0(x) = x0 for all x ∈ X.

⇒ The identity function 1X : X → X is homotopic to the constant

function cx0 : X → X.

(if) Suppose that 1X ≃ cx0 where cx0 : X → X is a constant function

defined by cx0(x) = x0 for all x ∈ X.
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⇒ There exists a homotopy H : X × I → X such that

H(x, 0) = 1X(x) = x and H(x, 1) = cx0(x) = x0 for all x ∈ X.

⇒ X is weakly contractible to the point x0.

Example 47. Let X = Rn. The function H : X × I → X defined by

H(x, t) = tx, for all (x, t) ∈ X × I, is a homotopy from the zero

function c0 to 1Rn . Hence, Rn is weakly contractible. Furthermore,

any convex subset of Rn is weakly contractible.

Recall that Rn and its convex subsets are contractible and thus they

are weakly contractible.
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Theorem 48. Let f, g : X → Y be two homotopic functions by

means of a homotopy H : X × I → Y, and let x0 ∈ X.

Then we have a commutative triangle;

π1(X,x0)
f∗ //

g∗
&&MM

MMM
MMM

MM
π1(Y, f(x0))

α♯

��

π1(Y, g(x0))

where α♯ is the isomorphism induced by the path α in Y from f(x0)

to g(x0) given by α(t) = H(x0, t) for all t ∈ I.

Proof. Assume that f, g : X → Y are homotopic functions

by means of a homotopy H : X × I → Y and let [σ] ∈ π1(X,x0).

We will construct a homotopy F : α ∗ (f ◦ σ) ∗ α ≃g(x0) g ◦ σ
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relative to {0, 1}.

For this, consider the continuous function G : I× I → Y defined by

G(s, t) = H(σ(s), t) for all s, t ∈ I.

⇒ G(s, 0) = H(σ(s), 0) = f(σ(s)) = (f ◦ σ)(s),

G(s, 1) = g(σ(s)) = (g ◦ σ)(s) for all s ∈ I,

G(0, t) = H(σ(0), t) = H(x0, t) = α(t) and

G(1, t) = H(σ(1), t) = H(x0, t) = α(t) for all t ∈ I.

⇒ G : f ◦ σ ≃ g ◦ σ and G(0, t) = G(1, t) = α(t).

Pictorially the homotopy G can be described as in Figure 9.
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// //

//

OO

OO OO

(0, 0) f ◦ σ

g ◦ σ

(1, 0)

(0, 1)
(1, 1)

t

s

α αG

Figure 9: G : f ◦ σ ≃ g ◦ σ
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⇒ Define F : I× I → Y by

F (s, t) =


α(2s), 0 ≤ s ≤ 1− t

2
,

G(
4s+ 2t− 2

3t+ 1
, t),

1− t

2
≤ s ≤ t+ 3

4
,

α(4s− 3),
t+ 3

4
≤ s ≤ 1.

⇒ F : I× I → Y is a well-defined continuous function by Lemma 5,

F (s, 0) = (α ∗ ((f ◦ σ) ∗ α))(s) and

F (s, 1) = G(s, 1) = (g ◦ σ)(s) for all s ∈ I,

F (0, t) = α(0) = α(1) = g(x0) and

F (1, t) = α(1) = g(x0) for all t ∈ I.

The homotopy F from g ◦ σ to α ∗ (f ◦ σ) ∗ α, obtained from G

pictorially can be described as in Figure 10.
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oo // // //

//

OO

1111111111

XX

1111111111

CCCCCCC

aa

CCCCCCC

���������

JJ

���������

�����

EE

�����

(0, 0) ( 12 , 0) (
3
4 , 0) (1, 0)

(0, 1)
(1, 1)

t

s
α α

α α

α α

f ◦ σ

g ◦ σ

G 7−→

// // // //

//

// // //

OO

11111111111111111111

������������������
(0, 0) ( 12 , 0) (

3
4 , 0) (1, 0)

(0, 1)
(1, 1)

t

s
α α

α α

f ◦ σ

g ◦ σ

G

t=1−2s

t=4s−3

Figure 10: F : α ∗ (f ◦ σ) ∗ α ≃g(x0) g ◦ σ from G

⇒ F : α ∗ (f ◦ σ) ∗ α ≃g(x0) g ◦ σ.
⇒ α♯ ◦ f∗([σ]) = [α ∗ (f ◦ σ) ∗ α] = [g ◦ σ] = g∗([σ])∀[σ] ∈ π1(X,x0).

⇒ α♯ ◦ f∗ = g∗.
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Corollary 49. If X and Y are path connected spaces of the same

homotopy type, then their fundamental groups are isomorphic.

Proof. Assume that X and Y are path connected spaces of the same

homotopy type.

⇒ There exist continuous functions f : X → Y and g : Y → X such

that g ◦ f ≃ 1X and f ◦ g ≃ 1Y .

Choose x0 ∈ X and y0 ∈ Y and let g ◦ f(x0) = x1, f ◦ g(y0) = y1.

⇒ Apply Theorem 48 to get the following commutative triangles;

π1(X,x0)
(g◦f)∗

//

∼=

(1X )∗
""E

EE
EE

EE
EE

E
π1(X,x1)

∼=
α♯

||yy
yy
yy
yy
yy

π1(X,x0)

π1(Y, y0)
(f◦g)∗

//

∼=

(1Y )∗
""D

DD
DD

DD
DD

D
π1(Y, y1)

∼=
β♯

||zz
zz
zz
zz
zz

π1(Y, y0)

where α and β are paths induced from the homotopies.
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⇒ By Theorem 37, we have the following:

g∗ ◦ f∗ = (g ◦ f)∗ = (α♯)
−1 ◦ (1X)∗ = (α♯)

−1 ◦ 1π1(X,x0) = (α♯)
−1,

f∗ ◦ g∗ = (f ◦ g)∗ = (β♯)
−1 ◦ (1Y )∗ = (β♯)

−1 ◦ 1π1(Y,y0) = (β♯)
−1.

⇒ Since α♯ and β♯ are isomorphisms,

f∗ : π1(X,x0) → π1(Y, f(x0)) and

g∗ : π1(Y, f(x0)) → π1(X,x1) are isomorphisms.

⇒ Since X and Y are path connected,

π1(X) is isomorphic to π1(Y ).

Corollary 50. Let X and Y be path connected spaces and let

x0 ∈ X. If f : X → Y is a homeomorphism, then

f∗ : π1(X,x0) → π1(X, f(x0)) is an isomorphism.

Proof. It is left as an exercise for the reader.
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Exercises 4

1. Let X and Y be path connected spaces and let x0 ∈ X. Let f : X → Y

be a homeomorphism. Show that f∗ : π1(X,x0) → π1(Y, f(x0)) is an

isomorphism.

2. Let X and Y be path connected spaces. Assume that π1(X) and

π1(Y ) are not isomorphic. Show that X and Y are not homeomorphic.

3. Let A be a path connected subspace of a path connected space X. Let

i : A → X denote the inclusion function and let r : X → A be a

continuous function. Then we have the following.

(1) If r : X → A is a retract, then r∗ : π1(X, a0) → π1(A, r(a0)) is an

epimorphism and i∗ : π1(A, a0) → π1(X, a0) is a monomorphism

for any a0 ∈ A.

(2) If r : X → A is a deformation retract, then

r∗ : π1(X, a0) → π1(A, r(a0)) and i∗ : π1(A, a0) → π1(X, a0) are

isomorphisms for any a0 ∈ A.
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(3) If r : X → A is a strong deformation retract, then

r∗ : π1(X, a0) → π1(A, a0) and i∗ : π1(A, a0) → π1(X, a0) are

isomorphisms for any a0 ∈ A.

4. Complete the proof of Theorem 44.

Theorem 44. Let X be a space and let x0 ∈ X. Let cx0 : X → {x0}
denote the constant function and ix0 : {x0} → X denote the inclusion

function. Then the following are equivalent.

(1) X is weakly contractible to x0.

(2) 1X ≃ ix0 ◦ cx0 .

(3) cx0 : X → {x0} is a homotopy equivalence.

(4) ix0 : {x0} → X is a homotopy equivalence.

(5) {x0} is a deformation retract of X.

(6) X and {x0} are of the same homotopy type.
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5 Additional Examples of Fundamental

Groups

Our work in this chapter has revealed that the fundamental group of

S1 is the additive group of integers and that the fundamental group

of a weakly contractible space is trivial. It should be clear by now

that the fundamental group is difficult to determine rigorously. This

section presents several theorems that are useful in determining

fundamental groups and some additional examples.

For a subspace A of a topological space X, we first recall Remark 42:

(1) A is a deformation retraction of X if and only if there exists a

continuous function H : X × I → X such that

(i) H(x, 0) ∈ A and H(x, 1) = x for all x ∈ X,

(ii) H(a, 0) = a for all a ∈ A.
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(2) A is a strong deformation retraction of X if and only if there

exists a continuous function H : X × I → X such that

(i) H(x, 0) ∈ A and H(x, 1) = x for all x ∈ X,

(ii) H(a, t) = a for all (a, t) ∈ A× I.

Example 51. Consider the annuli A, B, the unit circle S1, and the

circles C2, C4, defined as follows;

A = {(x1, x2) ∈ R2 | 1 ≤ x2
1 + x2

2 ≤ 4},
S1 = {(x1, x2) ∈ R2 | x2

1 + x2
2 = 1} and

C2 = {(x1, x2) ∈ R2 | x2
1 + x2

2 = 4} as shown in Figure 11(a),

B = {(x1, x2) ∈ R2 | r21 ≤ x2
1 + x2

2 ≤ r22} for any 0 < r1 < r2 and

Cr = {(x1, x2) ∈ R2 | x2
1 + x2

2 = r2} for any r1 < r < r2 as shown in

Figure 11(b). Then S1 and C2 are strong deformation retract of A

and Cr is a strong deformation retract of D for any r1 < r < r2 in

general.
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·

A

C2

S1

1 2

(a)

B

Cr

(b)

r1 r2r

Figure 11: annulus in the plane
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Proof. (1) To show that S1 in Figure 11(a) is a strong deformation

retract of A, define H : A× I → A by

H(x, t) = tx+ (1− t)
x

||x||
for all (x, t) ∈ A× I.

⇒ H : A× I → A is a strong deformation retraction of A onto

its inner circle S1. (∵) H(x, 0) =
x

||x||
∈ S1, H(x, 1) = x for all x ∈ A,

H(y, t) = y for all y ∈ S1.

95



(2) To show that C2 in Figure 11(a) is a strong deformation retract

of A, define G : A× I → A by

G(x, t) = t(x1, x2) + (1− t)

(
2x1√
x2
1 + x2

2

,
2x2√
x2
1 + x2

2

)

for all x = (x1, x2) ∈ A and t ∈ I.

⇒ G : A× I → A is a deformation retraction of A onto its outer

circle C2.
(∵) G(x, 0) =

(
2x1√
x2
1 + x2

2

,
2x2√
x2
1 + x2

2

)
∈ C2

for all x = (x1, x2) ∈ A,

G(x, 1) = x for all x ∈ A, and G(y, t) = y for all y ∈ C2.
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(3) To show that Cr in Figure 11(b) is a strong deformation retract

of B, define H : B × I → B by

H(x, t) = t(x1, x2) + (1− t)

(
rx1√
x2
1 + x2

2

,
rx2√
x2
1 + x2

2

)

for all x = (x1, x2) ∈ B and t ∈ I.

⇒ H : B × I → B is a deformation retraction of B onto its inside

circle Cr.
(∵) H(x, 0) =

(
rx1√
x2
1 + x2

2

,
rx2√
x2
1 + x2

2

)
∈ Cr

for all x = (x1, x2) ∈ B,

H(x, 1) = x for all x ∈ B, and H(y, t) = y for all y ∈ Cr.
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Example 52.

(1) Any point of Rn is a strong deformation retract of Rn.

(2) Any point of the n-ball Bn is a strong deformation retract of Bn.

(3) Any point of the n-cube In is a strong deformation retract of In.

Proof. (1) For any point p ∈ Rn, consider F : Rn × I → Rn defined by

F (x, t) = tx+ (1− t)p for all (x, t) ∈ Rn × I.

(2) For any point p ∈ Bn, consider G : Bn × I → Bn defined by

G(x, t) = tx+ (1− t)p for all (x, t) ∈ Bn × I.

(3) For any point p ∈ In, consider H : In × I → In defined by

H(x, t) = tx+ (1− t)p for all (x, t) ∈ In × I.
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Theorem 53. Let D be a deformation retract of a path connected

space X and let x0 ∈ D. Then π1(X,x0) and π1(D,x0) are

isomorphic.

Proof. Let D be a deformation retract of a path connected space X

and let x0 ∈ D. Let i : D → X denote the inclusion function.

⇒ There exists a continuous function r : X → D such that

r ◦ i = 1D and i ◦ r ≃ 1X .

⇒ D and X are of the same homotopy type.

⇒ i∗ : π1(D,x0) → π1(X,x0) is an isomorphism by Corollary 49.
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Example 54. Let A be an annulus and let R2 \ {p} be the

punctured plane.

⇒ Both inner and outer circles of A are deformation retracts and a

circle containing p in its inner region is a deformation retract of

R2 \ {p}.

⇒ By Theorem 53, π1(A) ∼= Z and π1(R2 \ {p}) ∼= Z.

Theorem 55. Let (X,x0) and (Y, y0) be topological spaces with base

points. Then π1(X × Y, (x0, y0)) ∼= π1(X,x0)⊕ π1(Y, y0).
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Proof. Let p : X × Y → X, q : X × Y → Y denote the natural

projection functions. Define

a function h : π1(X × Y, (x0, y0)) → π1(X,x0)⊕ π1(Y, y0) by

h([α]) = (p∗[α], q∗[α]) = ([p ◦ α], [q ◦ α])∀[α] ∈ π1(X × Y, (x0, y0)).

⇒ (1) h is a homomorphism.

(∵) Let [α], [β] ∈ π1(X × Y, (x0, y0)).

⇒ h([α] · [β]) = h([α ∗ β]) = (p∗([α ∗ β]), q∗([α ∗ β]))
= ([p ◦ (α ∗ β)], [q ◦ (α ∗ β)])
= ([(p ◦ α) ∗ (p ◦ β)], [(q ◦ α) ∗ (q ◦ β)])
= ([p ◦ α] · [p ◦ β], [q ◦ α] · [q ◦ β])
= ([p ◦ α], [q ◦ α])([p ◦ β], [q ◦ β]) = h([α])h([β]).
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(2) h : π1(X × Y, (x0, y0)) → π1(X,x0)⊕ π1(Y, y0) is surjective.

(∵) Suppose that ([α1], [α2]) ∈ π1(X,x0)⊕ π1(Y, y0).

⇒ Define a loop α : I → X × Y

by α(t) = (α1(t), α2(t)), ∀t ∈ I.

⇒ [α] ∈ π1(X × Y, (x0, y0)) and h([α]) = ([α1], [α2]).

⇒ h : π1(X × Y, (x0, y0)) → π1(X,x0)⊕ π1(Y, y0) is surjective.

(3) h : π1(X × Y, (x0, y0)) → π1(X,x0)⊕ π1(Y, y0) is injective.
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(∵) Let [α], [β] ∈ π1(X × Y, (x0, y0)) and suppose h([α]) = h([β]).

⇒ ([p ◦ α], [q ◦ α]) = ([p ◦ β], [q ◦ β]).
⇒ [p ◦ α] = [p ◦ β] and [q ◦ α] = [q ◦ β].
⇒ p ◦ α ≃x0 p ◦ β and q ◦ α ≃y0 q ◦ β.
⇒ ∃ homotopies F1 : I× I → X and F2 : I× I → Y such that

F1(s, 0) = p ◦ α(s) and F1(s, 1) = p ◦ β(s) for all s ∈ I,

F1(0, t) = F1(1, t) = x0 for all t ∈ I and

F2(s, 0) = q ◦ α(s) and F2(s, 1) = q ◦ β(s) for all s ∈ I,

F2(0, t) = F2(1, t) = y0 for all t ∈ I.

⇒ Define the homotopy F : I× I → X × Y by

F (s, t) = (F1(s, t), F2(s, t)) for all (s, t) ∈ I× I.

⇒ F : α ≃(x0,y0) β and hence [α] = [β].

⇒ h : π1(X × Y, (x0, y0)) → π1(X,x0)⊕ π1(Y, y0) is injective.
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⇒ h : π1(X × Y, (x0, y0)) → π1(X,x0)⊕ π1(Y, y0) is an

isomorphism.

Example 56. (1) Since the torus T2 is homeomorphic to S1 × S1,

π1(T
2) ∼= π1(S

1)
⊕

π1(S
1) ∼= Z

⊕
Z.

(2) An n-dimensional torus Tn is the product of n factors of S1.

π1(T
n) is isomorphic to the direct sum of n copies of Z.

(3) Since a closed cylinder C is the product of S1 and [a, b],

π1(C) ∼= π1(S
1)
⊕

π1([a, b]) ∼= Z
⊕

{0} ∼= Z.
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Theorem 57. For n ≥ 2, the n-sphere Sn is simply connected.

Proof. Clearly Sn is path connected.

Let [α] ∈ π1(S
n, a), represented by a path α : I → Sn.

Let V1 = {x = (x1, · · · , xn+1) ∈ Sn | xn+1 <
1

2
} and

V2 = {x = (x1, · · · , xn+1) ∈ Sn | xn+1 > −1

2
}.

⇒ V1 and V2 are simply connected open subsets of Sn,

V1 ∪ V2 = Sn and V1 ∩ V2 is nonempty and path connected.

Let a ∈ V1 ∩ V2 ⊂ Sn be the base point of Sn and

let ca denote the constant loop at a in V1 or V2.

⇒ Since α : I → Sn is continuous, {α−1(V1), α
−1(V2)} is an open

covering of the compact metric space I.
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⇒ By the Lebesgue Number Theorem, there exists a Lebesgue

number ϵ > 0 for the open covering {α−1(V1), α
−1(V2)} of I.

⇒ We can subdivide I into 0 = s0 < s1 < · · · < sl = 1 such that

α([si−1, si]) ⊂ V1 or α([si−1, si]) ⊂ V2 for each i = 1, 2, · · · , l.
⇒ We can subdivide I into 0 = s0 < s1 < · · · < sm = 1 such that

α([si−1, si]) ⊂ V1 or α([si−1, si]) ⊂ V2 for each i = 1, 2, · · · ,m
and α(s1), · · · , α(sm−1) ∈ V1 ∩ V2 (α(s0) = α(sm) = a ∈ V1 ∩ V2)

by removing the point si in the subdivision s0 < s1 < · · · < sl

and renumbering if α([si−1, si+1]) ⊂ V1 or α([si−1, si+1]) ⊂ V2.

⇒ For each i = 1, 2, · · · ,m, define a path αi : I → Sn by

αi(t) = α((1− t)si−1 + tsi) for all t ∈ I and

choose a path γi in V1 ∩ V2 such that γi(0) = a and γi(1) = α(si).

⇒ αi : I → Sn is continuous for each i = 1, 2, · · · ,m,
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α ≃∗ α1 ∗ α2 ∗ · · · ∗ αm in Sn(See Figure 12),

γi ∗ γi is equivalent to the constant loop at a in V1 or V2, and

α1 ∗ γ1, γi ∗ αi+1 ∗ γi+1(1 ≤ i ≤ m− 2) and γm−1 ∗ αm are loops

in V1 or V2, which are equivalent to the constant loop at a

in V1 or V2, respectively, because V1 and V2 are simply connected,

i.e., α1 ∗ γ1 ≃a ca, γi ∗ αi+1 ∗ γi+1 ≃a ca(1 ≤ i ≤ m− 2) and

γm−1 ∗ αm ≃a ca in V1 or V2.

⇒ [α] = [α1 ∗ α2 ∗ · · · ∗ αm]

= [α1 ∗ (γ1 ∗ γ1) ∗ α2 ∗ (γ2 ∗ γ2) ∗ · · · ∗ (γm−1 ∗ γm−1) ∗ αm]

= [(α1 ∗ γ1) ∗ (γ1 ∗ α2 ∗ γ2) ∗ · · · ∗ (γm−2 ∗ αm−1 ∗ γm−1)

∗(γm−1 ∗ αm)]

= [α1 ∗γ1] · [γ1 ∗α2 ∗γ2] · · · · · [γm−2 ∗αm−1 ∗γm−1] · [γm−1 ∗αm]

= [ca] · [ca] · · · · · [ca] · [ca] = [ca].
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⇒ π1(S
n, a) = {[ca]} = 1, the trivial group.

V1 V2

•

•

•

•
α(s3)

a

α(s1)

α(s2)

α1

α2
α3

α4

��
��
��
�

�������

$$
$$
$$
$$
$$
$

γ3 γ2

γ1b b

��
//

QQ

Figure 12: α ≃∗ (α1 ∗ γ1) ∗ (γ1 ∗ α2 ∗ γ2) ∗ (γ2 ∗ α3 ∗ γ3) ∗ (γ3 ∗ α4)
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Question 58. Where in the preceding proof was the assumption

n ≥ 2 used?

The examples of fundamental groups given in this chapter are all

abelian.

There are relatively simple topological spaces which have nonabelian

fundamental groups;

• the doubly punctured plane (plane with two points removed) and

• the subspace of the plane consisting of two tangent circles (a figure

eight) are two examples.

Showing that the fundamental groups of these spaces are nonabelian

would require a considerable departure from the mainstream of this

chapter, so these demonstrations will be discussed in the next

chapter.
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Exercises 5

1. Show that S1 is a strong deformation retract of the cylinder S1 × I.

Use this to prove that the fundamental group of a cylinder is

isomorphic to Z.

2. Explain in detail where the assumption n ≥ 2 was used in the proof of

Theorem 57.

3. Generalize the proof of Theorem 57 to prove the following.

Theorem. Suppose X is a space with an open cover {Va | a ∈ A }
such that

(1)
∩

a∈A

Va ̸= ∅

(2) Va is simply connected for each a ∈ A ,

(3) Va

∩
Vb is path connected for a ̸= b in A .

Then X is simply connected.

4. Determine the fundamental group of the Möbius strip.
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5. (1) Prove that Sn−1 is a strong deformation retract of Rn \ {0}.
(2) Use part (1) to prove that the punctured n-space Rn \ {p}(p ∈ Rn) is

simply connected for n ≥ 3.

6. Let X be a space consisting of two spheres Sm and Sn joined at a

point, where m,n ≥ 2. Prove that X is simply connected.

7. Give an example of a simply connected space that is not contractible.

8. Let X = R3 × R3 \∆ be a subspace of R6, where

∆ = {(x, x) ∈ R3 × R3 | x ∈ R3}. Show the following.

(1) X and the 2-sphere S2 are of the same homotopy type.

(2) X is simply connected.

(3) X is not contractible.

9. Compute π1(S
1 × S1 × · · · × S1).

10. Prove that S1 and Sn do not have the same homotopy type for n ≥ 2.

Conclude that R1 and Rn are not homeomorphic for n ≥ 2.
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[Hau] Hausdorff, F., Grundzüge der Mengenlehre, 2nd ed., Walter de Gruyter,
Leipzig, 1914.

[He] Herstein, I. N., Topics in Algebra, Xerox, Lexington, MA, 1964.

[Hm] Hamilton, A. G., Numbers, Sets and Axioms, Cambridge University
Press, Cambridge, 1982.

[Hp] Hempel, J., 3-manifolds, Annals of Mathematics Studies, no. 86, Prince-
ton University Press, Princeton, NJ, 1976.

[Hu1] Sze-Tsen Hu, Introduction to Homological Algebra, Holden-Day, Inc.,
1968.

[Hu2] Sze-Tsen Hu, Homotopy Theory, Academic Press Inc., 1959.

[Hum1] James E. Humphreys, Introduction to Lie Algebras and Representa-
tion Theory, Springer-Verlag GTM 9, New York, Heidelberg, Berlin, 1978.

111-4



[Hum2] James E. Humphreys, Linear Algebraic Groups, Springer-Verlag GTM
21, New York, Heidelberg, Berlin, 1978.

[Hun] Thomas W. Hungerford, Algebra, Springer-Verlag GTM 73, 1974.

[HW] Hurewicz, W. and Wallman, H., Dimension Theory, Princeton Univer-
sity Press, Princeton, NJ, 1969.

[HY] Hocking, J. G. and Young, G. S., Topology, Addison-Wesley, Reading,
MA, 1961.

[Ja] Jacobson, N., Basic Algebra I, W. H. Freeman and Company, San Fran-
cisco, 1974.

[Jn] Jänich, K., Topology, Springer-Verlag, New York, 1984.

[Ka] Kaplansky, I., Set Theory and Metric Spaces, Allyn and Bacon, Boston,
1972.

[Ke] Kelly, J. L., General Topology, Springer-Verlag, New York, 1975.

111-5



[Ko] Kosniowski, C., First Course in Algebraic Topology, Cambridge Univer-
sity Press, Cambridge, 1980.

[Lam] Joachim Lambeck, Lecture Notes on Rings and Modules, Chelsea Publ.
Co., New York, N.Y., 1976.

[Lan] Serge Lang, Algebra, Addison-Wesley Publ. Co., 1974.

[Le1] Kyung Bae Lee, Group Cohomology for Topologists, Preprint(Talk at
University of Michigan), 1989.

[Le2] Kyung Bae Lee, Eight 3-dimensional geometries, Preprint(Talk at Uni-
versity of Michigan), 1989.

[Lef] Lefschetz, S., Introduction to Topology, Princeton University Press,
Princeton, NJ, 1949.

[LR] Kyung Bae Lee and Frank A. Raymond, The role of Seifert fiber spaces
in transformation groups, Contemporary Mathmatics 36, AMS, 1984.

111-6



[Mc] Mac Lane, S. Categories for the Working Mathematician, Springer-
Verlag, New York Heidelberg Berlin, 1971.

[Mn] Manheim, J., The Genesis of Point-Set Topology, Pergamon, London,
1964.

[Ma] Massey, W. S., Algebraic Topology: An Introduction, Harcourt, Brace
and World, New York, 1967.

[Ma1] William S. Massey, Algebraic Topology: an introduction, Springer-
Verlag, 1977.

[Ma2] William S. Massey, Singular Homology Theory, Springer-Verlag, 1980.

[Mi] Milnor, J., Topology from a differential Viewpoint, University of Virginia
Press, Charlottesville, 1965.

[MKS] Magnus, W., Karrass, A. and Solitar, D, Combinatorial Group Theory,
Dover Publications, Inc., 1976.

111-7



[Mo] Moise, E. E., Geometric Topology in Dimensions Two and Three,
Springer-Verlag, New York, 1977.

[Mu1] Munkres, J. R., Topology: A First Course, Prentice-Hall, Englewood
Cliffs, NJ, 1975.

[Mu2] James R. Munkres, Elements of Algebraic Topology, Addison Wesley,
1984.

[Ne] Newman, M. H. A., Elements of the Topology of Plane Sets of Points,
2nd ed., Cambridge University Press, London, 1964.

[Or] Peter Orlik, Seifert Manifolds, Preprint Series No 12, University of
Oslo(1972).

[Pa1] , 1, Department of Mathematics, Kyungpook National University, 2012.

[Pa2] , 2, Department of Mathematics, Kyungpook National University, 2012.

[Pa3] , Lecture Notes in Set Theory(C. C. Pinter) , , 2010.

111-8



[Pa4] , Lecture Notes in Topology Part I : General Topology, Depart-
ment of Mathematics, Kyungpook National University, 2012.

[Pa5] , Lecture Notes in Topology Part II : Some Algebraic Struc-
tures for Topologists, Department of Mathematics, Kyungpook Na-
tional University, 2012.

[Pa6] , Lecture Notes in Topology Part III : Algebraic Topology,
Department of Mathematics, Kyungpook National University, 2012.

[Pa7] , Lecture Notes in Topology Part IV : Category Theory, De-
partment of Mathematics, Kyungpook National University, unfinished.

[Pa8] , Lecture Notes in Topology Part V : Solutions to Exercise
Problems, Department of Mathematics, Kyungpook National University,
unfinished.

[Pe1] Perelman, Grigori, The entropy formula for the Ricci flow and its geo-
metric applications, arXiv:math.DG/0211159, 2002.

111-9



[Pe2] Perelman, Grigori, Ricci flow with surgery on three-manifolds,
arXiv:math.DG/0605667, 2003.

[Pe3] Perelman, Grigori, Finite extinction time for the solutions to the Ricci
flow on certain three-manifolds, arXiv:math.DG/0307245, 2003.

[Pi] Pinter, Charles C., Pinter, Set Theory, Addison-Wesley Publishing Com-
pany Inc., 1971.

[Po] Pontryagin, L. S., Topological Groups, Gordon and Beach, Science Pub-
lishers, Inc. New York, London, Paris, 1966.

[PS] V. V. Prasolov and A. B. Sossinsky, Knots, Links, Braids and 3-
Manifolds, Translations of Mathematical Monographs Volume 154, Amer-
ican Mathematical Society, Providence, Rhode Island1997.

[Ruc] Rucker, R., Infinity and the Mind, Birkhäuser, Boston, 1982.
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