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A recent example of a non-hyponormal injective composi-
tion operator in an L2-space generating Stieltjes moment se-
quences, invented by three of the present authors, was built 
over a non-locally finite directed tree. The main goal of this 
paper is to solve the problem of whether there exists such an 
operator over a locally finite directed graph and, in the af-
firmative case, to find the simplest possible graph with these 
properties (simplicity refers to local valency). The problem is 
solved affirmatively for the locally finite directed graph G2,0, 
which consists of two branches and one loop. The only sim-
pler directed graph for which the problem remains unsolved 
consists of one branch and one loop. The consistency con-
dition, the only efficient tool for verifying subnormality of 
unbounded composition operators, is intensively studied in 
the context of G2,0, which leads to a constructive method of 
solving the problem. The method itself is partly based on 
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Hamburger and Stieltjes moment 
sequences

transforming the Krein and the Friedrichs measures coming 
either from shifted Al-Salam–Carlitz q-polynomials or from a 
quartic birth and death process.

© 2017 Elsevier Inc. All rights reserved.
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1. Preliminaries

1.1. Introduction

The theory of bounded subnormal operators was initiated by Halmos (see [32]). The 
definition and the first characterization of their unbounded counterparts were given in-
dependently by Bishop (see [9]) and Foiaş (see [29]). The foundations of the theory of 
unbounded (i.e., not necessarily bounded) subnormal operators were developed by the 
fourth-named author and Szafraniec (see [63–66]). The study of this topic turned out 
to be highly successful. It led to a number of challenging problems and nontrivial re-
sults in various branches of mathematics including functional analysis and mathematical 
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physics (see, e.g., [23–25] for the case of bounded operators and [50,43,26,45–47,44] for 
unbounded ones). This area of interest still plays a vital role in operator theory.

The first characterization of bounded subnormal operators was given by Halmos him-
self. It was successively simplified by Bram (see [10]), Embry (see [28]) and Lambert (see 
[48]; see also [64, Theorem 7] where the assumption of injectivity was removed). The 
Lambert characterization states that a bounded Hilbert space operator is subnormal 
if and only if it generates Stieltjes moment sequences (see Section 1.2 for definitions). 
It turns out that this characterization also works for unbounded operators which have 
sufficiently many analytic vectors (see [64, Theorem 7]). However, it is no longer true 
for arbitrary unbounded operators (see [12, Section 3.2]). Recall that subnormal opera-
tors with dense set of C∞-vectors always generate Stieltjes moment sequences (see [15, 
Proposition 3.2.1]). It is also worth pointing out that subnormal composition operators 
in L2-spaces, as opposed to abstract subnormal operators, are always injective (see [15, 
Corollary 6.3]). Hence, there arises the question whether or not composition operators 
in L2-spaces generating Stieltjes moment sequences are injective (see Problem 3.3.6).

In a recent paper [16], we have developed a completely new, even in the bounded case, 
approach to studying subnormality of composition operators (in L2-spaces over σ-finite 
measure spaces) which involves measurable families of probability measures satisfying 
the so-called consistency condition. This approach provides a criterion (read: sufficient 
condition) for subnormality of composition operators, which does not refer to the density 
of domains of powers. The corresponding technique for weighted shifts on directed trees 
worked out in [14] (see also [18]) enabled us to construct an unexpected example of a 
subnormal composition operator whose square has trivial domain (see [17]).

As shown in [42, Example 4.2.1], there are unbounded injective operators generating 
Stieltjes moment sequences which are not even hyponormal, and thus not subnormal. 
In fact, it was proved there that if T is a leafless directed tree which has exactly one 
branching vertex and if the branching vertex itself has infinite valency, then there exists 
a non-hyponormal injective weighted shift on T with nonzero weights generating Stielt-
jes moment sequences, where the valency of a vertex v is understood as the number of 
outgoing edges at v. Up to isomorphism, there is only one rootless directed tree of this 
kind, denoted in [41, p. 67] by T∞,∞. A weighted shift on T∞,∞ with nonzero weights is 
unitarily equivalent to an injective composition operator in an L2-space over a discrete 
measure space (see [42, Lemma 4.3.1] and [41, Theorem 3.2.1]). Since the directed graph 
induced by the symbol of such a composition operator coincides with T∞,∞ (see Sec-
tion 3.2 for the definition), it is not locally finite. This raises the question as to whether 
there exists a non-hyponormal injective composition operator over a locally finite con-
nected directed graph generating Stieltjes moment sequences, and, if this is the case, 
how simple such a directed graph can be, where simplicity is understood with respect 
to local valency (see Remark 3.2.2); here, saying that a composition operator C is over
a directed graph G means that G is induced by the symbol of C. The present paper ad-
dresses both of these questions. Taking into account the simplicity leads to considering 
directed graphs induced by self-maps whose vertices, all but one, say ω, have valency one, 
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and the valency of ω is greater than or equal to 1. Such directed graphs are described 
in Theorem 3.2.1 and Remark 3.2.2. In view of part 1) of Remark 3.2.2, the situation in 
which the valency of ω is equal to one is excluded by an unbounded variant of Herrero’s 
characterization of subnormal injective bilateral weighted shifts (see [64, Theorem 5]; 
see also [13, Theorem 3.2] for a recent approach). Recall that the Herrero result (see 
[36]; see also [27]) is a bilateral analogue of the Berger–Gellar–Wallen characterization 
of bounded subnormal injective unilateral weighted shifts (see [33,31]). If the valency 
of ω is strictly greater than one, then, by Theorem 3.2.1, we have two cases. The first, 
which is described in Theorem 3.2.1(ii-b), reduces to the directed tree T∞,∞, the case 
studied in [42]. Unfortunately, the method invented in [42] does not give any hope of 
answering our questions. In the second case, which is described in Theorem 3.2.1(ii-a), 
the directed graph under consideration has exactly one circuit of length κ + 1 starting 
at ω and η branches of infinite length attached to ω, where η ∈ {1, 2, 3, . . .} ∪ {∞} and 
κ ∈ {0, 1, 2, . . .} (see Fig. 2 with ω = xκ); denote it by Gη,κ. The culminating result of 
the present paper, Theorem 5.5.2, shows that there exists a non-hyponormal injective 
composition operator over the locally finite directed graph G2,0 generating Stieltjes mo-
ment sequences. This answers our first question in the affirmative. Regarding simplicity, 
the only simpler directed graph which potentially may admit a composition operator 
with the above-mentioned properties is G1,0 (the subnormality over G1,0 was studied in 
[16, Section 3.4]). However, so far this particular case remains unsolved because com-
position operators over G1,0 obtained by our method are automatically subnormal (see 
Theorem 5.4.2(iv)).

A large part of the present paper is devoted to the study of subnormality of com-
position operators over the directed graph Gη,κ. They all have the same symbol φη,κ

whereas masses attached to vertices that define the underlying L2-space are subject 
to changes. Note that general criteria for subnormality of unbounded operators (see 
[9,29,67,68]) seem hardly to be applicable to composition operators. The only known 
efficient criterion for subnormality of unbounded composition operators relies on the 
consistency condition (CC) (see [16, Theorem 9]). This is why we begin by character-
izing families of Borel probability measures (on the positive half-line) indexed by the 
vertices of Gη,κ which satisfy (CC) (see Theorem 4.1.1). This enables us to model all 
such families via collections of measures indexed by the set {xi,1 : i ∈ Jη} which satisfy 
some natural conditions (see Procedure 4.2.1), where {xi,1 : i ∈ Jη} are ends of edges 
outgoing from ω = xκ not lying on the circuit (see Fig. 2) and Jη is the set of all posi-
tive integers less than or equal to η. The end x0 of the edge that outgoes from xκ and 
lies on the circuit also plays an important role in our considerations. Namely, assum-
ing both that the Radon–Nikodym derivatives {hφn}∞n=0 (see Section 3.1) calculated at 
x0 and xi,1, i ∈ Jη, form Stieltjes moment sequences and that appropriate sequences 
coming from {hφn(x0)}∞n=0 are S-determinate, we show that the corresponding compo-
sition operator over Gη,κ is subnormal (see Theorem 4.3.3). The case of G1,κ does not 
require any determinacy assumption and may be written purely in terms of the Han-
kel matrices [hφi+j (x0)]∞i,j=0 and [hφi+j+1(x0)]∞i,j=0 (see Proposition 4.3.4). The proofs of 
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Theorem 4.3.3 and Proposition 4.3.4 rely on constructing families of measures satisfying 
(CC). These two results are in the spirit of Lambert’s characterization of subnormality 
of bounded composition operators (see [49]) which is no longer true for unbounded op-
erators (see [42, Theorem 4.3.3] and [15, Section 11]). The case of bounded composition 
operators over Gη,κ, which is also covered by Lambert’s criterion, follows easily from 
Theorem 4.3.3 (see Proposition 4.3.6). The optimality of the assumptions of Proposi-
tions 4.3.4 and 4.3.6 is illustrated by Examples 4.3.5 and 4.3.7.

It follows from [16, Theorems 9 and 17] (see also Theorem 3.1.3) that under the as-
sumption that hφn takes finite values for all positive integers n, any family of Borel 
probability measures satisfying (CC) consists of representing measures of Stieltjes mo-
ment sequences {hφn(x)}∞n=0, where x varies over the vertices of Gη,κ. In Section 4.4
we discuss the question of extending a given family {P (xi,1, ·)}i∈Jη

of Borel proba-
bility measures to a wider one (indexed by Gη,κ) satisfying the consistency condition 
(CC). According to Theorem 4.4.1, such extension exists if and only if for every i ∈ Jη, 
{hφn(xi,1)}∞n=0 is a Stieltjes moment sequence represented by a measure P (xi,1, ·) sat-
isfying the conditions (i-b), (i-c) and (i-d) of this theorem. The condition (i-b) refers 
to moments of the measures P (xi,1, ·), i ∈ Jη. The remaining two are of different na-
ture, namely (i-c) is a system of κ equations (the case of κ = 0 is not excluded), while 
(i-d) is a single inequality. In Theorem 4.4.2 we introduce the condition (i-d′) which is 
a weaker version of (i-d). This turns out to be the key idea that leads to construct-
ing exotic examples. Assuming the S-determinacy of the sequence {hφn(xκ) + c}∞n=0 for 
any c ∈ (0, ∞), it is proved in Theorem 4.4.2 that the conditions (i-d) and (i-d′) are 
equivalent (provided the remaining ones (i-a), (i-b) and (i-c) are satisfied). However, 
this is no longer true if the S-determinacy assumption is dropped. We show this by 
using Procedure 5.2.1 that heavily depends on the existence of a pair of N-extremal 
measures satisfying some constraints (see Lemma 5.3.1). The task of finding such a pair 
is challenging. It is realized by transforming via special homotheties the Krein and the 
Friedrichs measures (which are particular instances of N-extremal measures). The cru-
cial properties of these transformations are described in Lemma 5.3.2. The proof of the 
existence of the gap between (i-d) and (i-d′) is brought to completion in Theorems 5.4.1
(the case of η � 2) and 5.4.2 (the case of η = 1). Adapting the above technique, we show 
in Theorem 5.5.2 that for any integer η � 2, there exists a non-hyponormal injective 
composition operator over Gη,0 which generates Stieltjes moment sequences. The case 
of η = ∞ is treated in Theorem 5.5.1. The parallel question of determinacy of moment 
sequences {hφn(x)}∞n=0, x ∈ {xκ} ∪{xi,j : i ∈ Jη, j ∈ N}, is studied in Section 5 by using 
the index of H-determinacy introduced by Berg and Duran in [5].

As noted above, the proofs of the main results of the present paper (Theorems 5.4.1, 
5.4.2, 5.5.1 and 5.5.2) essentially depend on subtle properties of N-extremal measures. 
The question of determinacy of moment sequences is of considerable importance in our 
study as well. Therefore, for the sake of completeness, we collect in Section 2 basic con-
cepts of the classical theory of moments and include some new results in this field. Using 
[5, Theorem 3.6], we show that a measure which comes from an N-extremal measure 
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by removing an infinite number of its atoms has infinite index of H-determinacy (see 
Theorem 2.4.1). The Carleman condition, which always guarantees the H-determinacy 
of Stieltjes moment sequences, is investigated in Section 2.5. The process of transform-
ing moment sequences and their representing measures, including N-extremal ones, via 
homotheties is described in Section 2.2 (the particular case of transformations induced 
by translations has already been studied via different approaches in [52,57]). Particular 
attention is paid to transforming the Krein and the Friedrichs measures (see Theo-
rem 2.2.3). As a consequence, a new way of parametrizing N-extremal measures of 
H-indeterminate Stieltjes moment sequences is invented (see Theorem 2.2.5) and a 
trichotomy property of N-extremal measures of H-indeterminate Hamburger moment 
sequences is proven (see Theorem 2.2.6). The N-extremal measures used in the proofs of 
Theorems 5.4.1, 5.4.2 and 5.5.1 are derived from the Krein and the Friedrichs measures of 
an S-indeterminate Stieltjes moment sequence, first by scaling them and then by trans-
forming them via carefully chosen homotheties (see Lemma 5.3.2). As for the proof of 
Theorem 5.5.2, the above method requires the usage of the Krein and the Friedrichs mea-
sures coming from shifted Al-Salam–Carlitz q-polynomials (or, alternatively, from a quar-
tic birth and death process, see Remark 5.5.3). The existence, determinacy and explicit 
form of orthogonalizing measures for Al-Salam–Carlitz q-polynomials {V (a)

n (x; q)}∞n=0
are discussed in Section 2.3. It is worth mentioning that explicit examples of N-extremal 
measures such as those used in the present paper are to the best of our knowledge very 
rare (see, e.g., [39,38]).

The necessary facts concerning composition operators in L2-spaces over discrete 
measure spaces, including criteria for their hyponormality and subnormality, are re-
capitulated in Section 3.1. A variety of relations between Radon–Nikodym derivatives 
{hφn}∞n=0 calculated in different vertices of the directed graph Gη,κ are established in 
Section 3.4.

1.2. Notation and terminology

Denote by C, R, R+, Z, Z+ and N the sets of complex numbers, real numbers, nonneg-
ative real numbers, integers, nonnegative integers and positive integers, respectively. Set 
R+ = R+ ∪ {∞} and N2 = N \ {1}. Given k ∈ Z+ ∪ {∞}, we write Jk = {i ∈ N : i � k}
(clearly J0 = ∅). The identity map on a set X is denoted by idX . We write card(X) for 
the cardinality of a set X and χΔ for the characteristic function of a subset Δ of X. 
The symbol “�” denotes the disjoint union of sets. A mapping from X to X is called 
a self-map of X. The σ-algebra of all Borel subsets of a topological space X is denoted 
by B(X). All measures considered in this paper are positive. Since any finite Borel mea-
sure ν on R is automatically regular (see [55, Theorem 2.18]), we can consider its closed 
support; we denote it by supp(ν). Given t ∈ R, we write δt for the Borel probability 
measure on R such that supp(δt) = {t}. In this paper we will use the notation 

∫ b
a

and ∫∞ in place of 
∫

and 
∫

respectively (a, b ∈ R). We also use the convention that 

a [a,b] [a,∞)
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00 = 1. The ring of all complex polynomials in one real variable t (which in the context 
of L2-spaces are regarded as equivalence classes) is denoted by C[t].

Let A be an operator in a complex Hilbert space H (all operators considered in this 
paper are linear). Denote by D(A) the domain of A. If A is closable, then the closure of A
is denoted by Ā. Set D∞(A) =

⋂∞
n=0 D(An) with A0 = I, where I is the identity operator 

on H. We say that A is positive if 〈Af, f〉 � 0 for all f ∈ D(A). A is said to be normal if it 
is densely defined, D(A) = D(A∗) and ‖A∗f‖ = ‖Af‖ for all f ∈ D(A) (or, equivalently, 
if and only if A is closed, densely defined and A∗A = AA∗, see [69, Proposition on 
p. 125]). A is called subnormal if A is densely defined and there exists a normal operator 
N in a complex Hilbert space K with H ⊆ K (isometric embedding) such that D(A) ⊆
D(N) and Af = Nf for all f ∈ D(A). A is said to be hyponormal if it is densely 
defined, D(A) ⊆ D(A∗) and ‖A∗f‖ � ‖Af‖ for all f ∈ D(A). Following [42], we say 
that A generates Stieltjes moment sequences if D∞(A) is dense in H and {‖Anf‖2}∞n=0
is a Stieltjes moment sequence for every f ∈ D∞(A) (see Section 2.1 below for the 
definition and basic properties of Stieltjes moment sequences). It is known that if A is 
subnormal and D∞(A) is dense in H, then A generates Stieltjes moment sequences (see 
[12, Proposition 3.2.1]). However, the reverse implication is not true in general (see [60]; 
see also [42]).

In what follows B(H) stands for the C∗-algebra of all bounded operators in H whose 
domains are equal to H.

2. Determinacy in moment problems

2.1. Basic concepts

Denote by M the set of all Borel measures ν on R such that 
∫
R
|t|ndν(t) < ∞ for all 

n ∈ Z+. Set M + = {ν ∈ M : supp(ν) ⊆ R+}. A sequence γ = {γn}∞n=0 ⊆ R is said to 
be a Hamburger (resp. Stieltjes) moment sequence if there exists ν ∈ M (resp. ν ∈ M +) 
such that

γn =
∫
R

tndν(t), n ∈ Z+;

the set of all such measures, called H-representing (resp. S-representing) measures 
of γ, is denoted by M (γ) (resp. M +(γ)). A Hamburger (resp. Stieltjes) moment se-
quence γ is said to be H-determinate (resp. S-determinate) if card(M (γ)) = 1 (resp. 
card(M +(γ)) = 1); otherwise, we call it H-indeterminate (resp. S-indeterminate). We 
say that a measure ν ∈ M (resp. ν ∈ M +) is H-determinate (resp. S-determinate) if the 
sequence {

∫
R
tndν(t)}∞n=0 is H-determinate (resp. S-determinate). Similarly, we define 

H-indeterminacy and S-indeterminacy of measures. Clearly, an S-indeterminate Stielt-
jes moment sequence is H-indeterminate. It is well-known that a Hamburger moment 
sequence which has a compactly supported H-representing measure is H-determinate 
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(see [30]). Note that H-determinacy and S-determinacy coincide for Stieltjes moment se-
quences having S-representing measures vanishing on {0} (see [21, Corollary on p. 481]; 
see also [42, Lemma 2.2.5]).

Let γ = {γn}∞n=0 be a Hamburger moment sequence. A measure ν ∈ M (γ) is called 
an N-extremal measure of γ if γ is H-indeterminate and C[t] is dense in L2(ν). We say 
that ν ∈ M is an N-extremal measure if ν is an N-extremal measure of the Hamburger 
moment sequence {

∫
R
tndν(t)}∞n=0. Denote by Me(γ) the set of all N-extremal measures 

of γ and put M +
e (γ) = Me(γ) ∩ M +.

Note that if γ = {γn}∞n=0 is an H-indeterminate Hamburger moment sequence, then 
card(Me(γ)) = c (see [57, Theorem 4 and Remark on p. 96]). Moreover, we have:

Lemma 2.1.1 ([57, Theorems 5 and 4.11]). If γ = {γn}∞n=0 is an H-indeterminate Ham-
burger moment sequence, then R = �ν∈Me(γ) supp(ν), and the closed support of any 
ν ∈ Me(γ) is countably infinite with no accumulation point in R.

Now we state the M. Riesz characterizations of H-determinacy and N-extremality 
(see [54, p. 223] or [30, Theorem on p. 58]) and the Berg–Thill characterization of S-
determinacy (see [6, Theorem 3.8] or [7, Proposition 1.3]).

Lemma 2.1.2. (i) A measure ν ∈ M is H-determinate (resp. N-extremal) if and only 
if C[t] is dense in L2((1 + t2)dν(t)) (resp. C[t] is dense in L2(ν) and not dense in 
L2((1 + t2)dν(t))). (ii) A measure ν ∈ M + is S-determinate if and only if C[t] is dense 
in both L2((1 + t)dν(t)) and L2(t(1 + t)dν(t)).

The above enables us to formulate a comparison test for determinacy.

Proposition 2.1.3 (Comparison test). Let ρ and ν be Borel measures on R such that 
ν ∈ M (resp. ν ∈ M +) and ρ(σ) � M ν(σ) for every σ ∈ B(R) and for some M ∈ R+. 
Then ρ ∈ M (resp. ρ ∈ M +). Moreover, if ν is H-determinate (resp. S-determinate), 
then ρ is H-determinate (resp. S-determinate).

Proof. We deal only with the case of H-determinacy; the other case can be treated 
similarly. The standard measure-theoretic argument implies that ρ ∈ M . Since ρ � M ν, 
we deduce from [55, Theorem 3.13] that L2((1 +t2)dν(t)) � f 
→ f ∈ L2((1 +t2)dρ(t)) is a 
well-defined bounded operator with dense range. Hence, applying Lemma 2.1.2 completes 
the proof. �
Corollary 2.1.4. Suppose that {γ1,n}∞n=0 and {γ2,n}∞n=0 are Hamburger (resp. Stieltjes) 
moment sequences such that {γ1,n + γ2,n}∞n=0 is H-determinate (resp. S-determinate). 
Then both {γ1,n}∞n=0 and {γ2,n}∞n=0 are H-determinate (resp. S-determinate).

Remark 2.1.5. It follows from Corollary 2.1.4 that if {γn}∞n=0 is a Stieltjes moment se-
quence such that {γn + c}∞n=0 is S-determinate for some c ∈ (0, ∞), then {γn}∞n=0 is 
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S-determinate. This may suggest that if {γn}∞n=0 is an S-determinate Stieltjes moment 
sequence, then so is {γn + c}∞n=0 for some c ∈ (0, ∞). However, in general, this is not 
true. In fact, one can show more; namely there exists an H-determinate Stieltjes mo-
ment sequence {γn}∞n=0 such that {γn + c}∞n=0 is S-indeterminate for all c ∈ (0, ∞). 
Indeed, as noticed by C. Berg (private communication), if ν is an N-extremal measure 
of an S-indeterminate Stieltjes moment sequence such that inf supp(ν) = 1 (e.g., the 
orthogonalizing measure β(a;q) for the Al-Salam–Carlitz q-polynomials {V (a)

n (x; q)}∞n=0
with 0 < q < a � 1 is N-extremal and its closed support is equal to {q−n}∞n=0, see 
Section 2.3), then the measure μ := ν − ν({1})δ1 ∈ M + is H-determinate and for every 
c ∈ (0, ∞), the measure μ + cδ1 is N-extremal (see [5, Theorem 3.6 and Lemma 3.7]) 
and consequently, since inf supp(μ + cδ1) > 0, it is S-indeterminate (see [21, Corollary 
on p. 481] or [42, Lemma 2.2.5]).

The following lemma will be used in Section 4.3.

Lemma 2.1.6. If {γn}∞n=0 ⊆ R+, then the following conditions are equivalent:

(i) {γn}∞n=0 is a Stieltjes moment sequence which has an S-representing measure van-
ishing on [0, 1),

(ii) 0 �
∑n

i,j=0 γi+jλiλ̄j �
∑n

i,j=0 γi+j+1λiλ̄j for all finite sequences {λi}ni=0 of com-
plex numbers,

(iii) {γn}∞n=0 is a Stieltjes moment sequence and 
∑n

i,j=0(γi+j+1 − γi+j)λiλ̄j � 0 for all 
finite sequences {λi}ni=0 of complex numbers.

Proof. (i)⇒(ii) Obvious.
(ii)⇔(iii) Apply the Stieltjes theorem (see [4, Theorem 6.2.5]).
(ii)⇒(i) Let Λ : C[t] → C be a linear functional such that Λ(tn) = γn for all n ∈ Z+. 

Take p ∈ C[t] which is nonnegative on [1, ∞). Since p(t +1) is nonnegative on [0, ∞), there 
exist q1, q2 ∈ C[t] such that p = (t −1)|q1|2 + |q2|2 (see [53, Problem 45 on p. 78]). Hence 
Λ(p) � 0. Applying the Riesz–Haviland theorem (see [35]) completes the proof. �

The question of when M +
e (γ) is nonempty has the following answer.

Lemma 2.1.7. Suppose γ is an H-indeterminate Stieltjes moment sequence. Then 
M +

e (γ) �= ∅. Moreover, γ is S-determinate if and only if card(M +
e (γ)) = 1.

Proof. Let A be a symmetric operator in a complex Hilbert space H and e ∈ D∞(A) be 
such that D(A) is the linear span of {Ane : n ∈ Z+}, and γn = 〈Ane, e〉 for all n ∈ Z+
(see [57, (1.10)]). By assumption, A is a positive operator with deficiency indices (1, 1)
(see [57, Theorem 2 and Corollary 2.9]). Hence, the Friedrichs extension S of A differs 
from Ā (see [69, Theorem 5.38]). As a consequence, 〈E(·)e, e〉 ∈ M +

e (γ), where E is the 
spectral measure of S (see [42, p. 3951]). This also proves necessity in the “moreover” 
part. The sufficiency is a direct consequence of [57, Theorem 4]. �
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Recall that if γ = {γn}∞n=0 is an S-indeterminate Stieltjes moment sequence, then 
card(M +

e (γ)) = c and there exist distinct measures α, β ∈ M +
e (γ) (uniquely determined 

by (2.1.1)) such that for every ρ ∈ M +
e (γ) \ {α, β},

0 = inf supp(α) < inf supp(ρ) < inf supp(β); (2.1.1)

α and β are called the Krein and the Friedrichs measures of γ, respectively. These two 
particular N-extremal measures come from the Krein and the Friedrichs extensions of a 
positive operator attached to γ. The reader is referred to [52] for the case of Friedrichs 
extensions and to [57] for a complete and up-to-date operator approach to moment 
problems (see also [42, Section 2]).

2.2. Transforming moments via homotheties

In this section we investigate transformations acting on real sequences induced by 
homotheties of R. Such transformations are shown to preserve many properties of Ham-
burger and Stieltjes moment sequences. The particular case of transformations induced 
by translations has been considered in [52, Section 3] and [57, p. 96] (with different 
approaches).

Fix ϑ ∈ (0, ∞) and a ∈ R. Let us define the self-map ψϑ,a of R by

ψϑ,a(t) = ϑ(t + a), t ∈ R. (2.2.1)

Note that ψϑ,a is a strictly increasing homeomorphism of R onto itself such that

ψ1,0 = idR, ψϑ̃,ã ◦ ψϑ,a = ψϑ̃ϑ, ãϑ+a, ψ−1
ϑ,a = ψ 1

ϑ ,−aϑ (2.2.2)

for all ϑ̃ ∈ (0, ∞) and ã ∈ R. Next, we define the linear self-map Tϑ,a of RZ+ by

(Tϑ,aγ)n =
n∑

j=0

(
n

j

)
an−jϑnγj , n ∈ Z+, γ = {γn}∞n=0 ⊆ R. (2.2.3)

The proof of Lemma 2.2.1 below, being elementary, is omitted.

Lemma 2.2.1. The following hold for all ϑ, ϑ̃ ∈ (0, ∞) and a, ̃a ∈ R:

Tϑ,a is a bijection of RZ+ onto itself,

T1,0 = id
R

Z+ , Tϑ̃,ãTϑ,a = Tϑ̃ϑ, ãϑ+a, T−1
ϑ,a = T 1

ϑ ,−aϑ. (2.2.4)

In view of (2.2.2) and Lemma 2.2.1, the correspondence ψϑ,a 
→ Tϑ,a defines a faithful 
representation of the group of all strictly increasing homotheties of R. Moreover, by 
(2.2.3) and (2.2.4), we have, for all ϑ ∈ (0, ∞) and a ∈ R,
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(T−1
ϑ,aγ)n =

n∑
j=0

(
n

j

)
(−a)n−jϑ−jγj , n ∈ Z+, γ = {γn}∞n=0 ⊆ R.

In Lemma 2.2.2 and Theorem 2.2.3 below we state properties of Tϑ,a which are relevant 
for further considerations. If ν is a Borel measure on R and ϕ is a homeomorphism of R
onto itself, then ν ◦ ϕ is the Borel measure on R given by

ν ◦ ϕ(σ) = ν(ϕ(σ)), σ ∈ B(R). (2.2.5)

Lemma 2.2.2. Let ϑ ∈ (0, ∞) and a ∈ R. Then

(i) Tϑ,a is a self-bijection on the set of all Hamburger moment sequences,
(ii) if γ is a Hamburger moment sequence, then the mapping

M (γ) � ν 
→ ν ◦ ψ−1
ϑ,a ∈ M (Tϑ,aγ) (2.2.6)

is a well-defined bijection with the inverse given by

M (Tϑ,aγ) � ν 
→ ν ◦ ψϑ,a ∈ M (γ);

in particular, γ is H-determinate if and only if Tϑ,aγ is H-determinate,
(iii) if γ is an H-indeterminate Hamburger moment sequence, then so is Tϑ,aγ and the 

mapping defined by (2.2.6) maps Me(γ) onto Me(Tϑ,aγ),
(iv) if γ is a nonzero Hamburger moment sequence and ν ∈ M (γ), then

supp(ν ◦ ψ−1
ϑ,a) = ψϑ,a(supp(ν)), (2.2.7)

inf supp(ν ◦ ψ−1
ϑ,a) = ψϑ,a(inf supp(ν)), (2.2.8)

with convention that ψϑ,a(−∞) = −∞,
(v) if a � 0, γ is an H-indeterminate Stieltjes moment sequence and ν ∈ M +

e (γ), then 
Tϑ,aγ is an H-indeterminate Stieltjes moment sequence and ν ◦ψ−1

ϑ,a ∈ M +
e (Tϑ,aγ).

Proof. (i)&(ii) If γ is a Hamburger moment sequence and ν ∈ M (γ), then, by the 
measure transport theorem (see [3, Theorem 1.6.12]), we have

(Tϑ,aγ)n =
∫
R

(
ψϑ,a(t)

)ndν(t) =
∫
R

tndν ◦ ψ−1
ϑ,a(t), n ∈ Z+,

which means that Tϑ,aγ is a Hamburger moment sequence and ν ◦ ψ−1
ϑ,a ∈ M (Tϑ,aγ). 

The above combined with (2.2.2) and (2.2.4) completes the proof of (i) and (ii).
(iii) Let γ be a Hamburger moment sequence and ν ∈ M (γ). Since

supt∈R(1 + ϕ(t)2)/(1 + t2) < ∞, ϕ ∈
{
ψϑ,a, ψ

−1
ϑ,a

}
,
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we deduce from the measure transport theorem that the mapping

W : L2((1 + t2)dν ◦ ψ−1
ϑ,a(t)) � f → f ◦ ψϑ,a ∈ L2((1 + t2)dν(t))

is a well-defined linear homeomorphism (with the inverse g → g ◦ ψ−1
ϑ,a) such that 

W (C[t]) = C[t]. Similarly, V : L2(ν ◦ ψ−1
ϑ,a) � f → f ◦ ψϑ,a ∈ L2(ν) is a unitary iso-

morphism such that V (C[t]) = C[t]. This, (ii) and Lemma 2.1.2(i) yield (iii).
(iv) The equality (2.2.7) is a direct consequence of the definition of the closed support 

of a measure (see also [62, Lemma 3.2] for a more general result). Clearly, (2.2.7) implies 
(2.2.8).

(v) Apply (iii) and (iv). �
Theorem 2.2.3. Let ϑ ∈ (0, ∞) and a ∈ R. Suppose γ = {γn}∞n=0 is an S-indeterminate 
Stieltjes moment sequence and β is its Friedrichs measure. Then Tϑ,aγ is an H-
indeterminate Hamburger moment sequence and the following holds:

(i) if c > 0, then Tϑ,aγ is an S-indeterminate Stieltjes moment sequence and β ◦ ψ−1
ϑ,a

is the Friedrichs measure of Tϑ,aγ,
(ii) if c = 0, then Tϑ,aγ is an S-determinate Stieltjes moment sequence,
(iii) if c < 0, then Tϑ,aγ is not a Stieltjes moment sequence,

where c := ψϑ,a

(
inf supp(β)

)
.

Proof. By Lemma 2.2.2, Tϑ,aγ is an H-indeterminate Hamburger moment sequence such 
that

β ◦ ψ−1
ϑ,a ∈ Me(Tϑ,aγ) and inf supp(β ◦ ψ−1

ϑ,a) = ψϑ,a(inf supp(β)) = c. (2.2.9)

Note that

inf supp(β ◦ ψ−1
ϑ,a) � inf supp(ρ), ρ ∈ Me(Tϑ,aγ). (2.2.10)

Indeed, otherwise, by (2.2.9) and Lemma 2.2.2, inf supp(β) < inf supp(ρ ◦ ψϑ,a) and 
ρ ◦ ψϑ,a ∈ M +

e (γ), which contradicts (2.1.1).
(i) By (2.2.9) and [21, Corollary on p. 481] (see also [42, Lemma 2.2.5]), Tϑ,aγ is 

an S-indeterminate Stieltjes moment sequence. Denote by ρ its Friedrichs measure. If 
β ◦ ψ−1

ϑ,a �= ρ, then by (2.1.1) and (2.2.9), inf supp(β ◦ ψ−1
ϑ,a) < inf supp(ρ), which would 

contradict (2.2.10).
(ii) By (2.2.9), Tϑ,aγ is a Stieltjes moment sequence and β ◦ ψ−1

ϑ,a ∈ M +
e (Tϑ,aγ). If 

Tϑ,aγ was S-indeterminate and ρ was its Friedrichs measure, then by (2.2.9), β◦ψ−1
ϑ,a �= ρ, 

which, as in (i), would contradict (2.2.10).
(iii) If Tϑ,aγ was a Stieltjes moment sequence, then by Lemma 2.1.7, there would 

exist ρ ∈ M +
e (Tϑ,aγ), and thus by (2.2.9), inf supp(β ◦ψ−1

ϑ,a) < inf supp(ρ), which would 
contradict (2.2.10). �
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Corollary 2.2.4. Let ϑ, a ∈ (0, ∞). Suppose γ is an S-indeterminate Stieltjes moment 
sequence and α and β are its Krein and Friedrichs measures, respectively. Then Tϑ,aγ

is an S-indeterminate Stieltjes moment sequence, α ◦ ψ−1
ϑ,a ∈ M +

e (Tϑ,aγ), β ◦ ψ−1
ϑ,a is the 

Friedrichs measure of Tϑ,aγ and

0 < inf supp(α ◦ ψ−1
ϑ,a) < inf supp(β ◦ ψ−1

ϑ,a). (2.2.11)

In particular, α ◦ ψ−1
ϑ,a is neither the Krein nor the Friedrichs measure of Tϑ,aγ.

Proof. In view of (2.1.1) and Lemma 2.2.2, (2.2.11) holds and α ◦ ψ−1
ϑ,a ∈ M +

e (Tϑ,aγ). 
This together with (2.1.1) and Theorem 2.2.3 completes the proof. �

The particular case of Theorem 2.2.3 with ϑ = 1 (without the statement that β ◦ψ−1
1,a

is the Friedrichs measure of T1,aγ = γ(a)) appeared in [57, Theorem 3.3] with a very 
brief outline of the proof based on the von Neumann theory of selfadjoint extensions of 
symmetric operators. In turn, the particular case of Corollary 2.2.4 with ϑ = 1 (without 
any statement on the Krein measure) appeared in [52, Proposition 3.5] with another 
approach based on the Nevanlinna parametrization.

It follows from Corollary 2.2.4 that if ϑ, a > 0, then the transformation Tϑ,a preserves 
S-indeterminate Stieltjes moment sequences, and the corresponding mapping defined 
by (2.2.6) preserves the Friedrichs measures (but never the Krein ones). The situation 
changes drastically when a < 0 (for example, when we consider T−1

ϑ,b with b > 0; see 
(2.2.4)). This is because the quantity c = ψϑ,a(inf supp(β)) may happen to be negative 
(see Theorem 2.2.3).

The above-mentioned properties of self-maps Tϑ,a enable us to parameterize N-
extremal measures of H-indeterminate Stieltjes moment sequences in a new way.

Theorem 2.2.5. Suppose γ = {γn}∞n=0 is an H-indeterminate Stieltjes moment se-
quence. Set t0 = inf supp(β), where β is either the Friedrichs measure of γ if γ is 
S-indeterminate, or β is the unique S-representing measure of γ otherwise. Then

(i) if γ is S-determinate, then t0 = 0 and β ∈ M +
e (γ),

(ii) if γ is S-indeterminate, then t0 > 0,
(iii) for every t ∈ (−∞, t0] there exists a unique νt ∈ Me(γ) such that

inf supp(νt) = t, (2.2.12)

(iv) the mapping (−∞, t0] � t 
→ νt ∈ Me(γ) is a bijection,
(v) M +

e (γ) = {νt : t ∈ [0, t0]},
(vi) the closed support of each N-extremal measure of γ is bounded from below,
(vii) supp(νt) ∩ (−∞, t0] = {t} for every t ∈ (−∞, t0],
(viii) [0, t0] �

⋃
μ∈M+

e (γ) supp(μ) and card
(
R+ \

⋃
μ∈M+

e (γ) supp(μ)
)

= c.
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Proof. Assume that γ is S-determinate. Then by [21, Corollary on p. 481] (see also [42, 
Lemma 2.2.5]), 0 ∈ supp(β) and thus t0 = 0. In view of Lemma 2.1.7, β ∈ M +

e (γ) and 
the measure ν0 := β satisfies (2.2.12). Now take t ∈ (−∞, 0). Then by Lemma 2.2.2, the 
sequence T1,−tγ is H-indeterminate, β ◦ ψ−1

1,−t ∈ Me(T1,−tγ) and inf supp(β ◦ ψ−1
1,−t) =

|t| > 0. Applying [21, Corollary on p. 481] again, we see that T1,−tγ is S-indeterminate. 
Let ρt be the Krein measure of T1,−tγ. Since γ = T1,tT1,−tγ, we infer from Lemma 2.2.2
and (2.1.1) that νt := ρt ◦ ψ−1

1,t ∈ Me(γ) and inf supp(νt) = t.
Assume now that γ is S-indeterminate. Let t ∈ (−∞, t0). Since

c := ψ1,−t(inf supp(β)) = t0 − t > 0,

we deduce from Theorem 2.2.3(i) that T1,−tγ is S-indeterminate. Taking the Krein mea-
sure ρt of T1,−tγ and arguing as in the previous paragraph, we see that νt := ρt ◦ψ−1

1,t ∈
Me(γ) satisfies (2.2.12). If t = t0, then νt0 := β does the job.

In both cases, S-determinate and S-indeterminate, the uniqueness of νt ∈ Me(γ)
satisfying (2.2.12) follows from Lemma 2.1.1. Altogether this proves (i), (ii) and (iii). 
Clearly, by (2.2.12), the mapping (−∞, t0] � t 
→ νt ∈ Me(γ) is injective. To prove its 
surjectivity, take ν ∈ Me(γ). By Lemma 2.1.1 and (2.1.1), there exists t ∈ (−∞, t0] ∩
supp(ν). Then t ∈ supp(νt) ∩ supp(ν) and so, by Lemma 2.1.1, νt = ν. This proves 
(iv) and consequently (v) and (vi). The condition (vii) is a direct consequence of (iii) 
and Lemma 2.1.1. To prove (viii) take any t ∈ (−∞, 0). By (iii) and Lemma 2.1.1, 
supp(νt) ∩ (t0, ∞) is a nonempty (in fact, a countably infinite) subset of R+ which is 
disjoint with 

⋃
μ∈M+

e (γ) supp(μ) and the latter set being unbounded properly contains 
[0, t0]. It follows from (iv) and Lemma 2.1.1 that the sets supp(νt) ∩(t0, ∞), t ∈ (−∞, 0), 
are nonempty and disjoint. This completes the proof of (viii) and the theorem. �

We conclude this section by stating the following trichotomy property of N-extremal 
measures of H-indeterminate Hamburger moment sequences.

Theorem 2.2.6 (Trichotomy). Suppose that γ = {γn}∞n=0 is an H-indeterminate Ham-
burger moment sequence. Then exactly one of the following three conditions holds:

(i) for every ν ∈ Me(γ), inf supp(ν) = −∞ and sup supp(ν) = ∞,
(ii) for every ν ∈ Me(γ), inf supp(ν) > −∞ and sup supp(ν) = ∞,
(iii) for every ν ∈ Me(γ), inf supp(ν) = −∞ and sup supp(ν) < ∞.

Proof. Suppose that (i) does not hold. Then there exists ν ∈ Me(γ) such that either s :=
inf supp(ν) > −∞ or sup supp(ν) < ∞. In the former case, T1,−sγ is an H-indeterminate 
Stieltjes moment sequence (see Lemma 2.2.2), and thus applying Theorem 2.2.5 to T1,−sγ

and returning to γ via the self-map T1,s we get (ii). Considering the H-indeterminate 
Hamburger moment sequence γ̃ := {(−1)nγn}∞n=0, one can show that the latter case leads 
to (iii) (as in the proof of Lemma 2.2.2, we verify that the mapping M (γ) � ν 
→ ν◦ψ−1 ∈
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M (γ̃) is a bijection which maps Me(γ) onto Me(γ̃) and supp(ν ◦ ψ−1) = ψ(supp(ν))
for every ν ∈ M (γ), where ψ is a self-map of R given by ψ(t) = −t for t ∈ R). This 
completes the proof. �

We refer the reader to [39, pages 93 and 94] (see also [38, Theorem 21.5.3]), where all 
N-extremal measures of the H-indeterminate Hamburger moment sequence arising from 
q−1-Hermite polynomials with q ∈ (0, 1) are explicitly calculated. Since their closed sup-
ports are bounded neither from below nor from above, we see that none of the conditions 
(i), (ii) and (iii) of Theorem 2.2.6 is redundant.

It is worth mentioning that, by using the Nevanlinna parametrization and methods 
of orthogonal polynomials (see [8, Lemma 2.2.1 and Remark 2.2.2]), one can provide 
alternative proofs of Theorems 2.2.5 and 2.2.6.

2.3. The Al-Salam–Carlitz moment problem

Orthogonal q-polynomials introduced by Al-Salam and Carlitz in [1] give rise to exam-
ples of S-indeterminate Stieltjes moment sequences for which some particular N-extremal 
measures are explicitly known. These special measures help us to show that the directed 
graph G2,0 admits a non-hyponormal composition operator generating Stieltjes moment 
sequences (see Theorem 5.5.2).

We begin by recalling the definition of q-Pochhammer symbol (called also q-shifted
factorial). For z, q ∈ C, we write

(z; q)n =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if n = 0,∏n

j=1(1 − zqj−1) if n ∈ N,∏∞
j=1(1 − zqj−1) if n = ∞, |q| < 1.

(2.3.1)

(See [56, Section VII.1] for more on infinite products.) Following [22, Section VI.10], we 
extend the original definition of q-polynomials of Al-Salam and Carlitz to cover the case 
of |q| > 1. Given a ∈ C and q ∈ C \ {0}, we define {V (a)

n (x; q)}∞n=0, the sequence of 
complex polynomials in one variable x, by the recurrence formula

V
(a)
n+1(x; q) =

(
x− 1 + a

qn

)
V (a)
n (x; q) − a

1 − qn

q2n−1 V
(a)
n−1(x; q), n ∈ Z+,

V
(a)
−1 (x; q) = 0, V

(a)
0 (x; q) = 1.

(2.3.2)

The generating function for {V (a)
n (x; q)}∞n=0 can be described as follows (see [1] and [22, 

Section VI.10]). If a, q, z ∈ C, x ∈ R and q �= 0, then

∞∑
n=0

V (a)
n (x; q) (−1)nq

n(n−1)
2 zn

(q; q)n
=

⎧⎪⎨⎪⎩
(xz;q)∞

(z;q)∞(az;q)∞ if |z| < ra, |q| < 1,(
z 1

q ; 1q
)
∞
(
z a

q ; 1q
)
∞(

z x
q ; 1q
)
∞

if |z| < |q|
|x| , |q| > 1,

(2.3.3)
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where ra = min{1, 1
|a|} with the convention that 1

0 = ∞. The function of one complex 
variable z given by the right-hand side of (2.3.3) is called the generating function for 
{V (a)

n (x; q)}∞n=0. Clearly, it is meromorphic and has simple poles because (z; q)∞ = 0 if 
and only if 1 − zqn = 0 for some (unique) n ∈ Z+.

By (2.3.2), {V (a)
n (x; q)}∞n=0 satisfies the following general recurrence relation

Pn+1(x) = (x− cn)Pn(x) − λnPn−1(x), n ∈ Z+,

P−1(x) = 0, P0(x) = 1,
(2.3.4)

where {cn}∞n=0 and {λn}∞n=1 are sequences of complex numbers (λ0 can be chosen arbi-
trarily) and {Pn(x)}∞n=0 are polynomials. Suppose that (2.3.4) holds. Then {Pn(x)}∞n=0
is a Hamel basis of C[x] and thus there exists a unique linear functional L : C[x] → C

such that L(x0) = 1 and L(Pn) = 0 for all n ∈ N (or equivalently if and only if L(x0) = 1
and L(PmPn) = 0 for all m, n ∈ Z+ such that m �= n). We say that μ ∈ M is an or-
thogonalizing measure for {Pn(x)}∞n=0 if L(P ) =

∫
R
Pdμ for all P ∈ C[x]. If this is the 

case, then {L(xn)}∞n=0 is a Hamburger moment sequence and μ is its H-representing 
measure (clearly μ(R) = 1). By Favard’s theorem (see [22, Theorems I.4.4 and II.3.1]), 
the polynomials {Pn(x)}∞n=0 have an orthogonalizing measure if and only if cn ∈ R and 
λn+1 > 0 for all n ∈ Z+.

Applying the above, we obtain the following statement.

The polynomials {V (a)
n (x; q)}∞n=0 have an orthogonalizing measure if and

only if either a < 0 and q ∈ (−1, 0) ∪ (1,∞), or a > 0 and q ∈ (0, 1).
(2.3.5)

As in [1] we concentrate on the case of q ∈ (0, 1). Then, by (2.3.5), the polynomi-
als {V (a)

n (x; q)}∞n=0 have an orthogonalizing measure if and only if a > 0. For such 
a and q, the question of determinacy of orthogonalizing measures for {V (a)

n (x; q)}∞n=0
can be answered completely. This is done below. Known orthogonalizing measures for 
{V (a)

n (x; q)}∞n=0 are discussed in detail as well. We refer the reader to Fig. 1 which illus-
trates how determinacy depends on the parameters a and q.

Al-Salam and Carlitz showed in [1] that if a > 0 and aq < 1, then the measure

β(a;q) := (aq; q)∞
∞∑

n=0

anqn
2

(aq; q)n(q; q)n
δq−n , (2.3.6)

is an orthogonalizing measure for {V (a)
n (x; q)}∞n=0 (if aq � 1, then the right-hand side of 

(2.3.6) either does not make sense or does not define a positive measure), and

mn[β(a;q)] :=
∫
R

tndβ(a;q)(t) =
n∑

k=0

(q; q)nqk(k−n)

(q; q)k(q; q)n−k
ak, n ∈ Z+.

(That β(a;q) is a probability measure was proved in [37, Theorem 5.1].) In turn, Chihara 
essentially proved that if 0 < q < a � 1, then {mn[β(a;q)]}∞n=0 is an S-indeterminate 
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Fig. 1. Determinacy of known orthogonalizing measures for {V (a)
n (x; q)}∞

n=0.

Stieltjes moment sequence and β(a;q) is its Friedrichs measure (see [21]). This can be also 
deduced from Lemma 2.2.2, [8, Proposition 4.5.1], [21, Corollary on p. 481] (see also [42, 
Lemma 2.2.5]), [21, p. 483, (b)] and (2.1.1) by considering the measure β(a;q)◦ψ−1

1,−1 which 

coincides with the measure ν(a)
0 appearing in [8, Proposition 4.5.1]. A similar reasoning 

shows that if 1 < a < q−1, then {mn[β(a;q)]}∞n=0 is an S-indeterminate Stieltjes moment 
sequence (this was first noticed by Chihara in [21]) and β(a;q) is its N-extremal measure 
which is neither the Krein nor the Friedrichs measure. Consider now the measure

γ(a;q) := (q/a; q)∞
∞∑

n=0

a−nqn
2

(q/a; q)n(q; q)n
δaq−n , 1 < a < q−1. (2.3.7)

Applying Lemmata 2.2.1 and 2.2.2, [8, Proposition 4.5.1] and Theorem 2.2.3, the lat-
ter to the measure γ(a;q) ◦ ψ−1

1,−1 which coincides with the measure ν(a)
−1/ξ(a) appearing 

in [8, Proposition 4.5.1] (consult also Remark 5.5.4), we deduce that if 1 < a < q−1, 
then mn[β(a;q)] = mn[γ(a;q)] for all n ∈ Z+, γ(a;q) is an orthogonalizing measure for 
{V (a)

n (x; q)}∞n=0 and γ(a;q) is the Friedrichs measure of {mn[β(a;q)]}∞n=0. Finally, as shown 
in [21], if 0 < a � q < 1 or 1 < q−1 � a, then the polynomials {V (a)

n (x; q)}∞n=0 have an H-
determinate orthogonalizing measure. Clearly, in the former case this measure coincides 
with β(a;q) defined by (2.3.6). To find the orthogonalizing measure for {V (a)

n (x; q)}∞n=0
in the latter case, we follow an idea due to Ismail, which in fact can be applied to wider 
set of parameters (see [37, page 592]). For this, note that if a, q̃ ∈ C \ {0}, then the poly-
nomials {anV (1/a)

n (x/a; q̃)}∞n=0 satisfy the same recurrence relation as the polynomials 
{V (a)

n (x; q̃)}∞n=0 (see (2.3.2)), and thus

V (a)
n (x; q̃) = anV (1/a)

n (x/a; q̃), n ∈ Z+, a, q̃ ∈ C \ {0}. (2.3.8)
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Now suppose that a ∈ (0, ∞) and a−1q < 1 (recall that q ∈ (0, 1)). Then using the 
measure transport theorem and the fact that β(1/a;q) is the orthogonalizing measure for 
{V (1/a)

n (x; q)}∞n=0, we get∫
R

V (a)
m (x; q)V (a)

n (x; q)dβ(1/a;q) ◦ ψ−1
a,0(x)

(2.3.8)=
∫
R

amV (1/a)
m (ψ−1

a,0(x); q)anV (1/a)
n (ψ−1

a,0(x); q)dβ(1/a;q) ◦ ψ−1
a,0(x)

= am+n

∫
R

V (1/a)
m (x; q)V (1/a)

n (x; q)dβ(1/a;q)(x) = 0, m, n ∈ Z+, m �= n.

Since β(1/a;q) ◦ ψ−1
a,0 is a probability measure, we deduce that it is an orthogonalizing 

measure for {V (a)
n (x; q)}∞n=0. If additionally aq < 1, then β(a,q) is another orthogonalizing 

measure for {V (a)
n (x; q)}∞n=0. Now there are three possibilities. If a = 1, then the measures 

β(a;q) and β(1/a;q) ◦ ψ−1
a,0 coincide. If a < 1, then {mn[β(a;q)]}∞n=0 is an S-indeterminate 

Stieltjes moment sequence, β(a;q) is its Friedrichs measure (because 0 < q < a < 1) and 
β(1/a;q) ◦ ψ−1

a,0 is its N-extremal measure which is neither the Krein nor the Friedrichs 
measure (because of 1 < a−1 < q−1, (2.1.1) and Lemma 2.2.2). In turn, if a > 1, then 
{mn[β(a;q)]}∞n=0 is an S-indeterminate Stieltjes moment sequence, β(1/a;q) ◦ ψ−1

a,0 is its 
Friedrichs measure (because of 0 < q < a−1 < 1 and Theorem 2.2.3) which coincides 
with γ(a;q) defined by (2.3.7), and β(a;q) is its N-extremal measure which is neither the 
Krein nor the Friedrichs measure (because 1 < a < q−1).

Finally, we note that if a ∈ (0, ∞) and 1 < q−1 � a (i.e., aq � 1), then a−1q < 1, and 
thus, by the above considerations, the measure β(1/a;q)◦ψ−1

a,0 is the unique orthogonalizing 

measure for {V (a)
n (x; q)}∞n=0.

One more observation is at hand. Namely, using the equality

(aq; q)∞ = (aq; q)n(aqn+1; q)∞,

we get

β(a;q) =
∞∑

n=0

anqn
2(aqn+1; q)∞
(q; q)n

δq−n , a > 0, aq < 1.

Now it is easily seen that for every (q, a) ∈ (0, 1) ×(0, ∞) such that aq � 1, the right-hand 
side of the above equality defines the signed measure (understood as in [3]), call it β̃(a;q), 
which is positive if and only if aqk = 1 for some k ∈ N. Moreover, standard calculations 
show that if aqk = 1 for some k ∈ N, then supp(β̃(a;q)) = {q−j : j � k}, which together 
with (2.3.6) implies that β̃(a;q) = β(1/a;q)◦ψ−1

a,0. In a sense, this means that all singularities 
appearing in (2.3.6) can be removed.

The H-determinacy of the Hamburger moment problem associated with the polyno-
mials {V (a)

n (x; q)}∞n=0 for q ∈ (−1, 0) ∪ (0, 1) was discussed by Ismail in [37].
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2.4. Index of H-determinacy

Following [5], we define indz(ρ) ∈ Z+ ∪ {∞}, the index of H-determinacy of an H-
determinate measure ρ at a point z ∈ C, by

indz(ρ) = sup{k ∈ Z+ : |t− z|2kdρ(t) is H-determinate}.

By the index of H-determinacy of an H-determinate Stieltjes moment sequence γ =
{γn}∞n=1 at a point z ∈ C we understand the index of H-determinacy of a unique H-
representing measure of γ at the point z. Note that if ρ is an H-determinate measure 
such that indz0(ρ) = ∞ for some z0 ∈ C, then indz(ρ) = ∞ for all z ∈ C (see [5, 
Corollary 3.4(1)]). If this is the case, then we say that ρ (or γ) has infinite index of 
H-determinacy. Note also that the following holds.

If ρ ∈ M + is an H-determinate measure such that indz(ρ) = ∞
for all z ∈ C, then the measure tkdρ(t) is H-determinate for all k ∈ Z+.

(2.4.1)

Indeed, this can be deduced from Proposition 2.1.3 and the inequality∫
σ

tkdρ(t) �
∫
σ

|t− i|2ldρ(t), σ ∈ B(R), k, l ∈ Z+, k � 2l.

The following result can be thought of as a complement to [5, Theorem 3.6].

Theorem 2.4.1. Let ν be an N-extremal measure and Ω′ be an infinite subset of Ω :=
supp(ν). Set ρ =

∑
λ∈Ω\Ω′ ν({λ})δλ (with ρ = 0 if Ω′ = Ω). Then ρ is an H-determinate 

measure such that indz(ρ) = ∞ for all z ∈ C.

Proof. Fix n ∈ N. Take any subset Ωn of Ω′ such that card(Ωn) = n. Set ρn =∑
λ∈Ω\Ωn

ν({λ})δλ. Note that for every Borel function f : R → R+,∫
R

fdρ =
∫

Ω\Ω′

fdν �
∫

Ω\Ωn

fdν =
∫
R

fdρn. (2.4.2)

By [5, Theorem 3.6], ρn is H-determinate and n � indz(ρn) � n − 1 for all z ∈ C. 
Using Proposition 2.1.3 and applying the inequality (2.4.2) first to f = χσ and then to 
f(t) = χσ(t)|t − z|2k, we deduce that ρ is H-determinate and indz(ρ) � indz(ρn) for all 
z ∈ C. This completes the proof. �
2.5. The Carleman condition

Suppose {γn}∞n=0 is a Stieltjes moment sequence. Clearly, the shifted sequence 
{γn+1}∞n=0 is a Stieltjes moment sequence. It turns out that if {γn+1}∞n=0 is S-
determinate, then so is {γn}∞n=0 (see [57, Proposition 5.12]; see also [12, Lemma 2.4.1]). 
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The reverse implication is not true in general (see [42]). However, it is true if {γn}∞n=0
satisfies the Carleman condition (see Proposition 2.5.1 below). Recall that a sequence 
{γn}∞n=0 ⊆ R+ satisfies the Carleman condition if 

∑∞
n=1

1
γ
1/2n
n

= ∞ with the convention 

that 1
0 = ∞.

Below we collect some properties of Stieltjes moment sequences that satisfy the Car-
leman condition.

Proposition 2.5.1. Let γ = {γn}∞n=0 be a Stieltjes moment sequence. Then

(i) if γ satisfies the Carleman condition, then γ is H-determinate,
(ii) γ satisfies the Carleman condition if and only if {γn+1}∞n=0 satisfies the Carleman 

condition,
(iii) if γ satisfies the Carleman condition, then so does {γn + c}∞n=0 for every c ∈ (0, ∞),
(iv) γ satisfies the Carleman condition if and only if {γjp}∞j=0 satisfies the Carleman 

condition for every p ∈ N (equivalently: for some p ∈ N).

Proof. (i) See [57, Corollary 4.5].
(ii) This can be deduced from the equivalence (d)⇔(e) in [55, Theorem 19.11] (the 

equivalence follows from the Carleman inequality, see [20, p. 105]).
(iii) Let ν be an S-representing measure of {γn}∞n=0. Set a = ν((1, ∞)). Since the case 

of a = 0 is obvious, we can assume that a > 0. Then

γn + c � γn + c

a

∫
(1,∞)

tndν(t) �
(
1 + c

a

)
γn, n ∈ Z+,

which implies that {γn + c}∞n=0 satisfies the Carleman condition.
(iv) This follows from [63, Section 1] because, by the Cauchy–Schwarz inequality, 

γ2
n � γkγl for all nonnegative integers k, l such that k + l = 2n. �

Note that in view of Proposition 2.5.1, a Stieltjes moment sequence which satisfies 
the Carleman condition has infinite index of H-determinacy because its index of H-
determinacy at 0 is infinite.

3. Composition operators over one-circuit directed graphs

3.1. Criteria for hyponormality and subnormality

In this paper we study composition operators in L2-spaces over discrete measure 
spaces. By a discrete measure on a (nonempty) set X we understand a σ-finite measure 
μ on the σ-algebra 2X such that μ(x) > 0 for every x ∈ X, with the convention

μ(x) := μ({x}), x ∈ X. (3.1.1)
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Note that if μ is a discrete measure on X, then X is at most countable and μ(x) < ∞
for every x ∈ X. Moreover, any discrete measure μ on X is determined by a function 
μ : X → (0, ∞) via μ({x}) = μ(x). This one-to-one correspondence between discrete 
measures and positive functions is used frequently in the present paper.

Let μ be a discrete measure on a set X and let φ be a self-map of X. Then the operator 
Cφ in L2(μ) given by

D(Cφ) = {f ∈ L2(μ) : f ◦ φ ∈ L2(μ)} and Cφf = f ◦ φ for f ∈ D(Cφ),

is called a composition operator in L2(μ) with a symbol φ. Since the measure μ ◦ φ−1

given by (μ ◦ φ−1)(Δ) = μ(φ−1(Δ)) for Δ ∈ 2X is absolutely continuous with respect 
to μ, we can consider the Radon–Nikodym derivative hφ = dμ ◦ φ−1/dμ. Clearly

hφ(x) = μ(φ−1({x}))
μ(x) , x ∈ X. (3.1.2)

Hence, hφ(x) > 0 for every x ∈ X if and only if φ(X) = X. It is easily seen that (see [51])

Cφ ∈ B(L2(μ)) if and only if supx∈X hφ(x) < ∞, and if this
is the case, then ‖Cn

φ‖2 = supx∈X hφn(x) for every n ∈ Z+.
(3.1.3)

Note also that

‖Cn
φχ{u}‖2 = μ(u)hφn(u) whenever u ∈ X, χ{u} ∈ D(Cn

φ ) and n ∈ Z+. (3.1.4)

Applying [15, Proposition 3.2] and the assertions (ii) and (iv) of [15, Proposition 4.1], 
we get a new criterion for the nth power of Cφ to be densely defined.

If n ∈ N, then Cn
φ is densely defined if and only if hφn(x) < ∞

for every x ∈ X.
(3.1.5)

Thus, if n ∈ N and hφn(x) < ∞ for all x ∈ X, then hφj (x) < ∞ for all j ∈ {1, . . . , n}
and x ∈ X. This hereditary property is no longer true for a single point x ∈ X (see [40, 
Example 4.2]). In fact, given any nonempty subset Ξ of N, we can construct a discrete 
measure μ on a set X and a self-map φ of X such that Ξ = {n ∈ N : hφn(x0) = ∞} for 
some x0 ∈ X. This is shown below.

Example 3.1.1. Fix k ∈ N ∪ {∞}. Let X, {xi}∞i=0, {xi,j}η+1
i=1

li
j=1 and φ be as in Theo-

rem 3.3.2(ii-b∗) with η = ∞ and li = k for all i ∈ N. Suppose that Ξ is a nonempty 
subset of Jk (see Section 1.2 for the definition of Jk). Define the discrete measure μ on 
X by

μ({x}) =
{

2−i if x ∈ {xi,j : i ∈ N, j ∈ Jk \ Ξ},
1 otherwise,

x ∈ X.
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It is a matter of routine to show that

hφn(x0) =

⎧⎪⎪⎨⎪⎪⎩
∞ if n ∈ Ξ,

1 if n ∈ Jk \Ξ,

0 if k < ∞ and n > k,
n ∈ N.

Assume now that Cφ is densely defined (as before, μ is a discrete measure on 
a set X and φ is a self-map of X), or equivalently, by (3.1.2) and (3.1.5), that 
μ(φ−1({x})) < ∞ for all x ∈ φ(X). Then for every function f : X → R+, there ex-
ists a unique φ−1(2X)-measurable function Eφ(f) : X → R+ such that∫

φ−1(Δ)

fdμ =
∫

φ−1(Δ)

Eφ(f)dμ, Δ ⊆ X,

or equivalently, such that for every x ∈ φ(X),

Eφ(f)(z) =
∑

y∈φ−1({x}) μ(y)f(y)
μ(φ−1({x})) , z ∈ φ−1({x}). (3.1.6)

The above definition is correct because X = �x∈φ(X) φ
−1({x}). The function Eφ(f) is 

called the conditional expectation of a function f : X → R+ with respect to the σ-algebra 
φ−1(2X) (see [15]). Following [16], we say that a family {P (x, ·)}x∈X of Borel probability 
measures on R+ satisfies the consistency condition if

hφ(φ(z)) · Eφ(P (·, σ))(z) =
∫
σ

tP (φ(z),dt), z ∈ X, σ ∈ B(R+).

In view of (3.1.2) and (3.1.6), we see that {P (x, ·)}x∈X satisfies the consistency condition 
if and only if

1
μ(x)

∑
y∈φ−1({x})

μ(y)P (y, σ) =
∫
σ

tP (x,dt), σ ∈ B(R+), x ∈ φ(X). (CC)

The following characterization of hyponormality of Cφ can be deduced from (3.1.2), 
(3.1.6) and [19, Corollary 6.7] (see also [11, Lemma 2.1]).

Proposition 3.1.2. Let μ be a discrete measure on a set X and φ be a self-map of X. 
Assume that Cφ is densely defined. Then Cφ is hyponormal if and only if for every x ∈ X, 
hφ(x) > 0 and

1
μ(x)

∑
y∈φ−1({x})

μ(y)2

μ(φ−1({y})) � 1. (3.1.7)
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A criterion for subnormality of unbounded composition operators given in [16, The-
orems 9 and 17] takes in the present situation the following form (recall that if Cφ is 
subnormal, then hφ(x) > 0 for every x ∈ X, or equivalently Cφ is injective, see [15, 
Section 6]).

Theorem 3.1.3. Let μ be a discrete measure on a set X and φ be a self-map of X. Assume 
that Cφ is densely defined and hφ(x) > 0 for every x ∈ X. Suppose that there exists a 
family {P (x, ·)}x∈X of Borel probability measures on R+ that satisfies (CC). Then Cφ

is subnormal and

hφn(x) =
∞∫
0

tnP (x,dt), n ∈ Z+, x ∈ X. (3.1.8)

Let G = (V, E) be a directed graph (i.e., V is a nonempty set called the vertex set
of G and E is a subset of V × V called the edge set of G ). We say that a vertex u is a 
parent of a vertex v, and write par(v) = u, if (u, v) ∈ E and u = w whenever (w, v) ∈ E. 
The directed graph G is said to be connected if for every pair (u, v) of distinct vertices 
there exists an undirected path joining u and v, i.e., a finite sequence {ui}ki=1 of vertices 
with k ≥ 2 such that u1 = u, uk = v and for every i ∈ Jk−1, either (ui, ui+1) ∈ E or 
(ui+1, ui) ∈ E. We say that a finite sequence {uj}nj=1 of distinct vertices is a circuit if 
n ≥ 2, (uj , uj+1) ∈ E for all j ∈ Jn−1 and (un, u1) ∈ E. By a rootless directed tree we 
mean a directed graph T = (V, E) which is connected, has no circuits, each vertex of T
has a parent and (u, u) /∈ E for every u ∈ V . In this case, obviously, the partial function 
par is a self-map of V .

Given a rootless directed tree T = (V, E) and a family λ = {λv}v∈V of complex 
numbers, we define a weighted shift Sλ on T with weights λ via

D(Sλ) = {f ∈ �2(V ) : λ · f ◦ par ∈ �2(V )} and Sλf = λ · f ◦ par for f ∈ D(Sλ),

where (λ · f ◦ par)(v) = λvf(par(v)) for v ∈ V . We refer the reader to [41] for more 
information on directed trees and weighted shifts on them.

It follows from [42, Lemma 4.3.1] and [41, Theorem 3.2.1] that each weighted shift 
Sλ on a countable rootless directed tree T = (V, E) with nonzero weights is unitarily 
equivalent to a composition operator Cpar in L2(V, 2V , μ) for some discrete measure μ
on V (the assumption that V is infinite made in [42, Lemma 4.3.1] is redundant). As 
explicated below, the proof of [42, Lemma 4.3.1] contains more information.

Lemma 3.1.4. Let T = (V, E) be a rootless directed tree. Suppose that μ is a discrete 
measure on V . Then the composition operator Cpar in L2(μ) is unitarily equivalent to a 
weighted shift on T with positive weights.

Proof. Since μ is a discrete measure on V , we see that card(V ) � ℵ0. Consider the 

weighted shift Sλ on the directed tree T with weights 
{√

μ(v)
μ(par(v))

}
. A careful 
v∈V
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inspection of the proof of [42, Lemma 4.3.1] reveals that the composition operator Cpar
is unitarily equivalent to Sλ via the unitary isomorphism U : �2(V ) → L2(μ) defined in 
[42, (4.3.4)]. �
3.2. A class of directed graphs with one circuit

In this section we classify connected directed graphs induced by self-maps whose 
vertices, all but one, have valency one and the valency of the remaining vertex is nonzero 
(see Theorem 3.2.1 below; see also Figs. 2 and 3 which illustrate this theorem).

Let X be a nonempty set and φ be a self-map of X. Set

Eφ = {(x, y) ∈ X ×X : x = φ(y)}. (3.2.1)

Then (X, Eφ) is a directed graph which we call the directed graph induced by φ. Note 
that the valency of a vertex x ∈ X is equal to card(φ−1({x})) and that φ(x) is the parent 
of x. We will write φ−n(A) = (φn)−1(A) whenever n ∈ Z+ and A ⊆ X.

Theorem 3.2.1. Let X and φ be as above and let η ∈ N ∪ {∞}. Then the following two 
conditions are equivalent:

(i) the directed graph (X, Eφ) is connected and there exists ω ∈ X such that 
card(φ−1({ω})) = η + 1 and card(φ−1({x})) = 1 for every x ∈ X \ {ω},

(ii) one of the following two conditions is satisfied:
(ii-a) there exist κ ∈ Z+ and two disjoint systems {xi}κi=0 and {xi,j}ηi=1

∞
j=1 of 

distinct points of X such that

X = {x0, . . . , xκ} ∪ {xi,j : i ∈ Jη, j ∈ N}, (3.2.2)

φ(x) =

⎧⎪⎪⎨⎪⎪⎩
xi,j−1 if x = xi,j with i ∈ Jη and j � 2,
xκ if x = xi,1 with i ∈ Jη or x = x0,

xi−1 if x = xi with i ∈ Jκ,

(3.2.3)

(ii-b) there exist two disjoint systems {xi}∞i=0 and {xi,j}η+1
i=1

∞
j=1 of distinct points of 

X such that

X = {xi : i ∈ Z+} ∪ {xi,j : i ∈ Jη+1, j ∈ N},

φ(x) =

⎧⎪⎪⎨⎪⎪⎩
xi,j−1 if x = xi,j with i ∈ Jη+1 and j � 2,
x0 if x = xi,1 with i ∈ Jη+1,

xi+1 if x = xi with i ∈ Z+.

(3.2.4)

Proof. Clearly, we need only to prove the implication (i)⇒(ii). We do it in five steps. 
The proof of Step 1 being simple is omitted.
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Fig. 2. The directed graph (X, Eφ) in the case of (ii-a) in Theorem 3.2.1 (the self-map φ acts in accordance 
with the reverted arrows).

Fig. 3. The directed graph (X,Eφ) in the case of (ii-b) in Theorem 3.2.1.

Step 1. If ω ∈ X is such that card(φ−1(x)) � 1 for all x ∈ X\{ω}, then the restriction 
of φ to φ−1(X \ {ω}) is injective.

Step 2. If ω ∈ X and Ω ⊆ X are such that ω ∈ Ω, φ(Ω) ⊆ Ω, card(φ−1({ω})) � 2, 
card(φ−1({x})) = 1 for every x ∈ X \ {ω} and Δ := φ−1({ω}) \Ω �= ∅, then

(s1) card(φ−n({x})) = 1 provided n ∈ Z+ and x ∈ X \Ω,
(s2) φ−n(x) ∈ X \Ω provided n ∈ Z+ and x ∈ X \Ω, where φ−n(x) is a unique element 

of X such that {φ−n(x)} = φ−n({x}) (see (s1)),
(s3) x = φn(φ−n(x)) and φ−(m+n)(x) = φ−m(φ−n(x)) provided m, n ∈ Z+ and x ∈

X \Ω,
(s4) {φ−n(x) : n ∈ Z+} are distinct points of X provided x ∈ Δ,
(s5) {φ−m(x) : m ∈ Z+} ∩ {φ−n(y) : n ∈ Z+} = ∅ provided x, y ∈ Δ and x �= y.

For this, take x ∈ X \Ω. By assumption, card(φ−1({x})) = 1 and thus there exists a 
unique φ−1(x) ∈ X such that {φ−1(x)} = φ−1({x}). Since φ(Ω) ⊆ Ω and x = φ(φ−1(x)), 
we deduce that φ−1(x) ∈ X \ Ω. An induction argument yields (s1), (s2) and (s3). To 
prove (s4) and (s5), suppose that x, y ∈ Δ and φ−i(x) = φ−j(y) for some integers 
0 � i � j. If i < j, then by (s2) and (s3), we have
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x = φi(φ−i(x)) = φi(φ−j(y)) = φi(φ−i(φ−(j−i)(y))) = φ−(j−i)(y)

and so

ω = φ(x) = φ(φ−(j−i)(y)) = φ(φ−1(φ−(j−i−1)(y))) = φ−(j−i−1)(y),

which yields y = φj−i−1(ω) ∈ Ω, a contradiction. Finally, if i = j, then

x = φi(φ−i(x)) = φj(φ−j(y)) = y,

which completes the proof of (s4) and (s5).
Step 3. If (X, Eφ) is connected and Y is a nonempty subset of X such that φ(Y ) ⊆ Y

and φ(X \ Y ) ⊆ X \ Y , then X = Y .
Indeed, otherwise there exists x ∈ X \ Y . Take y ∈ Y . Since the graph (X, Eφ) is 

connected, there exists a finite sequence {ui}ki=1 of elements of X with k ≥ 2 such that 
u1 = x, uk = y and for every i ∈ Jk−1, either (ui, ui+1) ∈ Eφ or (ui+1, ui) ∈ Eφ. Then 
there exists j ∈ Jk−1 such that uj ∈ X \Y and uj+1 ∈ Y . Thus either uj = φ(uj+1) ∈ Y

or uj+1 = φ(uj) ∈ X \ Y , a contradiction.
Step 4. If (X, Eφ) is connected and ω ∈ X is such that card(φ−1({ω})) = η + 1, 

card(φ−1({x})) = 1 for every x ∈ X \ {ω} and ω ∈ φ−n({ω}) for some n ∈ N, then (ii-a)
holds.

For this, we set

κ = min{n ∈ N : ω ∈ φ−n({ω})} − 1. (3.2.5)

First we show that {φi(ω)}κi=0 is a sequence of distinct points of X. Indeed, if φi(ω) =
φj(ω) for some integers 0 � i < j � κ, then 1 � κ + 1 − (j − i) < κ + 1 and

ω
(3.2.5)= φκ+1(ω) = φκ+1−j(φj(ω)) = φκ+1−j(φi(ω)) = φκ+1−(j−i)(ω),

which contradicts (3.2.5). Set Ω =
{
xi : i ∈ {0, . . . , κ}

}
with xi = φκ−i(ω) for i ∈

{0, . . . , κ}, and Δ = φ−1({ω}) \ Ω. Then clearly φ(x0) = xκ = ω and φ(xi) = xi−1 for 
i ∈ Jκ, and φ(Ω) ⊂ Ω. Since φ|Ω is injective, we see that φ−1({ω}) ∩Ω = {x0}. This and 
card(φ−1({ω})) = η+1 imply that card(Δ) = η. Thus, by Step 2, the conditions (s1)–(s5) 
hold. Let {xi,1}ηi=1 be a sequence of distinct points of Δ. Setting xi,j = φ−(j−1)(xi,1)
for i ∈ Jη and j ∈ N, we verify that {xi}κi=0 and {xi,j}ηi=1

∞
j=1 are disjoint systems of 

distinct points of X which satisfy (3.2.3). Hence, φ(Y ) = Y and φ−1({x}) ∩ Y �= ∅ for 
every x ∈ Y , where

Y = {x0, . . . , xκ} ∪ {xi,j : i ∈ Jη, j ∈ N}. (3.2.6)

Since card(φ−1({x})) = 1 for every x ∈ X \ {ω} and card(φ−1({ω})) = η+ 1, we deduce 
that φ−1(Y ) ⊆ Y , or equivalently that φ(X \ Y ) ⊆ X \ Y . This together with Step 3 
completes the proof of Step 4.
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Step 5. If (X, Eφ) is connected and ω ∈ X is such that card(φ−1({ω})) = η + 1, 
card(φ−1({x})) = 1 for every x ∈ X \{ω} and ω /∈ φ−n({ω}) for every n ∈ N, then (ii-b) 
holds.

We begin by proving that

{φi(ω)}∞i=0 is a sequence of distinct points of X. (3.2.7)

For this, suppose that φi(ω) = φj(ω) for some integers 0 � i < j. Since, by as-
sumption φk(ω) �= ω for all k ∈ N, we can assume that i � 1. If i � 2, then 
φ(φj−1(ω)) = φ(φi−1(ω)), which in view of Step 1 implies that φj−1(ω) = φi−1(ω). 
An induction argument shows that φj−i+1(ω) = φ(ω). Clearly, the last equality remains 
valid if i = 1. Hence, in both cases, we see that ω, φj−i(ω) ∈ φ−1({φ(ω)}). As φ(ω) �= ω

and consequently card(φ−1({φ(ω)})) = 1, we deduce that ω = φj−i(ω), a contradiction. 
This proves (3.2.7). Set Ω = {xi : i ∈ Z+} with xi = φi(ω), and Δ = φ−1({ω}) \ Ω. 
Clearly ω ∈ Ω, φ(Ω) ⊆ Ω and φ−1({ω}) ∩ Ω = ∅. This yields card(Δ) = η + 1. There-
fore, by Step 2, the conditions (s1)–(s5) hold. Let {xi,1}η+1

i=1 be a sequence of distinct 
points of Δ. Setting xi,j = φ−(j−1)(xi,1) for i ∈ Jη+1 and j ∈ N, we verify that {xi}∞i=0
and {xi,j}η+1

i=1
∞
j=1 are disjoint systems of distinct points of X which satisfy (3.2.4). Now, 

arguing as in the final stage of the proof of Step 4 with

Y := {xi : i ∈ Z+} ∪ {xi,j : i ∈ Jη+1, j ∈ N}, (3.2.8)

we complete the proof of Step 5 and Theorem 3.2.1. �
Now we make some comments on Theorem 3.2.1 that support the idea of studying 

composition operators with symbols of type (ii-a). We also shed more light on the ques-
tion of simplicity of directed graphs discussed in Section 1.1.

Remark 3.2.2. 1) Suppose that the directed graph (X, Eφ) is connected and Cφ is a 
composition operator in L2(X, 2X , μ), where μ is a discrete measure on X. By (3.1.2)
and [15, Proposition 6.2], Cφ is injective if and only if

card(φ−1({x})) � 1 for all x ∈ X. (3.2.9)

To guarantee injectivity of Cφ, we assume that (3.2.9) holds. We also exclude the (more 
complex) case when the directed graph (X, Eφ) has more than one vertex of valency 
greater than 1. The case when (X, Eφ) has exactly one vertex of valency greater than 1 
has been described in Theorem 3.2.1. If card(φ−1({x})) = 1 for every x ∈ X (the flat
case), then, by [59, Proposition 2.4] and Step 3 of the proof of Theorem 3.2.1, φ is 
bijectively isomorphic to the mapping i + kZ 
→ (i + 1) + kZ acting on Zk := Z/kZ for 
some k ∈ Z+. Hence, the composition operator Cφ is unitarily equivalent to an injective 
bilateral weighted shift (the case of Z) or to a bijective finite dimensional weighted shift 
(the case of Zk for k ∈ N).
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2) Now we assume that the directed graph (X, Eφ) is not connected. Note that if 
there exists ω ∈ X such that card(φ−1({ω})) = η + 1 for some η ∈ N ∪ {∞} and 
card(φ−1({x})) = 1 for every x ∈ X \ {ω} (hence (3.2.9) holds), then X \ Y �= ∅, 
where Y is given either by (3.2.6) or by (3.2.8) depending on whether ω ∈ φ−n({ω})
for some n ∈ N or not (see the proofs of Steps 4 and 5 of Theorem 3.2.1). Indeed, this 
is a consequence of the easily verifiable fact that (Y, Eφ|Y ) is a connected subgraph of 
(X, Eφ). Next observe that φ|X\Y is a bijective self-map of X\Y and thus it is bijectively 
isomorphic to a disjoint sum of a number of self-maps i + kZ 
→ (i + 1) + kZ of Zk, 
where k ∈ Z+ (see [59, Proposition 2.4]). Clearly, the directed graph (Y, Eφ|Y ) satisfies 
the condition (i) of Theorem 3.2.1. Hence, the composition operator Cφ is unitarily 
equivalent to an orthogonal sum of composition operators whose symbols are described 
above (see [16, Appendix C]). One can draw a similar conclusion for symbols φ discussed 
in the flat case in 1).

3) The directed graph (X, Eφ) appearing in (ii-b) (see Fig. 3) is isomorphic to the 
directed tree Tη+1,∞ defined in [41, (6.2.10)]. By Lemma 3.1.4, the corresponding com-
position operator Cφ is unitarily equivalent to a weighted shift on Tη+1,∞ with nonzero 
weights. Subnormality of such operators has been studied in [41,13].

3.3. Injectivity problem

If we allow the directed graph (X, Eφ) to have vertices of valency 0, then the question 
is how many such vertices can there be. As in Remark 3.2.2, we exclude from our con-
siderations the case when (X, Eφ) has more than one vertex of valency greater than 1. 
The answer is given in Proposition 3.3.1 and in the proof of Theorem 3.3.2 (see (3.3.2)). 
The question becomes especially interesting when the composition operator Cφ generates 
Stieltjes moment sequences. In this version, the question is a particular case of a more 
general problem, called here the injectivity problem (see Problem 3.3.6). In the present 
section we investigate the injectivity problem in the context of directed graphs (X, Eφ)
having at most one vertex of valency greater than 1.

The following assumption will be used many times in this section.

Let X be a nonempty set, φ be a self-map of X, Eφ be as in
(3.2.1) and Cφ be a composition operator in L2(X, 2X , μ) with
symbol φ, where μ is a discrete measure on X.

(3.3.1)

If (3.3.1) holds, then we set

Zφ = {x ∈ X : card(φ−1({x})) = 0}.

Recall that the case of Zφ = ∅ has been discussed in Remark 3.2.2.
We begin by considering the situation in which the valency of each vertex of the 

directed graph (X, Eφ) does not exceed 1.
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Proposition 3.3.1. Assume that (3.3.1) holds. If the directed graph (X, Eφ) is connected 
and card(φ−1({x})) � 1 for every x ∈ X, then

(i) card(Zφ) � 1,
(ii) Cφ is injective whenever Cφ generates Stieltjes moment sequences.

Proof. (i) For if not, there are two distinct vertices u, v ∈ Zφ. By the connectivity 
of (X, Eφ), there exists an undirected path {ui}ki=1 ⊆ X joining u and v of smallest 
possible length k � 2 (with u1 = u and uk = v). It is easily seen that the sequence 
{ui}ki=1 is injective. Hence, since u, v ∈ Zφ, we see that k � 3, u2 = φ(u) and uk−1 =
φ(v). By induction, there exists j ∈ {1, . . . , k − 2} such that uj+1 = φ(uj) and uj+1 =
φ(uj+2). As a consequence, uj , uj+2 ∈ φ−1({uj+1}), which contradicts the inequality 
card(φ−1({uj+1})) � 1. This proves (i).

(ii) Suppose, on the contrary, that Cφ is not injective, or equivalently that Zφ �= ∅. 
By (i), Zφ = {ω} for some ω ∈ X, and thus, by [59, Proposition 2.4] and Steps 1 and 3 of 
the proof of Theorem 3.2.1, φ is bijectively isomorphic to the mapping i 
→ i + 1 acting 
on Z+. Hence, without loss of generality, we can assume that X = Z+ and φ(i) = i + 1
for all i ∈ Z+. Then χ{1} ∈ D∞(Cφ), Cφχ{1} �= 0 and C2

φχ{1} = 0. This contradicts [61, 
Lemma 1.1(ii)] because Cφ generates Stieltjes moment sequences. �

It remains to consider the case when the directed graph (X, Eφ) has exactly one vertex 
of valency greater than 1. The following theorem which describes such graphs (see Figs. 4
and 5) will be deduced from Theorem 3.2.1.

Theorem 3.3.2. Assume that (3.3.1) holds and η ∈ N ∪ {∞}. Then the following two 
conditions are equivalent:

(i) the directed graph (X, Eφ) is connected and there exists ω ∈ X such that 
card(φ−1({ω})) = η + 1 and card(φ−1({x})) � 1 for every x ∈ X \ {ω},

(ii) one of the following two conditions is satisfied:
(ii-a∗) there exist κ ∈ Z+, a sequence {li}ηi=1 ⊆ N ∪ {∞} and two disjoint systems 

{xi}κi=0 and {xi,j}ηi=1
li
j=1 of distinct points of X such that

X = {x0, . . . , xκ} ∪
η⋃

i=1

{
xi,j : j ∈ Jli

}
,

φ(x) =

⎧⎪⎪⎨⎪⎪⎩
xi,j−1 if x = xi,j with i ∈ Jη and j ∈ Jli \ {1},
xκ if x = xi,1 with i ∈ Jη or x = x0,

xi−1 if x = xi with i ∈ Jκ,

(ii-b∗) there exist a sequence {li}η+1
i=1 ⊆ N ∪ {∞} and two disjoint systems {xi}∞i=0

and {xi,j}η+1
i=1

li
j=1 of distinct points of X such that
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Fig. 4. The directed graph (X,Eφ) in the case of (ii-a∗) in Theorem 3.3.2 with l1 = 2, l2 = 1, l3 = ∞, . . . .

Fig. 5. The directed graph (X, Eφ) in the case of (ii-b∗) in Theorem 3.3.2 with l1 = 2, l2 = ∞, l3 = 1, . . . .

X = {xi : i ∈ Z+} ∪
η+1⋃
i=1

{
xi,j : j ∈ Jli

}
,

φ(x) =

⎧⎪⎪⎨⎪⎪⎩
xi,j−1 if x = xi,j with i ∈ Jη+1 and j ∈ Jli \ {1},
x0 if x = xi,1 with i ∈ Jη+1,

xi+1 if x = xi with i ∈ Z+.

Proof. (ii)⇒(i) Obvious.
(i)⇒(ii) In view of Theorem 3.2.1, we may assume that Zφ �= ∅. Let {Yz}z∈Zφ

be 
a family of pairwise disjoint countably infinite sets such that X ∩ �z∈Zφ

Yz = ∅. Set 
X̂ = X ��z∈Zφ

Yz. For every z ∈ Zφ, let {yz,i}∞i=1 be a sequence of distinct points of 
Yz such that Yz = {yz,i : i ∈ N}. Define the self-map φ̂ of X̂ by

φ̂(x) =

⎧⎪⎪⎨⎪⎪⎩
φ(x) if x ∈ X,

z if x = yz,1 for some z ∈ Zφ,

yz,i−1 if x = yz,i for some z ∈ Zφ and i � 2.

It is a matter of routine to verify that φ ⊆ φ̂ (i.e., φ̂ extends φ), the directed graph (X̂, Eφ̂)
is connected, φ̂−1({ω}) = φ−1({ω}) and card(φ̂−1({x})) = 1 for every x ∈ X̂ \ {ω}. 
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Hence, by Theorem 3.2.1, (X̂, φ̂) takes the form (ii-a) or (ii-b) (with (X̂, φ̂) in place 
of (X, φ)). Set η̃ = η if (X̂, φ̂) takes the form (ii-a) and η̃ = η + 1 otherwise. Since 
φ̂−1({ω}) = φ−1({ω}), we deduce that xi,1 ∈ X for every i ∈ Jη̃. This, the explicit 
description of (X̂, φ̂) and an induction argument combined with φ ⊆ φ̂ imply that there 
exists a sequence {li}η̃i=1 ⊆ N ∪ {∞} such that (ii) holds. In particular, we have

Zφ = {xi,li : i ∈ Jη̃, li < ∞}. (3.3.2)

This completes the proof. �
Now we take a closer look at those directed graphs described by parts (ii-a∗) and 

(ii-b∗) of Theorem 3.3.2 which admit composition operators generating Stieltjes moment 
sequences.

Proposition 3.3.3. Assume that (3.3.1) holds. If (X, Eφ) is as in Theorem 3.3.2(ii-a∗)
with η ∈ N ∪ {∞} and Cφ generates Stieltjes moment sequences, then

(i) li ∈ {1} ∪ {∞} for every i ∈ Jη,
(ii) card(Zφ) � η − 1,
(iii) Cφ is injective whenever the Stieltjes moment sequence {hφn+1(xκ)}∞n=0 is S-

determinate.

Proof. (i) Indeed, otherwise li ∈ N2 for some i ∈ Jη, which implies that χ{xi,li−1} ∈
D∞(Cφ), Cφχ{xi,li−1} �= 0 and C2

φχ{xi,li−1} = 0. This contradicts [61, Lemma 1.1(ii)]
because Cφ generates Stieltjes moment sequences.

(ii) Suppose, on the contrary, that card(Zφ) > η − 1. Then, by (3.3.2), card(Zφ) =
η ∈ N and consequently Cφ ∈ B(L2(μ)) and Cφ is not injective. In view of Lambert’s 
theorem (we use [64, Theorem 7]), Cφ is subnormal and, as such, is injective (see [34, 
Theorem 9d]). This gives a contradiction and proves (ii).

(iii) By [15, Theorem 10.4], the sequence {hφn(x)}∞n=0 is a Stieltjes moment sequence 
for every x ∈ X. Suppose, on the contrary, that Cφ is not injective. Using (i), we see that 
there exists i ∈ Jη such that li = 1. We easily verify that δ0 is an S-representing measure 
of the Stieltjes moment sequence {hφn(xi,li)}∞n=0 (see (3.1.2)). Applying [16, Lemma 38]
to x = xκ, we are led to a contradiction. �

The next result is a (ii-b∗)-analog of Proposition 3.3.3.

Proposition 3.3.4. Assume that (3.3.1) holds. If (X, Eφ) is as in Theorem 3.3.2(ii-b∗)
with η ∈ N ∪ {∞} and Cφ generates Stieltjes moment sequences, then

(i) li ∈ {1} ∪ {∞} for every i ∈ Jη+1,
(ii) card(Zφ) � η,
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(iii) Cφ is injective whenever the Stieltjes moment sequence {hφn+1(x0)}∞n=0 is S-
determinate.

Proof. Arguing as in the proof of Proposition 3.3.3 (but now applying [16, Lemma 38]
to x = x0), we get (i) and (iii).

(ii) Suppose, on the contrary, that card(Zφ) > η. Then, by (3.3.2), η ∈ N and 
card(Zφ) = η + 1. It follows from (i) that li = 1 for every i ∈ Jη+1. As a consequence, 
χ{x0} ∈ D∞(Cφ), Cφχ{x0} �= 0 and C2

φχ{x0} = 0, which contradicts [61, Lemma 1.1(ii)]
because Cφ generates Stieltjes moment sequences. �

Similar reasoning as in the proof of part (iii) of Proposition 3.3.3 gives a criterion for 
injectivity of Cφ in a more general situation.

Proposition 3.3.5. Suppose that (3.3.1) holds. If Cφ generates Stieltjes moment sequences 
and the Stieltjes moment sequence {hφn+1(x)}∞n=0 is S-determinate for every x ∈ X, then 
Cφ is injective.

The above considerations lead us to the following injectivity problem (see [15] for the 
necessary definitions).

Problem 3.3.6. Suppose that (X, A , μ) is a σ-finite measure space, φ is a nonsingular 
self-map of X and Cφ is a composition operator in L2(μ) with symbol φ generating 
Stieltjes moment sequences. Is it true that Cφ is injective?

Problem 3.3.6 seems to be hard to solve. To shed more light on this we make the 
following remark.

Remark 3.3.7. First, we note that Problem 3.3.6 has an affirmative solution for bounded 
composition operators. Indeed, by Lambert’s theorem (we use [64, Theorem 7] again), 
a bounded composition operator in an L2-space generating Stieltjes moment sequences 
is subnormal and consequently, by [34, Theorem 9d], it is injective. If the composition 
operator in question is over a rootless directed tree and it has sufficiently many quasi-
analytic vectors, then the property of generating Stieltjes moment sequences is equivalent 
to subnormality (use Lemma 3.1.4, its proof and [12, Theorem 5.3.1]). Hence, in view 
of [15, Corollary 6.3], in this particular case, Problem 3.3.6 has an affirmative solution 
as well (this can be also deduced from Proposition 3.3.5 by applying (3.1.4) and Propo-
sition 2.5.1). Propositions 3.3.1, 3.3.3, 3.3.4 and 3.3.5 provide yet another examples for 
which Problem 3.3.6 has an affirmative solution.

3.4. The Radon–Nikodym derivatives

The following assumption will be used frequently through this paper.
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Let η ∈ N ∪ {∞} and κ ∈ Z+, and let X = Xη,κ be a set satisfying
(3.2.2), where {xi}κi=0 and {xi,j}ηi=1

∞
j=1 are two disjoint systems

of distinct points of X, φ = φη,κ be a self-map of X satisfying
(3.2.3) and μ be a discrete measure on X. We adhere to the
convention that x−1 = xκ and xi,0 = xκ for i ∈ Jη.

(3.4.1)

It is easily seen that

if (3.4.1) holds, then the composition operator Cφ is injective. (3.4.2)

We begin by deriving a formula for iterated inverses of φ at the point xκ.

Lemma 3.4.1. Suppose (3.4.1) holds. If n = j(κ + 1) + r for some j ∈ Z+ and r ∈
{0, . . . , κ}, then

φ−n({xκ}) = {xr−1} ∪
{
xi,l(κ+1)+r : i ∈ Jη, l ∈ {0, . . . , j}

}
. (3.4.3)

Proof. We proceed by induction on j. The case of j = 0 is easily verified. This and 
(3.2.3) imply that

φ−(κ+1)({xκ}) = φ−1(φ−κ({xκ})) = φ−1({xκ−1} ∪ {xi,κ : i ∈ Jη})

= {xκ} ∪ {xi,κ+1 : i ∈ Jη}. (3.4.4)

Suppose that (3.4.3) holds for a fixed j ∈ Z+. Then, by (3.4.4) and induction hypothesis, 
we have

φ−((j+1)(κ+1)+r)({xκ}) = φ−(j(κ+1)+r)({xκ} ∪ {xi,κ+1 : i ∈ Jη})

= {xr−1} ∪
{
xi,l(κ+1)+r : i ∈ Jη, l ∈ {0, . . . , j}

}
∪
{
xi,(j+1)(κ+1)+r : i ∈ Jη

}
,

which completes the proof. �
Applying (3.1.2) to φ and φn and using Lemma 3.4.1, we can easily calculate the 

Radon–Nikodym derivatives {hφ(x) : x ∈ X} and {hφn(xκ) : n ∈ Z+}.

Proposition 3.4.2. Suppose (3.4.1) holds. Then for every x ∈ X,

hφ(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
μ(xj+1)
μ(xj) if x = xj with j ∈ {0, . . . , κ− 1},

μ(x0)+
∑η

i=1 μ(xi,1)
μ(xκ) if x = xκ,

μ(xi,j+1)
μ(xi,j) if x = xi,j with i ∈ Jη and j ∈ N.

(3.4.5)

If n = j(κ + 1) + r for some j ∈ Z+ and r ∈ {0, . . . , κ}, then
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hφn(xκ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if n = 0,

1 +
∑η

i=1
∑j

l=1
μ(xi,l(κ+1))

μ(xκ) if j � 1 and r = 0,
μ(xr−1)
μ(xκ) +

∑η
i=1
∑j

l=0
μ(xi,l(κ+1)+r)

μ(xκ) if r ∈ Jκ.

(3.4.6)

Now we calculate the Radon–Nikodym derivatives hφn , n � 0, at the vertices lying on 
the circuit.

Lemma 3.4.3. Suppose (3.4.1) holds. Then

hφn+1(xr−1) = μ(xr)
μ(xr−1)

hφn(xr), r ∈ Jκ, n ∈ Z+, (3.4.7)

hφn+r(x0) = μ(xr)
μ(x0)

hφn(xr), r ∈ {0, . . . , κ}, n ∈ Z+. (3.4.8)

Proof. If r ∈ Jκ and n ∈ Z+, then by (3.1.2) and (3.2.3) we have

hφn+1(xr−1) = μ(φ−n(φ−1({xr−1})))
μ(xr−1)

= μ(φ−n({xr}))
μ(xr)

μ(xr)
μ(xr−1)

= μ(xr)
μ(xr−1)

hφn(xr),

which gives (3.4.7). Applying induction on r and (3.4.7), we obtain (3.4.8). �
The subsequent lemma plays an essential role in the present paper.

Lemma 3.4.4. If (3.4.1) holds, then

hφn+κ+1(x0) = hφn(x0) +
η∑

i=1

μ(xi,1)
μ(x0)

hφn(xi,1), n ∈ Z+. (3.4.9)

Proof. Observe that by (3.1.2) and (3.2.3) we have

hφn+κ+1(x0) = μ(φ−n(φ−1({xκ})))
μ(x0)

= μ(φ−n({x0} � {xi,1 : i ∈ Jη}))
μ(x0)
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= hφn(x0) +
η∑

i=1

μ(φ−n({xi,1}))
μ(x0)

= hφn(x0) +
η∑

i=1

μ(xi,1)
μ(x0)

hφn(xi,1), n ∈ Z+,

which completes the proof of (3.4.9). �
The question of density of domains of powers of Cφ can be answered in terms of the 

Radon–Nikodym derivatives hφn , n � 0, calculated at x0.

Proposition 3.4.5. Suppose (3.4.1) holds and n ∈ N. Then the following conditions are 
equivalent:

(i) D(Cn
φ ) is dense in L2(μ),

(ii) hφn+r(x0) < ∞ for every r ∈ {0, . . . , κ}.

Moreover, if r ∈ {0, . . . , κ}, then the following conditions are equivalent:

(iii) D∞(Cφ) is dense in L2(μ),
(iv) D(Cj

φ) is dense in L2(μ) for all j ∈ N,
(v) hφj (x) < ∞ for all j ∈ N and x ∈ X,
(vi) hφj (xr) < ∞ for all j ∈ N.

Proof. (i)⇒(ii) By (3.1.5), hφl(xκ) < ∞ for all l ∈ {0, . . . , n}, and thus, by (3.4.8) with 
r = κ, hφl+κ(x0) < ∞ for all l ∈ {0, . . . , n}. Since, by (3.1.2), hφl(x0) < ∞ for every 
l ∈ {0, . . . , κ − 1}, we see that hφl(x0) < ∞ for every l ∈ {0, . . . , n + κ}.

(ii)⇒(i) Applying (3.4.8), we deduce that hφn(xr) < ∞ for every r ∈ {0, . . . , κ}. It 
follows from (3.1.2) that hφn(xi,j) < ∞ for all i ∈ Jη and j ∈ N. This, (3.1.5) and (3.2.2)
yield (i).

Now we prove the “moreover” part. By (3.1.5) and [15, Theorem 4.7], it suffices to 
prove that (vi) implies (iv). It follows from (3.4.8) that hφj (x0) < ∞ for all integers 
j � κ. Applying (3.1.2), we deduce that hφj (x0) < ∞ for all j ∈ Z+. Hence, by the 
implication (ii)⇒(i), D(Cj

φ) is dense in L2(μ) for all j ∈ N. �
Corollary 3.4.6. Suppose (3.4.1) holds and n ∈ N. Then the following conditions are 
equivalent:

(i) D(Cn
φ ) = L2(μ) and D(Cn+1

φ ) � L2(μ),
(ii) hφn+r(x0) < ∞ for every r ∈ {0, . . . , κ} and hφn+κ+1(x0) = ∞.
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4. Subnormality of Cφη,κ via the consistency condition (CC)

4.1. Characterizations of (CC)

This section deals with the consistency condition which, according to Theorem 3.1.3, 
automatically implies subnormality of Cφη,κ

(because, under our standing assump-
tion (3.4.1), hφη,κ

(x) > 0 for all x ∈ X).

Theorem 4.1.1. Suppose (3.4.1) holds, Cφ is densely defined and {P (x, ·)}x∈X is a family 
of Borel probability measures on R+. Then {P (x, ·)}x∈X satisfies (CC) if and only if the 
following three conditions are satisfied:

(i) P (xr, σ) = μ(x0)
μ(xr)

∫
σ
trP (x0, dt) for all r ∈ {0, . . . , κ} and σ ∈ B(R+),

(ii)
∑η

i=1
μ(xi,1)
μ(x0) P (xi,1, σ) =

∫
σ
(tκ+1 − 1)P (x0, dt) for all σ ∈ B(R+),

(iii) P (xi,j , σ) = μ(xi,1)
μ(xi,j)

∫
σ
tj−1P (xi,1, dt) for all i ∈ Jη, j ∈ N2 and σ ∈ B(R+).

Moreover, if {P (x, ·)}x∈X satisfies (CC), then

(iv) P (xr, [0, 1)) = P (xi,j , [0, 1]) = 0 for all r ∈ {0, . . . , κ}, i ∈ Jη and j ∈ N,
(v) P (x0, σ ∩ (1, ∞)) =

∑η
i=1

μ(xi,1)
μ(x0)

∫
σ

1
tκ+1−1P (xi,1, dt) for all σ ∈ B(R+),

(vi)
∑η

i=1
μ(xi,1)
μ(x0)

∫∞
0

1
tκ+1−1P (xi,1, dt) � 1,

(vii) P (x0, {1}) = ϑ := 1 −
∑η

i=1
μ(xi,1)
μ(x0)

∫∞
0

1
tκ+1−1P (xi,1, dt),

(viii) P (x0, σ) =
∑η

i=1
μ(xi,1)
μ(x0)

∫
σ

1
tκ+1−1P (xi,1, dt) + ϑδ1(σ) for all σ ∈ B(R+),

(ix)
∑η

i=1
μ(xi,1)
μ(x0)

∫∞
0

tκ+1

tκ+1−1P (xi,1, dt) < ∞.

Proof. Since, by (3.1.5), hφ(xκ) < ∞, we infer from Proposition 3.4.2 that

η∑
i=1

μ(xi,1) < ∞. (4.1.1)

Assume now that {P (x, ·)}x∈X satisfies (CC). Substituting x = xr with r ∈ {0, . . . , κ −
1} into (CC), we get

P (xr+1, σ) = μ(xr)
μ(xr+1)

∫
σ

tP (xr, dt), σ ∈ B(R+), r ∈ {0, . . . , κ− 1}.

An induction argument shows that (i) holds. Substituting x = xκ into (CC) and using (i), 
we obtain

μ(x0)P (x0, σ) +
η∑

i=1
μ(xi,1)P (xi,1, σ) = μ(xκ)

∫
tP (xκ, dt)
σ
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= μ(x0)
∫
σ

tκ+1P (x0, dt), σ ∈ B(R+).

This implies (ii). Substituting x = xi,j into (CC) yields

P (xi,j+1, σ) = μ(xi,j)
μ(xi,j+1)

∫
σ

tP (xi,j , dt), σ ∈ B(R+), i ∈ Jη, j ∈ N.

An induction argument leads to (iii).
Similar reasoning shows that the conditions (i)–(iii) imply that {P (x, ·)}x∈X satisfies 

(CC).
To prove the “moreover” part, we assume that {P (x, ·)}x∈X satisfies the condi-

tion (CC). Since P (x, R+) = 1 for all x ∈ X, we deduce from (ii) and (4.1.1) that ∫∞
0 |tκ+1 − 1|P (x0, dt) < ∞. Hence, by (ii) again, P (xi,1, [0, 1]) = 0 for all i ∈ Jη and 
P (x0, [0, 1)) = 0. Applying (i) and (iii) gives (iv). It follows from (ii) that

η∑
i=1

μ(xi,1)
μ(x0)

P (xi,1, σ) =
∫

σ∩(1,∞)

(tκ+1 − 1)P (x0, dt), σ ∈ B(R+). (4.1.2)

Using (iv) and (4.1.2) and integrating the function t 
→ χσ(t)
tκ+1−1 with respect to the 

measure 
∑η

i=1
μ(xi,1)
μ(x0) P (xi,1, ·), we obtain (v). Since P (x0, R+) = 1, the conditions (vi) 

and (vii) follow from (v). The equality (viii) is a direct consequence of (iv), (v) and (vii). 
Finally, integrating the function t 
→ tκ+1 with respect to the (positive) measure σ 
→∑η

i=1
μ(xi,1)
μ(x0)

∫
σ

1
tκ+1−1P (xi,1, dt), we deduce from (v) and (3.1.8) that

η∑
i=1

μ(xi,1)
μ(x0)

∞∫
0

tκ+1

tκ+1 − 1P (xi,1, dt) � hφκ+1(x0).

Applying Proposition 3.4.5 with n = 1 and r = κ, we get (ix). �
The following proposition provides new criteria for Cφη,κ

to have densely defined nth 
power (cf. Proposition 3.4.5).

Proposition 4.1.2. Suppose (3.4.1) holds, the composition operator Cφ is densely defined 
and {P (x, ·)}x∈X is a family of Borel probability measures on R+ that satisfies (CC). 
Then for every n ∈ N, the following conditions are equivalent:

(i) Cn
φ is densely defined,

(ii) hφn+κ(x0) < ∞,
(iii)

∑η
i=1 μ(xi,1) 

∫∞ tn+κ

κ+1 P (xi,1, dt) < ∞.
0 t −1
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Proof. By (3.1.8) and Theorem 4.1.1(iv), the sequence {hφj (x0)}∞n=0 is monotonically 
increasing. Hence, by Proposition 3.4.5, the conditions (i) and (ii) are equivalent. Inte-
grating the function t 
→ tn+κ with respect to the measure P (x0, ·) and using (3.1.8) and 
Theorem 4.1.1(viii), we deduce that the conditions (ii) and (iii) are equivalent. �

As a consequence of Theorem 4.1.1(iv) and Proposition 4.1.2, we have the following 
corollary (cf. Corollary 3.4.6).

Corollary 4.1.3. Suppose (3.4.1) holds, Cφ is densely defined and {P (x, ·)}x∈X is a family 

of Borel probability measures on R+ that satisfies (CC). Let n ∈ N. Then D(Cn+1
φ ) �

D(Cn
φ ) = L2(μ) if and only if the following two conditions hold:

(i)
∑η

i=1 μ(xi,1) 
∫∞
0

tn+κ

tκ+1−1P (xi,1, dt) < ∞,
(ii)
∑η

i=1 μ(xi,1) 
∫∞
0

tn+κ+1

tκ+1−1P (xi,1, dt) = ∞.

4.2. Modelling subnormality via (CC)

In Procedure 4.2.1 below, we propose a method of constructing all possible subnormal 
composition operators Cφη,κ

in L2(Xη,κ, μ) that satisfy (CC) in the meaning that they 
admit families of probability measures satisfying (CC). The starting point of our proce-
dure is a family {P (xi,1, ·)}i∈Jη

of Borel probability measures on R+ that satisfies the 
conditions (4.2.1)–(4.2.3) below. Let us point out that if a densely defined Cφη,κ

admits 
a family {P (x, ·)}x∈Xη,κ

of Borel probability measures on R+ that satisfies (CC), then, 
by Theorem 4.1.1, the measures P (xi,1, ·), i ∈ Jη, satisfy the conditions (4.2.1)–(4.2.3).

Procedure 4.2.1. Let η ∈ N ∪ {∞}, κ ∈ Z+, φ be a self-map of a set X, {xi}κi=0 and 
{xi,j}ηi=1

∞
j=1 be two disjoint systems of distinct points of X that satisfy (3.2.2) and (3.2.3). 

Let {P (xi,1, ·)}i∈Jη
be a family of Borel probability measures on R+ that satisfies the 

following three conditions:

P (xi,1, [0, 1]) = 0, i ∈ Jη, (4.2.1)
∞∫
0

tjP (xi,1, dt) < ∞, j ∈ N, i ∈ Jη, (4.2.2)

∞∫
0

tκ+1

tκ+1 − 1P (xi,1, dt) < ∞, i ∈ Jη. (4.2.3)

Let {μ(xi,1)}i∈Jη
be a family of positive real numbers such that

η∑
i=1

μ(xi,1)
∞∫
0

tκ+1

tκ+1 − 1P (xi,1, dt) < ∞. (4.2.4)
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It follows from (4.2.1) and (4.2.4) that

0 �
η∑

i=1
μ(xi,1)

∞∫
0

tr

tκ+1 − 1P (xi,1, dt) < ∞, r ∈ {0, . . . , κ + 1}. (4.2.5)

Using (4.2.1) and (4.2.5), we get

η∑
i=1

μ(xi,1) =
η∑

i=1
μ(xi,1)

∞∫
0

tκ+1

tκ+1 − 1P (xi,1, dt)

−
η∑

i=1
μ(xi,1)

∞∫
0

1
tκ+1 − 1P (xi,1, dt) < ∞. (4.2.6)

Now, by (4.2.5), we can take μ(x0) ∈ (0, ∞) such that

0 � Θ :=
η∑

i=1

μ(xi,1)
μ(x0)

∞∫
0

1
tκ+1 − 1P (xi,1, dt) � 1. (4.2.7)

Then we define the Borel measure P (x0, ·) on R+ by

P (x0, σ) =
η∑

i=1

μ(xi,1)
μ(x0)

∫
σ

1
tκ+1 − 1P (xi,1, dt) + (1 −Θ)δ1(σ), σ ∈ B(R+). (4.2.8)

By (4.2.1) and (4.2.7), P (x0, ·) is a probability measure such that P (x0, [0, 1)) = 0. 
Moreover, P (x0, ·) satisfies the condition (ii) of Theorem 4.1.1. Since P (xi,1, ·), i ∈ Jη, 
are probability measures, we infer from (4.2.1) and (4.2.2) that 0 <

∫∞
0 tjP (xi,1, dt) < ∞

for all j ∈ N and i ∈ Jη. This enables us to define the family {μ(xi,j)}ηi=1
∞
j=2 of positive 

real numbers by

μ(xi,j) = μ(xi,1)
∞∫
0

tj−1P (xi,1, dt), i ∈ Jη, j ∈ N2, (4.2.9)

and the family {P (xi,j , ·)}ηi=1
∞
j=2 of Borel measures on R+ by

P (xi,j , σ) = μ(xi,1)
μ(xi,j)

∫
σ

tj−1P (xi,1, dt), i ∈ Jη, j ∈ N2, σ ∈ B(R+).

In view of (4.2.9), the family {P (xi,j , ·)}ηi=1
∞
j=2 consists of probability measures. Accord-

ing to (4.2.1), (4.2.5) and (4.2.8), 0 <
∫∞
0 trP (x0, dt) < ∞ for every r ∈ {0, . . . , κ}. 

Hence, we can define positive real numbers μ(xr), r ∈ Jκ, via
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μ(xr) = μ(x0)
∞∫
0

trP (x0, dt), r ∈ Jκ.

As a consequence, the measures P (xr, ·), r ∈ Jκ, defined by

P (xr, σ) = μ(x0)
μ(xr)

∫
σ

trP (x0, dt), r ∈ Jκ, σ ∈ B(R+),

are Borel probability measures on R+. Let μ be the discrete measure on X such that 
μ({xr}) = μ(xr) and μ({xi,j}) = μ(xi,j) for all r ∈ {0, . . . , κ}, i ∈ Jη and j ∈ N, and 
let Cφ be the corresponding composition operator in L2(μ) with φ = φη,κ. By (3.1.5), 
(3.4.5) and (4.2.6), Cφ is densely defined. Applying Theorem 4.1.1, we see that the family 
{P (x, ·)}x∈X satisfies (CC). Hence, by Theorem 3.1.3, Cφ is subnormal.

Our procedure enables us to model all subnormal composition operators Cφη,κ
that 

satisfy (CC) and have densely defined nth power (n is a fixed positive integer). It suffices 
to replace (4.2.3) by the condition

∞∫
0

tκ+n

tκ+1 − 1P (xi,1, dt) < ∞, i ∈ Jη (4.2.10)

(leaving the assumptions (4.2.1) and (4.2.2) unchanged) and to choose a family 
{μ(xi,1)}i∈Jη

⊆ (0, ∞) that satisfies, in place of (4.2.4), the following inequality

η∑
i=1

μ(xi,1)
∞∫
0

tκ+n

tκ+1 − 1P (xi,1, dt) < ∞. (4.2.11)

Indeed, by (4.2.1), the conditions (4.2.10) and (4.2.11) imply (4.2.3) and (4.2.4), respec-
tively. On the other hand, under the assumptions (4.2.1)–(4.2.3), Cn

φ is densely defined 
if and only if (4.2.11) holds (see Proposition 4.1.2). As a consequence (see also Corol-
lary 4.1.3), D(Cn+1

φ ) � D(Cn
φ ) = L2(μ) if and only if both (4.2.11) and (4.2.12) hold, 

where

η∑
i=1

μ(xi,1)
∞∫
0

tκ+n+1

tκ+1 − 1P (xi,1, dt) = ∞. (4.2.12)

Using Procedure 4.2.1, we will show that for every n ∈ N, there exists a subnormal 
composition operator Cφ such that Cn

φ is densely defined, while Cn+1
φ is not. Examples 

of this kind have been given in [14] by using weighted shifts on directed trees (see also a 
recent paper [17] for more subtle examples).

Example 4.2.2. Fix n ∈ N. Consider a sequence {P (xi,1, ·)}∞i=1 of Borel probability 
measures on R+ given by P (xi,1, σ) = δi+1(σ) for all σ ∈ B(R+) and i ∈ N. Set 
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μ(xi,1) = 1
(i+1)n+1 for i ∈ N. It is now a routine matter to verify that the conditions 

(4.2.1), (4.2.2), (4.2.11) and (4.2.12) hold for η = ∞ and for arbitrary κ ∈ Z+. Hence, 
applying Procedure 4.2.1, we get a composition operator Cφ with the required proper-
ties, i.e., D(Cn+1

φ ) � D(Cn
φ ) = L2(μ). Note that by (3.4.6) and Proposition 3.4.5, Cj

φ is 
densely defined for every j ∈ N whenever η < ∞.

4.3. Criteria for subnormality related to x0

In this section we give criteria for subnormality of composition operators Cφ in 
L2(X, μ) with X = Xη,κ and φ = φη,κ written in terms of the Radon–Nikodym 
derivatives {hφn}∞n=0 calculated at the points x0 and xi,1, i ∈ Jη (see Theorem 4.3.3). 
Surprisingly, in the case of η = 1 the subnormality of Cφ can be inferred from the be-
haviour of {hφn}∞n=0 only at the point x0 (see Proposition 4.3.4). We begin by stating 
two necessary lemmata.

Lemma 4.3.1. Let {γn}∞n=0 be a Stieltjes moment sequence and let p ∈ N. Then {γjp}∞j=0
is a Stieltjes moment sequence and the following assertions hold:

(i) if {γjp}∞j=0 is S-determinate, then so is {γn}∞n=0,
(ii) if {γjp}∞j=0 is S-determinate and {γ(j+1)p−γjp}∞j=0 is a Stieltjes moment sequence, 

then {γn}∞n=0 is S-determinate and its unique S-representing measure vanishes on 
[0, 1),

(iii) if {γn+1 − γn}∞n=0 is a Stieltjes moment sequence, then {γn}∞n=0 satisfies the Car-
leman condition if and only if {γn+1 − γn}∞n=0 satisfies the Carleman condition.

Proof. (i) Let ρ be an S-representing measure of {γn}∞n=0, W : R+ → R+ be a function 
given by W (t) = tp for t ∈ R+, and ρ ◦ W−1 be a Borel measure on R+ given by 
ρ ◦W−1(σ) = ρ(W−1(σ)) for σ ∈ B(R+). Using the measure transport theorem, we see 
that {γjp}∞j=0 is a Stieltjes moment sequence with the S-representing measure ρ ◦W−1. 
If ρ′ is another S-representing measure of {γn}∞n=0, then the measure ρ′ ◦W−1, being an 
S-representing measure of {γjp}∞j=0, coincides with ρ ◦W−1, and consequently ρ = ρ′.

(ii) In view of (i), {γn}∞n=0 is S-determinate. Denote by ρ its unique S-representing 
measure. Let ν be an S-representing measure of {γ(j+1)p − γjp}∞j=0. Then

n∑
i,j=0

(
γ(i+j+1)p − γ(i+j)p

)
λiλ̄j =

∞∫
0

∣∣∣ n∑
j=0

λjt
j
∣∣∣2dν(t) � 0

for all finite sequences {λj}nj=0 ⊆ C. By Lemma 2.1.6 and the S-determinacy of {γjp}∞j=0, 
we deduce that ρ ◦W−1([0, 1)) = 0. Hence ρ([0, 1)) = 0.

(iii) Set Δn = γn+1 − γn for n ∈ Z+. Since Δn � γn+1 for all n ∈ Z+, we infer 
from Proposition 2.5.1(ii) that if {γn}∞n=0 satisfies the Carleman condition, then so does 
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{Δn}∞n=0. To prove the converse implication assume that {Δn}∞n=0 satisfies the Carleman 
condition. Note that

γn =
n−1∑
l=0

Δl + γ0, n ∈ N. (4.3.1)

Let τ be an S-representing measure of {Δn}∞n=0. Set Δ′
n =
∫
(1,∞) t

ndτ(t) for n ∈ Z+. If 
τ((1, ∞)) = 0, then, by (4.3.1),

γn � n
(
τ([0, 1]) + γ0

)
, n ∈ N. (4.3.2)

If τ((1, ∞)) > 0, then using (4.3.1) and the fact that the sequence {Δ′
n}∞n=0 is monoton-

ically increasing, we obtain

γn � n
(
τ([0, 1]) + γ0 + Δ′

n

)
� n

(
τ([0, 1]) + γ0

τ((1,∞)) + 1
)
Δn, n ∈ N. (4.3.3)

Combining (4.3.2) and (4.3.3) completes the proof. �
The next lemma is a direct consequence of Lemma 3.4.4.

Lemma 4.3.2. Assume that (3.4.1) holds, hφn(x0) < ∞ for every n ∈ N and 
{hφn(xi,1)}∞n=0 is a Stieltjes moment sequence with an S-representing measure P (xi,1, ·)
for every i ∈ Jη. Then {hφn+κ+1(x0) − hφn(x0)}∞n=0 is a Stieltjes moment sequence with 
an S-representing measure ν given by

ν(σ) =
η∑

i=1

μ(xi,1)
μ(x0)

P (xi,1, σ), σ ∈ B(R+).

The above enables us to prove the aforementioned criteria for subnormality.

Theorem 4.3.3. Assume that (3.4.1) holds and {hφn(x)}∞n=0 is a Stieltjes moment sequence 
for every x ∈ {x0} ∪ {xi,1 : i ∈ Jη}. Then {hφn+κ+1(x0) − hφn(x0)}∞n=0 is a Stieltjes 
moment sequence. Moreover, if one of the following four conditions is satisfied:

(i) {hφn+κ+1(x0) − hφn(x0)}∞n=0 is S-determinate and there exists an S-representing 
measure P (x0, ·) of {hφn(x0)}∞n=0 such that P (x0, [0, 1)) = 0,

(ii) {hφn+κ+1(x0) − hφn(x0)}∞n=0 and {hφj(κ+1)(x0)}∞j=0 are S-determinate,
(iii) {hφj(κ+1)(x0)}∞j=0 satisfies the Carleman condition,
(iv) {hφ(j+1)(κ+1)(x0) − hφj(κ+1)(x0)}∞j=0 satisfies the Carleman condition,

then Cφ is subnormal.
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Proof. According to Lemma 4.3.2, the sequence {hφn+κ+1(x0) −hφn(x0)}∞n=0 is a Stieltjes 
moment sequence. By Proposition 3.4.5, Cφ is densely defined. It follows from Lem-
mata 4.3.1 and 4.3.2 that the conditions (iii) and (iv) are equivalent. If (iv) holds, then 
by Proposition 2.5.1(i) and Lemma 4.3.1(i), {hφn+κ+1(x0) −hφn(x0)}∞n=0 is S-determinate, 
and thus, because of (iv)⇒(iii), the condition (ii) holds. Applying Lemma 4.3.1(ii), we 
see that (ii) implies (i). All this means that it suffices to prove that (i) implies the 
subnormality of Cφ.

To this end, assume that (i) holds. Let P (xi,1, ·) be an S-representing measure of 
{hφn(xi,1)}∞n=0 for i ∈ Jη. Note that

hφn+κ+1(x0) − hφn(x0) =
∞∫
0

tn(tκ+1 − 1)P (x0, dt), n ∈ Z+.

As P (x0, [0, 1)) = 0, the set-function σ 
→
∫
σ
(tκ+1 − 1)P (x0, dt) is a (positive) measure. 

Applying Lemma 4.3.2 and using the S-determinacy assumption, we deduce that the 
condition (ii) of Theorem 4.1.1 holds. Now we define the measures {P (xr, ·) : r ∈ Jκ} and 
{P (xi,j , ·) : i ∈ Jη, j ∈ N2} by the conditions (i) and (iii) of Theorem 4.1.1, respectively. 
Using (3.1.2) and the fact that P (x, ·) is an S-representing measure of {hφn(x)}∞n=0
for every x ∈ {x0} ∪ {xi,1 : i ∈ Jη}, we verify that {P (x, ·)}x∈X is a family of Borel 
probability measures on R+ that satisfies (CC). Applying Theorem 3.1.3, we conclude 
that Cφ is subnormal. �

The situation changes drastically if η equals 1.

Proposition 4.3.4. Suppose (3.4.1) holds and η = 1. Then D∞(Cφ) = L2(μ), 
{hφn(x)}∞n=0 ⊆ (0, ∞) for every x ∈ X and the following conditions are equivalent:

(i) there exists a family {P (x, ·)}x∈X of Borel probability measures on R+ that satisfies 
(CC),

(ii) {hφn(x0)}∞n=0 is a Stieltjes moment sequence which has an S-representing measure 
ρ vanishing on [0, 1),

(iii) 0 �
∑n

i,j=0 hφi+j (x0)λiλ̄j �
∑n

i,j=0 hφi+j+1(x0)λiλ̄j for all finite sequences {λi}ni=0
of complex numbers.

Moreover, if any of the above conditions holds, then Cφ is subnormal.

Proof. It follows from (3.1.2), (3.4.6) and Proposition 3.4.5 that D∞(Cφ) = L2(μ) and 
{hφn(x)}∞n=0 ⊆ (0, ∞) for every x ∈ X.

(i)⇒(ii) Apply Theorem 3.1.3 and Theorem 4.1.1(iv).
(ii)⇒(i) Set P (x0, ·) = ρ(·). By Lemma 3.4.4, {hφn(x1,1)}∞n=0 is a Stieltjes moment 

sequence with an S-representing probability measure P (x1,1, ·) given by
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P (x1,1, σ) = μ(x0)
μ(x1,1)

∫
σ

(tκ+1 − 1)P (x0, dt), σ ∈ B(R+). (4.3.4)

Clearly, the condition (ii) of Theorem 4.1.1 holds. Next, we define {P (xr, ·)}κr=1, the 
Borel measures on R+, using the condition (i) of Theorem 4.1.1. Since P (x0, ·) is an 
S-representing measure of {hφn(x0)}∞n=0, we deduce from (3.1.2) that the so-defined 
measures are probabilistic. Finally, we define {P (x1,j, ·)}∞j=2, the Borel measures on R+, 
using the condition (iii) of Theorem 4.1.1. Noting that

∞∫
0

tj−1P (x1,1, dt)
(4.3.4)= μ(x0)

μ(x1,1)

∞∫
0

tj−1(tκ+1 − 1)P (x0, dt)

= μ(x0)
μ(x1,1)

(hφj−1+(κ+1)(x0) − hφj−1(x0))

(3.4.9)= hφj−1(x1,1)
(3.1.2)= μ(x1,j)

μ(x1,1)
, j ∈ N2,

we see that the measures {P (x1,j, ·)}∞j=2 are probabilistic. Now, applying Theorem 4.1.1, 
we conclude that {P (x, ·)}x∈X satisfies (CC).

(ii)⇔(iii) Apply Lemma 2.1.6.
The “moreover” part is a direct consequence of Theorem 3.1.3. �
Regarding the implication (ii)⇒(i) of Proposition 4.3.4, we note that the assumption 

that {hφn(x0)}∞n=0 is a Stieltjes moment sequence is not sufficient for Cφ to be subnormal, 
even if Cφ ∈ B(L2(μ)).

Example 4.3.5. First, we show that if

{γn}∞n=0 ⊆ (0,∞), γ0 = 1 and γn+κ+1 − γn > 0 for every n ∈ Z+, (4.3.5)

then there exists a discrete measure μ on X = X1,κ such that hφn(x0) = γn for every 
n ∈ Z+ with φ = φ1,κ. For this, take any μ(x0) ∈ (0, ∞) and set μ(xr) = μ(x0)γr for 
every r ∈ Jκ. Next we put

μ(x1,n+1) = μ(x0)(γn+κ+1 − γn), n ∈ Z+. (4.3.6)

Since γn+κ+1 − γn > 0 for every n ∈ Z+, we see that μ(x1,j) ∈ (0, ∞) for every j ∈ N. 
Clearly, by (3.1.2), hφr (x0) = γr for every r ∈ {0, . . . , κ}. Using induction, Lemma 3.4.4, 
(3.1.2) and (4.3.6), we verify that hφn(x0) = γn for every n ∈ Z+.

It is worth mentioning that if (3.4.1) holds and η = 1, then the sequence {γn}∞n=0
defined by γn = hφn(x0) for every n ∈ Z+ satisfies (4.3.5). Indeed, this is a direct 
consequence of Proposition 4.3.4, Lemma 3.4.4 and (3.1.2).
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Now, we can apply the above procedure as follows. Take a ∈ (0, 1) and set γn =
1
2 (an + 2n) for every n ∈ Z+. Clearly, {γn}∞n=0 is an S-determinate Stieltjes moment 
sequence with the S-representing measure 1

2 (δa + δ2). Since

an+κ+1 + 2n+κ+1 > 2n+κ+1 � 1 + 2n � an + 2n, n ∈ Z+,

we see that γn+κ+1−γn > 0 for every n ∈ Z+. Applying our procedure, we get a discrete 
measure μ on X such that hφn(x0) = γn for every n ∈ Z+. Note that Cφ ∈ B(L2(μ)). 
Indeed, by (3.1.2) and (4.3.6), we have

lim
n→∞

hφ(x1,n) = lim
n→∞

γn+κ+1 − γn
γn+κ − γn−1

= 2κ+2 − 2
2κ+1 − 1 < ∞.

This, combined with (3.1.2) and (3.1.3), yields Cφ ∈ B(L2(μ)). It is worth mentioning 
that Cφ is not subnormal (hence, by Proposition 4.3.6 below, {hφn(x1,1)}∞n=0 is not a 
Stieltjes moment sequence). Indeed, otherwise, by [16, Theorem 13], Cφ admits a family 
{P (x, ·)}x∈X of Borel probability measures on R+ that satisfies (CC). This, together 
with Proposition 4.3.4, contradicts the S-determinacy of {γn}∞n=0.

The question of characterizing subnormality of bounded composition operators of the 
form Cφη,κ

has a simple solution.

Proposition 4.3.6. Suppose (3.4.1) holds and Cφ ∈ B(L2(μ)). Then Cφ is subnor-
mal if and only if {hφn(x)}∞n=0 is a Stieltjes moment sequence for every x ∈ {x0} ∪
{xi,1 : i ∈ Jη}.

Proof. Since, by (3.1.3), hφn(x0) � ‖Cφ‖2n for all n ∈ Z+, the sufficiency follows from 
Theorem 4.3.3(iii). The sufficiency can also be deduced from Lambert’s theorem (see [49]) 
by using (3.1.2) and (3.4.8). The necessity is a direct consequence of the corresponding 
part of Lambert’s theorem. �

Now we discuss the question of “optimality” of the assumptions of Proposition 4.3.6. 
As shown in Example 4.3.5, for η = 1 and for every κ ∈ Z+, there exists a non-subnormal 
Cφ ∈ B(L2(μ)) such that {hφn(x0)}∞n=0 is a Stieltjes moment sequence. In Example 4.3.7
below, we will show that for η = 1 and κ = 0 the assumption that {hφn(x1,1)}∞n=0 is 
a Stieltjes moment sequence is not sufficient for Cφ to be subnormal, even if Cφ ∈
B(L2(μ)).

Example 4.3.7. Assume that η = 1 and κ = 0. Take any positive real numbers μ(x0) and 
μ(x1,1). Let {γn}∞n=0 be a Stieltjes moment sequence with an S-representing measure ν
such that γ0 = 1, ν((1, ∞)) = 0 and ν({1}) > 0. Then

0 < γn � 1, n ∈ Z+, (4.3.7)
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which implies that {γn}∞n=0 is S-determinate (see e.g., Proposition 2.5.1(i)). Set μ(x1,j) =
μ(x1,1)γj−1 for every j ∈ N2. Clearly, hφn(x1,1) = γn for all n ∈ Z+, which means 
that {hφn(x1,1)}∞n=0 is a Stieltjes moment sequence. Since {γn}∞n=0 is monotonically 
decreasing, we see that hφ(x1,j) = γj

γj−1
� 1 for every j ∈ N. This, together with (3.1.3), 

implies that Cφ ∈ B(L2(μ)). Note that

hφn(x0) = hφ0(x0) +
n−1∑
l=0

(hφl+1(x0) − hφl(x0))

(3.4.9)= 1 + μ(x1,1)
μ(x0)

n−1∑
l=0

γl, n ∈ N. (4.3.8)

This and (4.3.7) imply that

lim
n→∞

hφn(x0)1/n = 1. (4.3.9)

Now we show that {hφn(x0)}∞n=0 is not a Stieltjes moment sequence. Indeed, otherwise 
by (4.3.9) and [55, Exercise 4(e) on p. 71], we see that ρ((1, ∞)) = 0, where ρ is an 
S-representing measure of {hφn(x0)}∞n=0. Hence

1 = ρ(R+) � hφn(x0)
(4.3.8)

� 1 + μ(x1,1)ν({1})
μ(x0)

n, n ∈ N,

which contradicts ν({1}) > 0. By Proposition 4.3.6, Cφ is not subnormal.

4.4. Extending to families satisfying (CC)

We begin this section by providing necessary and sufficient conditions for the ex-
tendibility of a given family of Borel probability measures on R+ indexed by {xi,1}i∈Jη

to a family of Borel probability measures on R+ satisfying (CC).

Theorem 4.4.1. Suppose (3.4.1) holds and Cφ is densely defined. Then the following 
assertions hold.

(i) If {P (x, ·)}x∈X is a family of Borel probability measures on R+ that satisfies (CC), 
then
(i-a) {hφn(xi,1)}∞n=0 is a Stieltjes moment sequence for every i ∈ Jη,
(i-b) for every i ∈ Jη, the measure P (xi,1, ·) is an S-representing measure of 

{hφn(xi,1)}∞n=0 vanishing on [0, 1],
(i-c)

∑η
i=1

μ(xi,1)
μ(xr)

∫∞
0

tr−1
tκ+1−1P (xi,1, dt) + μ(x0)

μ(xr) = 1 for every r ∈ Jκ,
(i-d)

∑η
i=1

μ(xi,1)
μ(x0)

∫∞
0

1
tκ+1−1P (xi,1, dt) � 1.
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(ii) If (i-a) holds and {P (xi,1, ·)}i∈Jη
is a family of Borel probability measures on R+

satisfying (i-b), (i-c) and (i-d), then there exists a family {P (x, ·)}x∈X\{xi,1 : i∈Jη}
of Borel probability measures on R+ such that {P (x, ·)}x∈X satisfies (CC).

Proof. (i) The conditions (i-a) and (i-b) follow from (3.1.2), Theorem 3.1.3 and Theo-
rem 4.1.1(iv). The condition (i-d) is a direct consequence of Theorem 4.1.1(vi). Using 
the conditions (i), (vii) and (viii) of Theorem 4.1.1 and integrating the function t 
→ tr

with respect to the measure P (x0, ·), we obtain

μ(xr)
μ(x0)

=
∞∫
0

trP (x0, dt)

=
η∑

i=1

μ(xi,1)
μ(x0)

∞∫
0

tr

tκ+1 − 1P (xi,1, dt)

+ 1 −
η∑

i=1

μ(xi,1)
μ(x0)

∞∫
0

1
tκ+1 − 1P (xi,1, dt)

= 1 +
η∑

i=1

μ(xi,1)
μ(x0)

∞∫
0

tr − 1
tκ+1 − 1P (xi,1, dt), r ∈ Jκ,

which implies (i-c).
(ii) For i ∈ Jη and j ∈ N2, we define the measure P (xi,j, ·) by the condition (iii) of 

Theorem 4.1.1. Note that P (xi,j , R+) = 1 because

P (xi,j ,R+) = μ(xi,1)
μ(xi,j)

∞∫
0

tj−1P (xi,1, dt)
(i-b)= μ(xi,1)

μ(xi,j)
hφj−1(xi,1)

(3.1.2)= 1.

Next, we define the measures P (x0, ·), . . . , P (xκ, ·) by

P (xr, σ) =
η∑

i=1

μ(xi,1)
μ(xr)

∫
σ

tr

tκ+1 − 1P (xi,1, dt) + ϑ
μ(x0)
μ(xr)

δ1(σ) (4.4.1)

for σ ∈ B(R+) and r ∈ {0, . . . , κ} with ϑ = 1 −
∑η

i=1
μ(xi,1)
μ(x0)

∫∞
0

1
tκ+1−1P (xi,1, dt). By 

(i-b), (i-c) and (i-d), the quantity ϑ is well-defined, ϑ ∈ [0, 1] and P (xr, ·) is a well-defined 
finite measure. That it is probabilistic follows from the equalities

P (xr,R+) (4.4.1)=
η∑

i=1

μ(xi,1)
μ(xr)

∞∫
0

tr − 1
tκ+1 − 1P (xi,1, dt) + μ(x0)

μ(xr)

(i-c)= 1, r ∈ {0, . . . , κ}.
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Now, integrating the function t 
→ tr with respect to P (x0, ·), we see that the condition (i) 
of Theorem 4.1.1 is satisfied. Finally, integrating the function t 
→ tκ+1 − 1 (which 
is positive on (1, ∞)) with respect to P (x0, ·), we deduce that the condition (ii) of 
Theorem 4.1.1 is satisfied. This combined with Theorem 4.1.1 completes the proof. �

Below we introduce the condition (i-d′), a weaker version of the condition (i-d) of 
Theorem 4.4.1 that will lead us to constructing exotic examples (see Section 5). For 
more information concerning the conditions (e1) and (e2) below, the reader is referred 
to Lemma 2.1.4 and Remark 2.1.5.

Theorem 4.4.2. Suppose (3.4.1) holds, the condition (i-a) of Theorem 4.4.1 is satisfied and 
{P (xi,1, ·)}i∈Jη

is a family of Borel probability measures on R+ satisfying the conditions 
(i-b) and (i-c) of Theorem 4.4.1 and the condition below:

(i-d′)
∑η

i=1 μ(xi,1) 
∫∞
0

1
tκ+1−1P (xi,1, dt) < ∞.

Consider the following three conditions:

(e1) {hφn(xκ) + c}∞n=0 is an S-determinate Stieltjes moment sequence for every c ∈
(0, ∞),

(e2) {hφn+1(xκ) + c}∞n=0 is an S-determinate Stieltjes moment sequence for every c ∈
(0, ∞),

(e3) {hφn(xκ)}∞n=0 is a Stieltjes moment sequence that satisfies the Carleman condition.

Then (e3)⇒(e2)⇒(e1). In turn, if (e1) holds, then the composition operator Cφ is densely 
defined and there exists a family {P (x, ·)}x∈X\{xi,1 : i∈Jη} of Borel probability measures 
on R+ such that {P (x, ·)}x∈X satisfies (CC). Moreover, if (e3) holds, then {hφn(xr)}∞n=0
satisfies the Carleman condition for every r ∈ {0, . . . , κ}.

Proof. It follows from (i-b) and (i-d′) that the quantity ξ defined below

ξ := μ(x0)
μ(xκ) −

η∑
i=1

μ(xi,1)
μ(xκ)

∞∫
0

1
tκ+1 − 1P (xi,1, dt) (4.4.2)

is a real number. By (i-b), (i-c) and (i-d′), we have

ξ = μ(xr)
μ(xκ) −

η∑
i=1

μ(xi,1)
μ(xκ)

∞∫
0

tr

tκ+1 − 1P (xi,1, dt), r ∈ {0, . . . , κ}. (4.4.3)

In particular, the above series are convergent in R+.
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First, we show that

hφn+1(xκ) = ξ +
η∑

i=1

μ(xi,1)
μ(xκ)

∞∫
0

tn
tκ+1

tκ+1 − 1P (xi,1, dt), n ∈ Z+. (4.4.4)

To this end, we fix n ∈ Z+. Then n = j(κ + 1) + r for some j ∈ Z+ and r ∈ {0, . . . , κ}. 
We begin by considering the case of r < κ. Since then r + 1 is the remainder of the 
division of n + 1 by κ + 1, we infer from (i-b) that

hφn+1(xκ) (3.4.6)= μ(xr)
μ(xκ) +

η∑
i=1

j∑
l=0

μ(xi,l(κ+1)+r+1)
μ(xκ)

(3.1.2)= μ(xr)
μ(xκ) +

η∑
i=1

j∑
l=0

μ(xi,1)
μ(xκ) hφl(κ+1)+r (xi,1)

= μ(xr)
μ(xκ) +

η∑
i=1

μ(xi,1)
μ(xκ)

∫
(1,∞)

j∑
l=0

(tκ+1)ltrP (xi,1, dt)

= μ(xr)
μ(xκ) +

η∑
i=1

μ(xi,1)
μ(xκ)

∫
(1,∞)

t(j+1)(κ+1) − 1
tκ+1 − 1 trP (xi,1, dt)

(4.4.3)= ξ +
η∑

i=1

μ(xi,1)
μ(xκ)

∞∫
0

tn
tκ+1

tκ+1 − 1P (xi,1, dt).

If r = κ, then mimicking the above proof we get

hφn+1(xκ) (3.4.6)= 1 +
η∑

i=1

j+1∑
l=1

μ(xi,l(κ+1))
μ(xκ)

= 1 +
η∑

i=1

j+1∑
l=1

μ(xi,1)
μ(xκ) hφl(κ+1)−1(xi,1)

(4.4.3)= ξ +
η∑

i=1

μ(xi,1)
μ(xκ)

∞∫
0

tn
tκ+1

tκ+1 − 1P (xi,1, dt),

which proves (4.4.4).
It follows from (4.4.4) that

hφn(xκ) = ξ +
η∑

i=1

μ(xi,1)
μ(xκ)

∞∫
0

tn
tκ

tκ+1 − 1P (xi,1, dt), n ∈ Z+. (4.4.5)

(The case of n = 0 can be deduced from (4.4.3) with r = κ.)
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(e3)⇒(e2) Apply the assertions (i)–(iii) of Proposition 2.5.1.
(e2)⇒(e1) Since the class of Stieltjes moment sequences is closed under the op-

eration of taking pointwise limits (which follows from the Stieltjes theorem, see [4, 
Theorem 6.2.5]) and hφn+1(xκ) = limc→0+(hφn+1(xκ) + c) for all n ∈ Z+, we see that 
{hφn+1(xκ)}∞n=0 is a Stieltjes moment sequence. Let ρ be an S-representing measure of 
{hφn+1(xκ)}∞n=0. Then, by (4.4.4), we have

∞∫
0

tndρ(t) = hφn+1(xκ) = ξ +
∞∫
0

tndν(t), n ∈ Z+, (4.4.6)

where ν is the Borel measure on R+ given by

ν(σ) =
η∑

i=1

μ(xi,1)
μ(xκ)

∫
σ

tκ+1

tκ+1 − 1P (xi,1, dt), σ ∈ B(R+). (4.4.7)

Now we prove that the condition (i-d) of Theorem 4.4.1 is satisfied. Indeed, otherwise ξ ∈
(−∞, 0). By (e2), the Stieltjes moment sequence {hφn+1(xκ) + |ξ|}∞n=0 is S-determinate. 
This together with (4.4.6) implies that

ρ(σ) + |ξ|δ1(σ) = ν(σ), σ ∈ B(R+). (4.4.8)

Using (4.4.7) and (i-b), and substituting σ = {1} into (4.4.8), we deduce that ξ = 0, 
a contradiction. This shows that the condition (i-d) of Theorem 4.4.1 is satisfied.

Since hφn(xκ) < ∞ for all n ∈ Z+, we infer from Proposition 3.4.5 that D∞(Cφ)
is dense in L2(μ). Hence, by Theorem 4.4.1(ii), there exists {P (x, ·)}x∈X\{xi,1 : i∈Jη}, 
a family of Borel probability measures on R+, such that {P (x, ·)}x∈X satisfies (CC). By 
Theorem 3.1.3, hφn(xκ) =

∫∞
0 tnP (xκ, dt) for all n ∈ Z+. This means that for every c ∈

(0, ∞), {hφn(xκ) +c}∞n=0 is a Stieltjes moment sequence and, by (e2), {hφn+1(xκ) +c}∞n=0
is an S-determinate Stieltjes moment sequence, which implies that {hφn(xκ) + c}∞n=0 is 
S-determinate for every c ∈ (0, ∞) (see [57, Proposition 5.12]; see also [12, Lemma 2.4.1]).

Assume now that (e1) holds. Passing to the limit, as in the proof of (e2)⇒(e1), we see 
that {hφn(xκ)}∞n=0 is a Stieltjes moment sequence. Let ρ′ be an S-representing measure 
of {hφn(xκ)}∞n=0. Then, by (4.4.5), we have

∞∫
0

tndρ′(t) = hφn(xκ) = ξ +
∞∫
0

tndν′(t), n ∈ Z+,

where ν′ is the Borel measure on R+ given by

ν′(σ) =
η∑

i=1

μ(xi,1)
μ(xκ)

∫
σ

tκ

tκ+1 − 1P (xi,1, dt), σ ∈ B(R+).
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Arguing as in the paragraph containing (4.4.7) (using (e1) in place of (e2)), we deduce 
that the condition (i-d) of Theorem 4.4.1 is satisfied. According to Proposition 3.4.5, 
Cφ is densely defined. Applying Theorem 4.4.1(ii), we get the required family of Borel 
probability measures on R+ that satisfies (CC).

Now we prove the “moreover” part. Assume (e3) holds. First note that, by what 
has been proved above, the assumptions of Theorem 3.1.3 are satisfied. Hence, by 
Proposition 3.4.5, {hφn(x)}∞n=0 is a Stieltjes moment sequence for every x ∈ X. Since 
{hφn(xκ)}∞n=0 satisfies the Carleman condition, we deduce from (3.4.7) and Proposi-
tion 2.5.1(ii) that {hφn(xκ−1)}∞n=0 satisfies the Carleman condition as well. An induction 
argument completes the proof. �
Remark 4.4.3. It follows from the proof of (4.4.4) that, under the assumptions of The-
orem 4.4.2, 

∫∞
0

tn

tκ+1−1P (xi,1, dt) < ∞ for all n ∈ Z+ and i ∈ Jη, and in the case of 
η = ∞,

η∑
i=1

μ(xi,1)
μ(xκ)

∞∫
0

tn

tκ+1 − 1P (xi,1, dt) < ∞ (4.4.9)

for any integer n such that 0 � n � κ. However, the series in (4.4.9) may be divergent 
to infinity for some integers n � κ + 1.

The following is related to the “moreover” part of the conclusion of Theorem 4.4.2.

Proposition 4.4.4. Suppose (3.4.1) holds, {hφn(xr)}∞n=0 is a Stieltjes moment sequence for 
every r ∈ {0, . . . , κ}, and {hφn(xκ)}∞n=0 is S-determinate. Then for every r ∈ {0, . . . , κ}, 
{hφn(xr)}∞n=0 is S-determinate.

Proof. It follows from (3.4.7) applied to r = κ that the Stieltjes moment sequence 
{hφn+1(xκ−1)}∞n=0 is S-determinate. This combined with [57, Proposition 5.12] (see also 
[42, Lemma 2.1.1]) implies that {hφn(xκ−1)}∞n=0 is S-determinate as well. Thus, an in-
duction argument completes the proof. �
5. Examples of exotic non-hyponormal operators

5.1. Outline

In the last part of the paper we construct non-hyponormal injective composition 
operators generating Stieltjes moment sequences. The construction relies on the key 
observation that there is a gap between the conditions (i-d) and (i-d′) of Theorems 4.4.1
and 4.4.2. The indices of H-determinacy of the sequences {hφn(x)}∞n=0, x ∈ X, are 
discussed as well.

We begin by introducing for any η ∈ N ∪{∞} and κ ∈ Z+ a class of composition oper-
ators over the directed graph Gη,κ := (Xη,κ, Eφη,κ) which admit families {P (xi,1, ·)}i∈Jη
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of Borel probability measures on R+ satisfying the conditions (i-a), (i-b), (i-c) and (i-d′)
of Theorems 4.4.1 and 4.4.2, but not (i-d) of Theorem 4.4.1 (see Procedure 5.2.1 and 
Lemma 5.3.1). The construction of these operators essentially depends on a choice of 
specific N-extremal measures ν and τ , and a partition {Δi}ηi=1 of supp(τ). The fun-
damental properties of the so-constructed operators, including the characterization of 
their hyponormality for κ = 0, are proven in Lemma 5.3.1. Section 5.4 shows that the 
gap between the conditions (i-d) and (i-d′) does exist. Theorem 5.5.2 is the culminating 
result of the present paper. It shows that there exists a non-hyponormal composition op-
erator generating Stieltjes moment sequences over the locally finite directed graph G2,0. 
Its proof heavily depends on the existence of N-extremal probability measures ζ and ρ
satisfying a restrictive condition which is not easy to deal with. Fortunately, there are 
N-extremal probability measures coming from shifted Al-Salam–Carlitz q-polynomials
or from a quartic birth and death process that satisfy this condition. It is worth point-
ing out that, without the use of these special N-extremal measures, Step 1 of the proof 
of Theorem 5.5.2 combined with (5.4.1) implies that for every sufficiently large inte-
ger η, there exists a non-hyponormal composition operator generating Stieltjes moment 
sequences over the locally finite directed graph Gη,0.

5.2. General scheme

In this section we introduce the aforementioned class of composition operators. We 
do it according to the following procedure.

Procedure 5.2.1. Fix η ∈ N ∪ {∞} and κ ∈ Z+. Suppose that

ν and τ are N-extremal measures of the same Stieltjes moment sequence, (5.2.1)

1 = inf supp(ν) < inf supp(τ), (5.2.2)

ν(R+) = 1 + ν({1}), (5.2.3)

1 +
∞∫
0

1
tκ

dτ(t) > τ(R+), (5.2.4)

and

{Δi}ηi=1 is a partition of supp(τ). (5.2.5)

(A partition of a nonempty set is always assumed to consist of nonempty sets.) Since, 
by Lemma 2.1.1, card(supp(τ)) = ℵ0, such partition always exists.

It follows from Lemma 2.1.1, (5.2.1) and (5.2.2) that 
∫
Δi

tκ+1−1
tκ dτ(t) ∈ (0, ∞) for 

every i ∈ Jη (see Section 1.2 for the definition of Jη). Hence,
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ci :=
(∫
Δi

tκ+1 − 1
tκ

dτ(t)
)−1

∈ (0,∞), i ∈ Jη. (5.2.6)

Set

P (xi,1, σ) = ci

∫
Δi∩σ

tκ+1 − 1
tκ

dτ(t), σ ∈ B(R+), i ∈ Jη. (5.2.7)

Clearly, P (xi,1, ·) is a Borel probability measure on R+ such that 
∫∞
0 tnP (xi,1, dt) ∈

(0, ∞) for all n ∈ Z+ and i ∈ Jη (use (5.2.1) and (5.2.2)). Take any μ(xκ) ∈ (0, ∞) and 
define the family {μ(xi,1)}i∈Jη

of positive real numbers by

μ(xi,1) = 1
ci

μ(xκ), i ∈ Jη. (5.2.8)

Next, we define the family {μ(xi,j)}(i,j)∈Jη×N2 of positive real numbers and the family 
{P (xi,j , ·)}(i,j)∈Jη×N2 of Borel probability measures on R+ by

μ(xi,j) = μ(xi,1)
∞∫
0

tj−1P (xi,1, dt), i ∈ Jη, j ∈ N2, (5.2.9)

P (xi,j , σ) = μ(xi,1)
μ(xi,j)

∫
σ

tj−1P (xi,1, dt), σ ∈ B(R+), i ∈ Jη, j ∈ N2. (5.2.10)

Let P (xκ, ·) be the Borel measure on R+ given by

P (xκ, σ) = ν(σ) − ν({1})δ1(σ), σ ∈ B(R+). (5.2.11)

By (5.2.1) and (5.2.3), P (xκ, ·) is a probability measure. It is also clear that 0 <∫∞
0 tndP (xκ, dt) < ∞ for every n ∈ Z+. In view of (5.2.1) and (5.2.2), we have

0 <

∞∫
0

1
tn

dτ(t) < ∞, n ∈ Z+, (5.2.12)

and

∞∫
0

1
tκ−r

dτ(t) − ν({1}) �
∞∫
0

1
tκ

dτ(t) − ν({1})

(5.2.4)
> τ(R+) − 1 − ν({1})

(5.2.1)= ν(R+) − 1 − ν({1})
(5.2.3)= 0, r ∈ {0, . . . , κ}. (5.2.13)
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If κ � 1, then we set

μ(xr) = μ(xκ)
( ∞∫

0

1
tκ−r

dτ(t) − ν({1})
)
, r ∈ {0, . . . , κ− 1}. (5.2.14)

It follows from (5.2.12) and (5.2.13) that μ(xr) ∈ (0, ∞) for every r ∈ {0, . . . , κ − 1}.
Finally, let μ be the (unique) discrete measure on X = Xη,κ such that μ({x}) = μ(x)

for every x ∈ X (we follow the convention (3.1.1)), and let Cφ be the corresponding 
composition operator in L2(μ) with the symbol φ = φη,κ. Since φ(X) = X, we infer 
from (3.1.2) that hφ(x) > 0 for every x ∈ X.

5.3. Three key lemmata

We begin by listing the most fundamental properties of the composition operator Cφ

constructed in Procedure 5.2.1.

Lemma 5.3.1. Let κ, η, ν, τ , {Δi}ηi=1, X, μ, P (xκ, ·), {P (xi,j , ·)}i∈Jη,j∈N and Cφ be as 
in Procedure 5.2.1. Then D∞(Cφ) = L2(μ) and the following holds:

(i) {hφn(xκ)}∞n=0 is an H-determinate Stieltjes moment sequence with the S-representing
measure P (xκ, ·) whose index of H-determinacy at 0 is 0,

(ii) for all i ∈ Jη and j ∈ N, {hφn(xi,j)}∞n=0 is a Stieltjes moment sequence with the 
S-representing measure P (xi,j , ·),

(iii) the condition (i-a) of Theorem 4.4.1 holds and the family {P (xi,1, ·)}i∈Jη
satisfies 

the conditions (i-b), (i-c) and (i-d′) of Theorems 4.4.1 and 4.4.2,
(iv) {P (xi,1, ·)}i∈Jη

does not satisfy the condition (i-d) of Theorem 4.4.1,
(v) if κ = 0, then Cφ is hyponormal if and only if

η∑
i=1

(
∫
Δi

(t− 1)dτ(t))2∫
Δi

t(t− 1)dτ(t)
�

∫∞
0 (t− 1)dτ(t)

1 +
∫∞
0 (t− 1)dτ(t)

, (5.3.1)

(vi) if κ = 0, then Cφ generates Stieltjes moment sequences,
(vii) if κ = 0 and η = 1, then there exists a family {P ′(x, ·)}x∈X of Borel probability 

measures on R+ that satisfies (CC) and thus Cφ is subnormal.

Proof. (ii) It follows from (3.1.2) and (5.2.9) that

hφn(xi,1) =
∞∫
0

tnP (xi,1, dt), n ∈ Z+, i ∈ Jη. (5.3.2)

Moreover, we have
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∞∫
0

tnP (xi,j , dt)
(5.2.10)= μ(xi,1)

μ(xi,j)

∞∫
0

tj+n−1P (xi,1, dt)

(5.2.9)= μ(xi,1)
μ(xi,j)

μ(xi,j+n)
μ(xi,1)

(3.1.2)= hφn(xi,j), n ∈ Z+, i ∈ Jη, j ∈ N2.

Altogether this implies that (ii) holds. In particular, the condition (i-a) of Theorem 4.4.1
holds. By (5.2.2), (5.2.5), (5.2.7) and (5.3.2), the family {P (xi,1, ·)}i∈Jη

satisfies the 
condition (i-b) of Theorem 4.4.1.

(iv) The condition (i-b) of Theorem 4.4.1, (5.2.5), (5.2.7) and (5.2.8) yield

0 <

η∑
i=1

μ(xi,1)
μ(xκ)

∞∫
0

1
tκ+1 − 1P (xi,1, dt) =

η∑
i=1

∫
Δi

1
tκ

dτ(t)

=
∞∫
0

1
tκ

dτ(t)
(5.2.12)
< ∞. (5.3.3)

Hence, the family {P (xi,1, ·)}i∈Jη
satisfies the condition (i-d′) of Theorem 4.4.2 and the 

quantity ξ defined by (4.4.2) is a real number. Since the closed support of an N-extremal 
measure has no accumulation point in R (see Lemma 2.1.1), we infer from (5.2.1) and 
(5.2.2) that

ν({1}) > 0. (5.3.4)

Thus, noting that

ξ
(4.4.2)= μ(x0)

μ(xκ) −
η∑

i=1

μ(xi,1)
μ(xκ)

∞∫
0

1
tκ+1 − 1P (xi,1, dt)

(5.3.3)= μ(x0)
μ(xκ) −

∞∫
0

1
tκ

dτ(t)

(∗)=

⎧⎨⎩−ν({1}) if κ � 1,

1 − ν(R+) (5.2.3)= −ν({1}) if κ = 0,

where (∗) refers to (5.2.14) if κ � 1 and to (5.2.1) if κ = 0, we obtain

ξ = −ν({1}) < 0. (5.3.5)

It follows from (5.3.5) that the assertion (iv) holds.
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(iii) In view of what has been done, it remains to show that the condition (i-c) of 
Theorem 4.4.1 holds for κ ∈ N. Suppose κ ∈ N and r ∈ Jκ. Using (5.2.5), (5.2.7) and 
(5.2.8), we get

μ(xr)
μ(xκ) −

η∑
i=1

μ(xi,1)
μ(xκ)

∞∫
0

tr

tκ+1 − 1P (xi,1, dt)

= μ(xr)
μ(xκ) −

∞∫
0

1
tκ−r

dτ(t)

(†)=

⎧⎨⎩−ν({1}) if r ∈ Jκ−1,

1 − ν(R+) (5.2.3)= −ν({1}) if r = κ,

where (†) refers to (5.2.1) and (5.2.14). This and (5.3.5) yield

μ(xr)
μ(xκ) −

η∑
i=1

μ(xi,1)
μ(xκ)

∞∫
0

tr

tκ+1 − 1P (xi,1, dt) = ξ, r ∈ Jκ. (5.3.6)

It follows from (4.4.2) and (5.3.6) that the family {P (xi,1, ·)}i∈Jη
satisfies the condition 

(i-c) of Theorem 4.4.1. Therefore (iii) holds.
(i) Arguing as in the proof of Theorem 4.4.2, we verify that (4.4.5) is satisfied. Hence, 

applying (5.2.5), (5.2.7) and (5.2.8) we get

hφn(xκ) (4.4.5)= ξ +
η∑

i=1

μ(xi,1)
μ(xκ)

∞∫
0

tn
tκ

tκ+1 − 1P (xi,1, dt)

= ξ +
∞∫
0

tndτ(t)

(5.2.1)= ξ +
∞∫
0

tndν(t)

(5.2.11)&(5.3.5)=
∞∫
0

tndP (xκ, dt), n ∈ Z+.

This means that {hφn(xκ)}∞n=0 is a Stieltjes moment sequence with the S-representing 
measure P (xκ, ·). Employing (5.2.1), (5.3.4), (5.2.11) and [5, Theorem 3.6], we deduce 
that {hφn(xκ)}∞n=0 is H-determinate, indz(P (xκ, ·)) = 0 if z ∈ C \ supp(P (xκ, ·)) and 
indz(P (xκ, ·)) = 1 if z ∈ supp(P (xκ, ·)). Hence, by (5.2.2), ind0(P (xκ, ·)) = 0.

It follows from (i) and Proposition 3.4.5 that D∞(Cφ) is dense in L2(μ). In particular, 
Cφ is densely defined.
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Assume now that κ = 0.
(v) It follows from the Cauchy–Schwarz inequality that

μ(xi,j+1)2
(5.2.9)

� μ(xi,j)μ(xi,j+2), i ∈ Jη, j ∈ N.

Hence, the inequality (3.1.7) holds for every x ∈ X \ {x0}. Note that

1
μ(x0)

∑
y∈φ−1({x0})

μ(y)2

μ(φ−1({y})) = 1
1 +
∑η

i=1
μ(xi,1)
μ(x0)

+
η∑

i=1

μ(xi,1)
μ(x0)

μ(xi,1)
μ(xi,2)

(5.2.8)&(5.2.9)= 1
1 +
∑η

i=1
1
ci

+
η∑

i=1

1
ci
∫∞
0 tP (xi,1, dt)

(5.2.5)&(5.2.6)= 1
1 +
∫∞
0 (t− 1)dτ(t)

+
η∑

i=1

∫
Δi

(t− 1)dτ(t)∫∞
0 tP (xi,1, dt)

(5.2.6)&(5.2.7)= 1
1 +
∫∞
0 (t− 1)dτ(t)

+
η∑

i=1

(
∫
Δi

(t− 1)dτ(t))2∫
Δi

t(t− 1)dτ(t)
.

Therefore, the inequality (3.1.7) holds for x = x0 if and only if (5.3.1) is satisfied. This 
combined with Proposition 3.1.2 yields (v).

(vi) This follows from (i), (ii) and [15, Theorem 10.4].
(vii) Apply (i), (5.2.2), (5.2.11), Proposition 4.3.4 and Theorem 3.1.3. �
The next lemma, which is of technical nature, will play a key role in constructing 

examples of exotic composition operators in Sections 5.4 and 5.5.

Lemma 5.3.2. Let β ∈ M + be such that β(R+) > 1, 0 < inf supp(β) and supp(β) =
{θ1, θ2, . . .}, where {θi}∞i=1 is an injective sequence. Set θ(a)

i = ψa−1,a(θi) and β(a) =
β ◦ψ−1

a−1,a for i ∈ N and a ∈ (0, ∞) (see (2.2.1) and (2.2.5) for the necessary definitions). 
Then the following holds:

(i) β(a) ∈ M + and supp(β(a)) = {θ(a)
1 , θ(a)

2 , . . .} ⊆ (1, ∞) for all a ∈ (0, ∞),
(ii) there exists m ∈ N such that β({θ1, . . . , θj}) > 1 for every integer j � m,
(iii) if m ∈ N is such that β({θ1, . . . , θm}) > 1, then there exists a1 ∈ (0, ∞) such that 

for every a ∈ (0, a1),

m∑
i=1

θ
(a)
i − 1
θ
(a)
i

β(a)({θ(a)
i }
)
>

∫∞
0 (t− 1)dβ(a)(t)

1 +
∫∞
0 (t− 1)dβ(a)(t)

, (5.3.7)

(iv) there exists a2 ∈ (0, ∞) such that for every a ∈ (0, a2),

∞∑
i=1

θ
(a)
i − 1
θ
(a)
i

β(a)({θ(a)
i }
)
>

∫∞
0 (t− 1)dβ(a)(t)

1 +
∫∞
0 (t− 1)dβ(a)(t)

, (5.3.8)



P. Budzyński et al. / Advances in Mathematics 310 (2017) 484–556 541
(v) if κ ∈ N, then there exists a3 ∈ (0, ∞) such that for every a ∈ (a3, ∞),

1 +
∞∫
0

1
tκ

dβ(a)(t) > β(a)(R+). (5.3.9)

Proof. (i) Apply Lemma 2.2.2.
(ii) Use the fact that limj→∞ β({θ1, . . . , θj}) = β(R+) > 1.
(iii) It follows from our assumptions that

lim
a→0+

m∑
i=1

θi
a + θi

β({θi}) = β({θ1, . . . , θm}) > 1

and lima→0+

∫∞
0 tdβ(t)

a+
∫∞
0 tdβ(t) = 1. Hence, there exists a1 ∈ (0, ∞) such that

m∑
i=1

θi
a + θi

β
(
{θi}
)
>

∫∞
0 tdβ(t)

a +
∫∞
0 tdβ(t)

, a ∈ (0, a1). (5.3.10)

Using (2.2.1), we easily verify that

m∑
i=1

θ
(a)
i − 1
θ
(a)
i

β(a)({θ(a)
i }
)

=
m∑
i=1

θi
a + θi

β
(
{θi}
)
, a ∈ (0,∞). (5.3.11)

Applying the measure transport theorem, we obtain∫∞
0 (t− 1)dβ(a)(t)

1 +
∫∞
0 (t− 1)dβ(a)(t)

=
∫∞
0 tdβ(t)

a +
∫∞
0 tdβ(t)

, a ∈ (0,∞). (5.3.12)

Combining (5.3.10), (5.3.11) and (5.3.12) yields (iii).
(iv) This follows from (i), (ii) and (iii).
(v) Note that

lim
a→∞

∞∑
i=1

( a

θi + a

)κ
β({θi}) = β(R+).

Hence, there exists a3 ∈ (0, ∞) such that

1 +
∞∑
i=1

( a

θi + a

)κ
β({θi}) > β(R+), a ∈ (a3,∞). (5.3.13)

Using (i) and the measure transport theorem, we get
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1 +
∞∫
0

1
tκ

dβ(a)(t) = 1 +
∞∫
0

1(
ψa−1,a(t)

)κ dβ(t)

= 1 +
∞∑
i=1

( a

θi + a

)κ
β({θi})

(5.3.13)
> β(R+) = β(a)(R+), a ∈ (a3,∞).

This completes the proof. �
The third lemma is related to q-Pochhammer symbol (z; q)∞ (see (2.3.1) for its defi-

nition). The function (0, 1) � q 
→ (q; q)∞ ∈ (0, 1) is called the Euler function.

Lemma 5.3.3. Let a ∈ (1, ∞). Then there exists q0 ∈
(
0, 1a
)

such that

(q/a; q)∞ + (aq; q)∞ > 1, q ∈ (0, q0).

Proof. Since the function n 
→ (3n−1)n
2 maps Z injectively into Z+, we deduce from 

Euler’s pentagonal-number theorem (see [2, Theorem 14.3]) that

(q; q)∞ =
∞∑

n=−∞
(−1)nq

(3n−1)n
2

=
∞∑

k=−∞
q(6k−1)k −

∞∑
k=−∞

q(3k+1)(2k+1)

> 1 −
∞∑

k=−∞
q(3k+1)(2k+1)

> 1 −
∞∑
k=1

qk

= 1 − q

1 − q
, q ∈ (0, 1). (5.3.14)

It is easily seen that there exists q0 ∈ (0, 1a ) such that

1 − q

1 − q
>

1
2(1 − aq) , q ∈ (0, q0).

Hence, by (5.3.14), we have

2(1 − aq)(q; q)∞ > 1, q ∈ (0, q0).

This combined with 1 < a and aq0 < 1 imply that
a
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∞∏
j=1

(
1 − 1

a
qj
)

+
∞∏
j=1

(1 − aqj) > 2(1 − aq)
∞∏
j=1

(1 − aqqj)

> 2(1 − aq)(q; q)∞ > 1, q ∈ (0, q0),

which completes the proof. �
5.4. The gap between the conditions (i-d) and (i-d′)

In this section, we show that the assertion (ii) of Theorem 4.4.1 is no longer true if 
the condition (i-d) of Theorem 4.4.1 is replaced by the condition (i-d′) of Theorem 4.4.2. 
As shown in Theorem 5.4.2 below, this can happen even for subnormal composition 
operators. In fact, this phenomenon is independent of whether the operator in question 
is subnormal or not (see Remark 5.5.5).

We begin with the case of η � 2.

Theorem 5.4.1. Let κ ∈ Z+ and η ∈ N2 ∪ {∞}. Then there exists a discrete measure 
μ on X = Xη,κ such that the composition operator Cφ in L2(μ) with φ = φη,κ has the 
property that D∞(Cφ) = L2(μ) and the following conditions hold:

(i) {hφn(xκ)}∞n=0 is an H-determinate Stieltjes moment sequence with index of H-
determinacy at 0 equal to 0,

(ii) for all i ∈ Jη and j ∈ N, {hφn(xi,j)}∞n=0 is an H-determinate Stieltjes moment 
sequence with infinite index of H-determinacy; in particular, the condition (i-a) of 
Theorem 4.4.1 holds,

(iii) there exists a unique family {P (xi,1, ·)}i∈Jη
of Borel probability measures on R+

that satisfies the conditions (i-b), (i-c) and (i-d′) of Theorems 4.4.1 and 4.4.2; this 
family does not satisfy the condition (i-d) of Theorem 4.4.1,

(iv) there is no family {P ′(x, ·)}x∈X of Borel probability measures on R+ that satisfies 
(CC),

(v) if κ = 0, then Cφ generates Stieltjes moment sequences.

Proof. First, we note that if (i) holds, then by Proposition 3.4.5, D∞(Cφ) is dense 
in L2(μ). We begin by proving that the condition (iv) follows from (i), (ii) and (iii). 
Suppose, on the contrary, that there exists a family {P ′(x, ·)}x∈X of Borel probability 
measures on R+ that satisfies (CC). It follows from Theorem 3.1.3 that P ′(xi,1, ·) is 
an S-representing measure of {hφn(xi,1)}∞n=0 for every i ∈ Jη. Hence, by (ii) and (iii), 
P ′(xi,1, ·) = P (xi,1, ·) for every i ∈ Jη. This together with Theorem 4.4.1(i) implies 
that the family {P (xi,1, ·)}i∈Jη

satisfies the condition (i-d) of Theorem 4.4.1, which 
contradicts (iii).

Take any S-indeterminate Stieltjes moment sequence γ = {γn}∞n=0 (see e.g., the clas-
sical example due to Stieltjes [58]; see also Section 2.3). Let α and β be the Krein 
and the Friedrichs measures of γ (see Section 2.1). Then by Lemma 2.1.1 and (2.1.1), 
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0 < α((0, ∞)) < α(R+). Hence, replacing (α, β) by (rα, rβ) with r := α((0, ∞))−1 if 
necessary, we may assume that

α and β are N-extremal measures of the same Stieltjes
moment sequence such that 0 = inf supp(α) < inf supp(β)
and α(R+) = 1 + α({0}) > 1.

(5.4.1)

It follows from Lemma 5.3.2(v) that there exists a ∈ (0, ∞) such that (5.3.9) holds. 
This combined with (5.4.1) and Lemma 2.2.2 shows that the measures ν := α(a) and 
τ := β(a) satisfy the conditions (5.2.1)–(5.2.4) of Procedure 5.2.1. Since the measure τ is 
N-extremal and η � 2, we infer from Lemma 2.1.1 that there exists a partition {Δi}ηi=1
of supp(τ) such that

card(supp(τ) \Δi) = ℵ0, i ∈ Jη. (5.4.2)

Let X, μ, P (xκ, ·), {P (xi,j , ·)}i∈Jη,j∈N and Cφ be as in Procedure 5.2.1. We will show 
that the operator Cφ has all the required properties. Indeed, set ξi =

∑
λ∈Δi

τ({λ})δλ
for every i ∈ Jη. We deduce from the equality (5.4.2) and Theorem 2.4.1 that each ξi is 
H-determinate and

indz(ξi) = ∞ for all z ∈ C and i ∈ Jη. (5.4.3)

Fix (i, j) ∈ Jη × N and z ∈ C. It follows from (5.2.2) that supp(ξi) ⊆ (1, ∞). Hence, by 
(5.2.7) and (5.2.10), we see that for every k ∈ Z+,∫

σ

|t− z|2kP (xi,j , dt) = ci
μ(xi,1)
μ(xi,j)

∫
σ

|t− z|2ktj−1 t
κ+1 − 1

tκ
χΔi

(t)dτ(t)

� ci
μ(xi,1)
μ(xi,j)

(1 + |z|)2k
∫
σ

tj+κ+2kdξi(t)

� ci
μ(xi,1)
μ(xi,j)

(1 + |z|)2k
∫
σ

t2(j+κ+k)dξi(t), σ ∈ B(R).

This, (5.4.3), (2.4.1) and Proposition 2.1.3 imply that the measure P (xi,j , ·) is H-
determinate and indz(P (xi,j , ·)) = ∞. Applying Lemma 5.3.1, we conclude that Cφ

satisfies the conditions (i)–(v). This completes the proof. �
The case of η = 1 turns out to be surprisingly different from the previous one (compare 

Theorem 5.4.1(iv) with Theorem 5.4.2(iv)).

Theorem 5.4.2. Let κ ∈ Z+. Then there exists a discrete measure μ on X = X1,κ
such that the composition operator Cφ in L2(μ) with φ = φ1,κ has the property that 
D∞(Cφ) = L2(μ) and the following conditions hold:
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(i) {hφn(xκ)}∞n=0 is an H-determinate Stieltjes moment sequence with index of H-
determinacy at 0 equal to 0,

(ii) for every j ∈ N, {hφn(x1,j)}∞n=0 is an S-indeterminate Stieltjes moment sequence; 
in particular, the condition (i-a) of Theorem 4.4.1 holds,

(iii) there exists a Borel probability measure P (x1,1, ·) on R+ that satisfies the conditions 
(i-b), (i-c) and (i-d′) of Theorems 4.4.1 and 4.4.2, and does not satisfy the condition
(i-d) of Theorem 4.4.1,

(iv) if κ = 0, then there exists a family {P ′(x, ·)}x∈X of Borel probability measures on 
R+ that satisfies (CC) and, consequently, Cφ is subnormal.

Proof. As in the proof of Theorem 5.4.1, we see that there exist measures ν and τ
satisfying the conditions (5.2.1)–(5.2.4) of Procedure 5.2.1. The only possible partition 
{Δi}ηi=1 of supp(τ) with η = 1 is Δ1 = supp(τ). Let X, μ, P (xκ, ·), {P (x1,j , ·)}∞j=1 and 
Cφ be as in Procedure 5.2.1. In view of Lemma 5.3.1, it remains to show that for every 
j ∈ N, the Stieltjes moment sequence {hφn(x1,j)}∞n=0 is S-indeterminate.

Suppose, on the contrary, that there exists k ∈ N such that {hφn(x1,k)}∞n=0 is S-
determinate. We show that then {hφn(x1,1)}∞n=0 is S-determinate. For this we may assume 
that k � 2. It follows from (3.1.2) that

hφn(x1,k) = μ(x1,k−1)
μ(x1,k)

hφn+1(x1,k−1), n ∈ Z+.

Hence, by [57, Proposition 5.12], {hφn(x1,k−1)}∞n=0 is S-determinate. Applying backward 
induction, we deduce that {hφn(x1,1)}∞n=0 is S-determinate. Since, by Lemma 5.3.1(ii), 
P (x1,1, ·) is an S-representing measure of {hφn(x1,1)}∞n=0 and P (x1,1, {0}) = 0 (see (5.2.2)
and (5.2.7)), we infer from [21, Corollary on p. 481] (see also [42, Lemma 2.2.5]) that 
P (x1,1, ·) is H-determinate. By (5.2.2), there exists M ∈ (0, ∞) such that

tκ+1 − 1
tκ

� M, t ∈ [inf supp(τ),∞).

This combined with (5.2.7) and Proposition 2.1.3 (applied to τ and P (x1,1, ·)) implies 
that τ is H-determinate, which contradicts (5.2.1). �

Regarding Theorem 5.4.2, note that if κ = 0, then (ii) can also be deduced from (iii) 
and (iv) by arguing as in the first paragraph of the proof of Theorem 5.4.1.

5.5. Exotic non-hyponormality

The main purpose of this section is to construct non-hyponormal composition oper-
ators Cφ in L2(X, 2X , μ) that generate Stieltjes moment sequences with X = Xη,0 and 
φ = φη,0. Recall that Cφη,κ

is always injective (see (3.4.2)). We begin with the case of 
η = ∞.
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Theorem 5.5.1. There exists a discrete measure μ on X = X∞,0 such that the composition 
operator Cφ in L2(μ) with φ = φ∞,0 has the following properties:

(i) Cφ is injective and generates Stieltjes moment sequences,
(ii) Cφ is not hyponormal,
(iii) {hφn(x0)}∞n=0 is an H-determinate Stieltjes moment sequence with index of H-

determinacy at 0 equal to 0,
(iv) {hφn(x)}∞n=0 is an H-determinate Stieltjes moment sequence with infinite index of 

H-determinacy for all x ∈ X \ {x0}.

Proof. Arguing as in the proof of Theorem 5.4.1, we see that there exist measures α and 
β satisfying (5.4.1). Let {θi}∞i=1 be an injective sequence such that supp(β) = {θ1, θ2, . . .}
(see Lemma 2.1.1). It follows from Lemma 5.3.2(iv) that there exists a ∈ (0, ∞) such 
that (5.3.8) holds. This and Lemma 2.2.2 show that the measures ν := α(a) and τ := β(a)

satisfy the conditions (5.2.1)–(5.2.4) of Procedure 5.2.1 for κ = 0 and η = ∞. Note also 
that in view of Lemma 5.3.2(i), supp(τ) = {θ(a)

1 , θ(a)
2 , . . .}. Set Δi = {θ(a)

i } for i ∈ N. 
Clearly, the sequence {Δi}∞i=1 satisfies the condition (5.2.5) for η = ∞.

Let X, μ, {P (x, ·)}x∈X and Cφ be as in Procedure 5.2.1 for κ = 0 and η = ∞. It 
follows from (5.2.7), (5.2.9) and (5.2.10) that P (xi,j , ·) = δ

θ
(a)
i

(·) for all i, j ∈ N. This is 
easily seen to imply (iv). Since (5.3.8) yields

∞∑
i=1

(
∫
Δi

(t− 1)dτ(t))2∫
Δi

t(t− 1)dτ(t)
>

∫∞
0 (t− 1)dτ(t)

1 +
∫∞
0 (t− 1)dτ(t)

,

an application of Lemma 5.3.1 completes the proof. �
Now we concern ourselves with the case when η is an arbitrary integer greater than or 

equal to 2. The most striking case is that of η = 2. Below, given x ∈ R, we write �x� for 
the largest integer not greater than x, and �x� for the smallest integer not less than x.

Theorem 5.5.2. Let η ∈ N2. Then there exists a discrete measure μ on X = Xη,0 such 
that the composition operator Cφ in L2(μ) with φ = φη,0 has the following properties:

(i) Cφ is injective and generates Stieltjes moment sequences,
(ii) Cφ is not hyponormal,
(iii) {hφn(x)}∞n=0 is a Stieltjes moment sequence for every x ∈ X,
(iv) {hφn(x0)}∞n=0 is H-determinate with index of H-determinacy at 0 equal to 0,
(v) for all i ∈ Jη−1 and j ∈ N, the sequence {hφn(xi,j)}∞n=0 is H-determinate with 

infinite index of H-determinacy,
(vi) for every j ∈ J2η−4, the sequence {hφn(xη,j)}∞n=0 is H-determinate and its unique 

H-representing measure P (xη,j, ·) satisfies the following condition

η − 2 − �j/2� � ind0(P (xη,j , ·)) � η − 2 − �j/2�. (5.5.1)
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Proof. We split the proof into two steps.
Step 1. Let η ∈ N2. Then the conclusion of Theorem 5.5.2 holds if there exist measures 

α and β satisfying (5.4.1) and an injective sequence {θi}η−1
i=1 ⊆ supp(β) such that

β({θ1, . . . , θη−1}) > 1. (5.5.2)

Indeed, by Lemma 2.1.1, we can extend the sequence {θi}η−1
i=1 to an injective sequence 

{θi}∞i=1 such that supp(β) = {θ1, θ2, . . .}. It follows from (5.5.2) and Lemma 5.3.2(iii) that 
there exists a ∈ (0, ∞) such that the inequality (5.3.7) holds for m = η−1. This together 
with (5.4.1) and Lemma 2.2.2 imply that the measures ν := α(a) and τ := β(a) satisfy the 
conditions (5.2.1)–(5.2.4) of Procedure 5.2.1 for κ = 0, and supp(τ) = {θ(a)

1 , θ(a)
2 , . . .}. 

Now we define a partition {Δi}ηi=1 of supp(τ) by

Δi =

⎧⎨⎩{θ(a)
i } if i ∈ Jη−1,

{θ(a)
η , θ

(a)
η+1, . . . } if i = η.

(5.5.3)

Let X, μ, {P (x, ·)}x∈X and Cφ be as in Procedure 5.2.1 for κ = 0. Since η ∈ N2, it 
follows from (5.2.2) that

η∑
i=1

(
∫
Δi

(t− 1)dτ(t))2∫
Δi

t(t− 1)dτ(t)
>

η−1∑
i=1

(
∫
Δi

(t− 1)dτ(t))2∫
Δi

t(t− 1)dτ(t)

=
η−1∑
i=1

θ
(a)
i − 1
θ
(a)
i

τ
(
{θ(a)

i }
)

(5.3.7)
>

∫∞
0 (t− 1)dτ(t)

1 +
∫∞
0 (t− 1)dτ(t)

.

Now applying Lemma 5.3.1 we see that for every x ∈ X, {hφn(x)}∞n=0 is a Stieltjes 
moment sequence with the S-representing measure P (x, ·) (in particular, (iii) holds), 
and Cφ satisfies (i), (ii) and (iv) (note that if η = 1, then, by Lemma 5.3.1(vii), Cφ is 
hyponormal). Arguing as in the proof of Theorem 5.5.1, we deduce that (v) holds as 
well.

Our next aim is to prove (vi). Assume that η � 3. Set ξη =
∑

λ∈Δη
τ({λ})δλ. Clearly 

ξη ∈ M +. By [5, Theorem 3.6], ξη is H-determinate and

ind0(ξη) = η − 2. (5.5.4)

Put mj = cη
μ(xη,1)
μ(xη,j) for j ∈ N. It follows from (5.2.7) and (5.2.10) that∫

σ

t2kP (xη,j , dt) = mj

∫
σ

t2k+j−1(t− 1)dξη(t),

σ ∈ B(R), k ∈ Z+, j ∈ N. (5.5.5)
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Since, by (5.2.2), supp(ξη) ⊆ (1, ∞), we infer from (5.5.5) that

∫
σ

t2kP (xη,j , dt) � mj

∫
σ

t2(k+�j/2	)dξη(t) � mj

∫
σ

t2(η−2)dξη(t),

σ ∈ B(R), k ∈ Z+, k + �j/2� � η − 2, j ∈ N. (5.5.6)

Fix j ∈ J2η−4. Substituting k = 0 into (5.5.6) and using (5.5.4) and Proposition 2.1.3, 
we deduce that P (xη,j , ·) is H-determinate. Hence, applying (5.5.4), (5.5.6) with k =
η − 2 − �j/2�, and Proposition 2.1.3, we see that

ind0(P (xη,j , ·)) � η − 2 − �j/2�. (5.5.7)

Take now k ∈ Z+ such that the measure t2kP (xη,j , dt) is H-determinate. Since 
supp(ξη) ⊆ (1, ∞), there exists M ∈ (0, 1) such that for every σ ∈ B(R),∫

σ

t2kP (xη,j , dt)
(5.5.5)

� Mmj

∫
σ

t2k+jdξη(t) � Mmj

∫
σ

t2(k+
j/2�)dξη(t).

Applying (5.5.4) and Proposition 2.1.3 again, we deduce that k + �j/2� � η − 2. This 
implies that

ind0(P (xη,j , ·)) � η − 2 − �j/2�.

Combining the above inequality with (5.5.7), we obtain (5.5.1).
Step 2. There exist measures α and β satisfying (5.4.1) such that

β
(
{inf supp(β)}

)
> 1.

Indeed, let a ∈ (1, ∞). By Lemma 5.3.3, there exists q ∈
(
0, 1a
)

such that

(q/a; q)∞ + (aq; q)∞ > 1. (5.5.8)

As in [8, Proposition 4.5.1] (see also [8, eq. (4.4)]), we define the Borel measures ζ and 
ρ on R (with different notation) by

ζ := β(a;q) ◦ ψ−1
1,−1

(2.3.6)= (aq; q)∞
∞∑

n=0

anqn
2

(aq; q)n(q; q)n
δq−n−1,

ρ := γ(a;q) ◦ ψ−1
1,−1

(2.3.7)= (q/a; q)∞
∞∑

n=0

a−nqn
2

(q/a; q)n(q; q)n
δaq−n−1.

(5.5.9)

(Another possible choice of measures ζ and ρ is discussed in Remark 5.5.3.) In view 
of the proof of [37, eq. (5.10)], ζ and ρ are probability measures. It follows from 
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[8, Proposition 4.5.1] that ζ and ρ are N-extremal measures of the same Stieltjes mo-
ment sequence (see also Section 2.3 for a detailed discussion of this matter). Note that 
ζ({0}) = (aq; q)∞ ∈ (0, 1). Following the proof of Theorem 5.4.1, we set α = rζ and 
β = rρ with r = (1 − ζ({0}))−1. It is easily seen that the measures α and β satisfy 
(5.4.1). Now, combining (5.5.8) with (5.5.9), we get

β({inf supp(β)}) = (q/a; q)∞
1 − (aq; q)∞

> 1.

To finish the proof of the theorem, take measures α and β as in Step 2. Then supp(β) =
{θ1, θ2, . . .}, where {θi}∞i=1 is a strictly increasing sequence (see Lemma 2.1.1). This 
implies that β({θ1}) > 1, and thus the inequality (5.5.2) holds for every η ∈ N2. Applying 
Step 1 completes the proof. �

To the best of our knowledge, there are few explicit examples (or rather classes of 
examples) of N-extremal measures. The ones used in the proof of Theorem 5.5.2 are 
related to the Al-Salam–Carlitz q-polynomials (see Section 2.3). In turn, the measures 
discussed below come from an S-indeterminate Stieltjes moment problem associated with 
a quartic birth and death process (see [8]).

Remark 5.5.3. Define the Borel measures ζ and ρ on R by

ζ = π

K2
0
δx0 + 4π

K2
0

∞∑
n=1

2nπ
sinh(2nπ)δx2n ,

ρ = 4π
K2

0

∞∑
n=0

(2n + 1)π
sinh
(
(2n + 1)π

)δx2n+1 ,

(5.5.10)

where

K0 =
Γ (1

4 )2

4
√
π

and xk =
(
kπ

K0

)4

for k ∈ Z+.

(Γ (·) stands for the Euler gamma function.) It was proved in [8, Proposition 3.4.1]
that ζ and ρ are N-extremal measures of the same Stieltjes moment sequence. A careful 
inspection of [8] reveals that these measures are probabilistic. As a consequence, ζ({0}) =
πK−2

0 ∈ (0, 1). Note that β({θ1}) > 1, where, as in the proof of Step 2 of Theorem 5.5.2, 
β = rρ with r = (1 − ζ({0}))−1 and θ1 = inf supp(β). Indeed, since π > 3, Γ (1

4 ) < 4 and 
sinh(π) < 12, we get

β({θ1}) = 64π3

(Γ (1
4 )4 − 16π2) sinh(π)

>
9
7 > 1.

(In fact, β({θ1}) > 23
2 .) Putting all this together, we see that the proof of Theorem 5.5.2

goes through without change if the measures ζ and ρ are defined by (5.5.10) instead 
of (5.5.9).
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Below we make an important remark on the measures ζ and ρ and their relatives ν
and τ appearing in the proof of Theorem 5.5.2 and in Remark 5.5.3.

Remark 5.5.4. Let ζ and ρ be measures as in (5.5.9). Recall that they are representing 
measures of the same Stieltjes moment sequence, say γ. Since inf supp(ζ) = 0, we infer 
from (2.1.1) that ζ is the Krein measure of γ. In turn, the measure ρ is the Friedrichs 
measure of γ. Indeed, this can be deduced by combining (2.1.1) and [52, Proposition 3.1]
with [52, Proposition 3.2] and [8, Lemma 4.4.2] (that this particular ρ is the Friedrichs 
measure of γ follows also from Theorem 2.2.3(i) and the discussion in the paragraph 
containing (2.3.7)). Hence, by Corollary 2.2.4 (see also Theorem 2.2.3), the measures 
β and τ are the Friedrichs measures of appropriate S-indeterminate Stieltjes moment 
sequences (see Step 1 of the proof of Theorem 5.5.2); however, ν is not the Krein measure 
(of the S-indeterminate Stieltjes moment sequence {

∫∞
0 tndν(t)}∞n=0). It is easily seen 

that the above discussion applies to the measures ζ and ρ defined by (5.5.10) and the 
corresponding measures ν and τ (but now we have to use [8, Corollary 3.3.3] in place of 
[8, Lemma 4.4.2]).

It is worth pointing out that [52, Proposition 3.1] is essentially due to Chihara (see 
[21, Theorem 5]) and that there is another way of parameterizing N-extremal measures 
in which the traditional interval [α, 0] is replaced by [−1/α, ∞) ∪ {∞}, where α is as in 
[52, Proposition 3.2] (see [57, Theorem 4.18, Proposition 5.20, and Remark on p. 127]).

We end this section with yet another remark.

Remark 5.5.5. Since Lemma 5.3.1 was used as one of the main tools to prove Theo-
rems 5.5.1 and 5.5.2, the following statement can be added to their conclusions:

there exists a family {P (xi,1, ·)}i∈Jη
of Borel probability measures on

R+ that satisfies the conditions (i-b), (i-c) and (i-d′) of Theorems 4.4.1 and 4.4.2,
and does not satisfy the condition (i-d) of Theorem 4.4.1.

5.6. Addendum

The construction of the composition operator Cφ that appears in the proofs of 
theorems of Section 5 depends on the choice of a partition {Δi}ηi=1 of supp(τ) (see 
Procedure 5.2.1). In particular, the hyponormality of Cφ requires finding a partition 
{Δi}ηi=1 satisfying the inequality (5.3.1). Hence, it seems to be of some independent 
interest to calculate the infimum and the supremum of the quantity appearing on the 
left-hand side of (5.3.1) over all partitions {Δi}ηi=1 of supp(τ). The following general 
proposition sheds more light on this issue.

Proposition 5.6.1. Let τ be an N-extremal measure such that 1 < inf supp(τ). Then for 
every η ∈ N ∪ {∞}, the following two conditions hold:
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inf
{
Λ({Δi}ηi=1) : {Δi}ηi=1 satisfies (5.2.5)

}
=
( ∫∞

0 (t− 1)dτ(t)
)2∫∞

0 t(t− 1)dτ(t)
, (5.6.1)

sup
{
Λ({Δi}ηi=1) : {Δi}ηi=1 satisfies (5.2.5)

}
�

∞∫
0

t− 1
t

dτ(t), (5.6.2)

where

Λ({Δi}ηi=1) =
η∑

i=1

(
∫
Δi

(t− 1)dτ(t))2∫
Δi

t(t− 1)dτ(t)
, {Δi}ηi=1 satisfies (5.2.5). (5.6.3)

If η = ∞, then the inequality in (5.6.2) becomes an equality. Moreover, we have

sup
{
Λ({Δi}ηi=1) : {Δi}ηi=1 satisfies (5.2.5), η ∈ N

}
=

∞∫
0

t− 1
t

dτ(t). (5.6.4)

Proof. We begin with two observations. First, if {Δi}ηi=1 is a partition of supp(τ), then 
by Lemma 2.1.1, 

∫
Δi

t(t − 1)dτ(t) ∈ (0, ∞) for every i ∈ Jη. Second, due to the Cauchy–
Schwarz inequality, the following two inequalities hold( η∑

i=1
xi

)2

�
( η∑

i=1
yi

)( η∑
i=1

x2
i

yi

)
, {xi}ηi=1 ⊆ R+, {yi}ηi=1 ⊆ (0,∞), (5.6.5)

(∫
Δ

(t− 1)dτ(t)
)2

�
∫
Δ

t(t− 1)dτ(t)
∫
Δ

t− 1
t

dτ(t), Δ ∈ B(R). (5.6.6)

Therefore, if {Δi}ηi=1 is a partition of supp(τ), then

( ∫∞
0 (t− 1)dτ(t)

)2∫∞
0 t(t− 1)dτ(t)

=
(∑η

i=1
∫
Δi

(t− 1)dτ(t)
)2∑η

i=1
∫
Δi

t(t− 1)dτ(t)

(5.6.5)
�

η∑
i=1

(
∫
Δi

(t− 1)dτ(t))2∫
Δi

t(t− 1)dτ(t)
(5.6.3)= Λ({Δi}ηi=1)

(5.6.6)
�

η∑
i=1

∫
Δi

t− 1
t

dτ(t)

=
∞∫
0

t− 1
t

dτ(t). (5.6.7)

This proves (5.6.2) and the inequality “�” in (5.6.1). To show the reverse inequality, we 
may assume that η � 2. Let us define for every k ∈ N a partition {Δk,i}ηi=1 of supp(τ)
by
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Δk,i =

⎧⎪⎪⎨⎪⎪⎩
{θ1, . . . , θk} if i = 1,
{θi+k−1} if 2 � i < η,

{θη+k−1, θη+k, . . .} if η < ∞ and i = η,

where {θj}∞j=1 is a strictly increasing sequence such that supp(β) = {θ1, θ2, . . .}. By 
Lemma 2.1.1 such a sequence exists and limj→∞ θj = ∞. Then

Λ({Δk,i}ηi=1) =
(
∫ θk
0 (t− 1)dτ(t))2∫ θk
0 t(t− 1)dτ(t)

+
η∑

i=2

(
∫
Δk,i

(t− 1)dτ(t))2∫
Δk,i

t(t− 1)dτ(t)

(5.6.6)
�

(
∫ θk
0 (t− 1)dτ(t))2∫ θk
0 t(t− 1)dτ(t)

+
η∑

i=2

∫
Δk,i

t− 1
t

dτ(t)

=
(
∫ θk
0 (t− 1)dτ(t))2∫ θk
0 t(t− 1)dτ(t)

+
∞∫

θk+1

t− 1
t

dτ(t), k ∈ N.

Hence, by applying the Lebesgue monotone and dominated convergence theorems, we 
get the inequality “�” in (5.6.1). This completes the proof of (5.6.1).

To prove the remaining part of the conclusion, we define for every η ∈ N2 ∪ {∞} a 
partition {Δ̃η,i}ηi=1 of supp(τ) by (compare with (5.5.3))

Δ̃η,i =

⎧⎨⎩{θi} if i ∈ Jη−1,

{θη, θη+1, . . .} if η < ∞ and i = η.

Then

Λ({Δ̃η,i}ηi=1) =
η−1∑
i=1

θi − 1
θi

τ({θi}) +
(
∫∞
θη

(t− 1)dτ(t))2∫∞
θη

t(t− 1)dτ(t)

�
θη−1∫
0

t− 1
t

dτ(t), η ∈ N2.

Applying the Lebesgue monotone convergence theorem and using (5.6.2), we get (5.6.4). 
In the case of η = ∞, we have

Λ({Δ̃∞,i}∞i=1) =
∞∫
0

t− 1
t

dτ(t). (5.6.8)

This completes the proof of the proposition. �
Remark 5.6.2. It is worth pointing out that under the assumptions of Proposition 5.6.1, 
the following two inequalities hold
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( ∫
Δ

(t− 1)dτ(t)
)2∫

Δ
t(t− 1)dτ(t)

�
n∑

i=1

(
∫
Δi

(t− 1)dτ(t))2∫
Δi

t(t− 1)dτ(t)
�
∫
Δ

t− 1
t

dτ(t) (5.6.9)

whenever {Δi}ni=1 is a finite or infinite partition of a nonempty subset Δ of supp(τ)
(argue as in the proof of (5.6.7)). We will show that if, in addition, card(Δi) � 2 for 
at least one i ∈ Jn, then the second inequality (counting from the left) in (5.6.9) is 
strict. Indeed, otherwise taking a close look at (5.6.7) shows that the Cauchy–Schwarz 
inequality (5.6.6) becomes an equality for every Δ ∈ {Δi : i ∈ Jn}. As a consequence, for 
every i ∈ Jn, there exists αi ∈ (0, ∞) such that 

√
(t− 1)t = αi

√
t−1
t for every t ∈ Δi

(recall that Δi ⊆ supp(τ)). This implies that card(Δi) = 1 for every i ∈ Jn, which 
contradicts our assumption.

It follows from the previous paragraph that for every η ∈ N ∪ {∞} and for every 
partition {Δi}ηi=1 of supp(τ) such that sup{card(Δi) : i ∈ Jη} � 2 we have

Λ({Δi}ηi=1) <
∞∫
0

t− 1
t

dτ(t). (5.6.10)

However, if sup{card(Δi) : i ∈ Jη} = 1 (and consequently η = ∞), then the strict 
inequality in (5.6.10) becomes an equality (see (5.6.8)).

Applying (5.6.4) and (5.6.9), we deduce that the sequence{
sup
{
Λ({Δi}ηi=1) : {Δi}ηi=1 satisfies (5.2.5)

}}∞

η=1

is monotonically increasing to 
∫∞
0

t−1
t dτ(t). Hence, there arises the question whether or 

not there exists η0 ∈ N at which the above sequence stabilizes.
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