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We propose an efficient and accurate measure for ranking spreaders and identifying the influential ones in
spreading processes in networks. While the edges determine the connections among the nodes, their specific role
in spreading should be considered explicitly. An edge connecting nodes i and j may differ in its importance for
spreading from i to j and from j to i. The key issue is whether node j , after infected by i through the edge, would
reach out to other nodes that i itself could not reach directly. It becomes necessary to invoke two unequal weights
wij and wji characterizing the importance of an edge according to the neighborhoods of nodes i and j . The
total asymmetric directional weights originating from a node leads to a novel measure si , which quantifies the
impact of the node in spreading processes. An s-shell decomposition scheme further assigns an s-shell index or
weighted coreness to the nodes. The effectiveness and accuracy of rankings based on si and the weighted coreness
are demonstrated by applying them to nine real-world networks. Results show that they generally outperform
rankings based on the nodes’ degree and k-shell index while maintaining a low computational complexity. Our
work represents a crucial step towards understanding and controlling the spread of diseases, rumors, information,
trends, and innovations in networks.
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I. INTRODUCTION

The structural properties of complex networks and the
intricate interplay between the structure and spreading dy-
namics lead to highly diversified spreading capabilities among
individual nodes. From the perspective of the severity of a
spreading process, the most influential spreaders are those
resulting in a much larger final infected proportion of the
whole system when the spread of a disease or a piece of
information originates from them than from other nodes.
Centrality measures such as the degree [1], betweenness [2],
closeness [3], eigenvector centrality [4], and k-shell coreness
[5] have been used to identify the most influential spreaders.
The degree is the simplest measure. In social networks, for
example, an individual with a large degree has more direct
contact with other people and is thus likely to be more
influential than one with a small degree for transmitting disease
or information. Subsequent research indicates that the core
nodes as identified by the k-shell decomposition are the most
influential spreaders [6]. Algorithms based on other centrality
measures have been proposed to improve the accuracy of
identifying influential spreaders [7–10]. They include the
neighborhood coreness [11], improved eigenvector centrality
[12,13], H index [14,15], and nonbacktracking centrality [16].

Methods other than centrality-based algorithms have also
been proposed for predicting how influential a node can be
in a spread. For example, by counting the number of possible
infection paths of various lengths, the final infection range
can be estimated for a spread originated from any node [17].
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The degree distribution of clusters of infected nodes after
certain transmission events leads to a node property called
the expected force, which can be applied to predict the
spreading influence of all nodes under different epidemiolog-
ical models [18]. The dynamic-sensitive centrality is able to
locate influential nodes from both topological features and the
dynamical parameters, such as the infection and recovery rates
in a susceptible-infected-recovered (SIR) spreading model
[19]. In the k-truss decomposition, which is a triangle-based
extension of k-shell decomposition, the maximal k-truss
subgraph contains the most influential spreaders [20].

In most studies on identifying influential spreaders so far,
the networks are taken to be unweighted and undirected. Each
edge is treated as being equivalent in its function, as in the
centrality and ranking methods [10]. However, edges in a
network could be quite different [21]. In weighted networks,
the weight of an edge reflects the strength of the interaction
between the connected nodes, as in situations concerning
the number of communications, size of trade, intimacy of
friendship, frequency of cooperation, etc. [22–24]. In addition,
edges may not be equally important in keeping the network
robust [25]. An example is the small influence on network
robustness in food web networks when redundant links are
removed [26]. In terms of network functionality, differences
among edges are also observed. For example, removing
redundant links has no effect on network synchronization [27],
but closing specific routes in air transportation networks can
minimize the spreading of a disease [28]. To quantify the
weight of an edge, a class of measures relying on its importance
in the network structure has been defined [29]. For example,
the edge betweenness counts the number of shortest paths
between any two nodes that go through the edge and it can
be regarded as the weight of an edge [30]. Immunizing edges
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of high betweenness was found to be effective in suppressing
epidemics [31], but deleting such edges in scale-free networks
would enhance the transmission efficiency dramatically [32].
In a global air transportation network, the strength of an edge
that reflects the volume of passengers traveling between two
airports was found to correlate positively with the product of
the degree of the connected nodes. Thus, a measure wij =
(kikj )θ [33] was introduced as the weight of an edge. This
measure has been adopted in many works for distinguishing
the importance among edges in unweighted networks [34–36].

In the present work we propose a measure to quantify
the importance of an edge when spreading processes are
concerned. As spreading is necessarily directional, e.g., only
an infected node would spread a disease to a neighboring
susceptible node but not the other way round, our measure
stresses the importance of an edge in the spreading dynamics
in the vicinity of the two nodes connected by the edge and it
has the general property of wij �= wji . The sum of asymmetric
weights of links originated from a node defines a measure
of the strength si of a node i, which is shown to be an
efficient quantity for identifying influential spreaders with a
low computational complexity. Based on the node strength,
an s-shell decomposition scheme is proposed for assigning an
s-shell index to every node, which provides a more accurate
ranking of the nodes in their influence in spreading processes.

The paper is organized as follows. In Sec. II the degree
centrality, k-shell index, the spreading model used in the
study, and the methods of evaluating the performance of
measures for identifying influential spreaders are introduced
for completeness. In Sec. III we propose a measure that
focuses on the importance of an edge in the dynamics of a
spreading process. The measure is then applied to define a node
strength for every node. An s-shell decomposition method
that emphasizes the importance of a node in the spreading
dynamics is proposed. In Sec. IV we apply the node strength
and s-shell index to rank and identify influential spreaders in
nine real-world networks and demonstrate their effectiveness.
A summary is given in Sec. V.

II. CENTRALITIES, SPREADING MODEL,
AND EVALUATION METHODS

We review briefly the degree centrality and the k-shell
index for completeness. They are efficient measures for
identify influential spreaders [37–39]. We will compare the
performance of our presently defined node strength and s-shell
index with these methods. The SIR model is adopted to
simulate the spreading dynamics on networks. To quantify
the performance of our measures in predicting the influence
of the nodes and identifying influential spreaders, Kendall’s τ

correlation and the imprecision function are introduced.

A. Degree and k-shell centrality

In a graph G = (V,E), where V is the set of nodes and E

is the set of edges, the degree ki of a node i is the number
of links it carries. It is given by ki = ∑

j aij , where aij is
an element of the adjacent matrix, with aij = 1 if there is
a link between nodes i and j and aij = 0 otherwise. The
k-shell decomposition method decomposes the network into

hierarchical shells in a progressive process. Initially, nodes
with degree k = 1 are removed from the network together
with their links. After the process, nodes with only one link
left may appear. These nodes and their links are then removed
and the process is repeated until there are no nodes left in
the network with only one link. The removed nodes and links
form the 1-shell, and these nodes are assigned an index kS = 1.
Next, nodes with degree k � 2 are removed in a similar way
and the set of removed nodes are assigned an index kS = 2.
This pruning process is continued until all nodes are removed
and assigned a kS index. This index is called the k-shell index
or coreness of a node. It represents the core position of a node
in the network. Nodes with a large kS are considered to be at
the core of the network, while nodes with a small kS form the
peripheral part of the network.

Nodes with a large degree and large coreness are considered
the most influential spreaders in networks. These measures
have a low computational complexity of O(E) and O(N + E),
respectively, where N and E are the number of nodes and edges
in the network, respectively. By using the bin-sort structure,
the complexity of the k-shell decomposition can even reduce
to O(E) [40].

B. The SIR model

The SIR model is chosen to simulate spreading on complex
networks. In the model, the nodes have three possible states:
susceptible, infected, and recovered. At each time step, the
infected nodes infect their susceptible neighbors with a
probability λ and then recover with a probability β. To quantify
the influence of each node on spreading, we let one node, say,
node i, be infected and all the other nodes be susceptible
initially. The SIR dynamics proceeds from the seed-infected
node to other nodes until there is no infected node in the
network. The recovered nodes at the end are those once
infected and the fraction of recovered nodes gives the final
infected range of the initial seed. For an initially infected
node i, the spreading dynamics is repeated for 100 times. The
average infected range Mi of node i is recorded and taken to
reflect the influence or the spreading efficiency of the node i.
This quantity can be obtained for any node i in the network and
used as a measure to rank the nodes on their importance in the
spreading dynamics. This dynamics-based list is taken to be the
exact ranking that gauges the accuracy of other topology-based
measures.

While the final infected ranges for the nodes vary with the
parameters λ and β in the SIR model, the relative ranking
of spreading efficiency of the nodes remains unchanged in a
wide range of infection probabilities [38]. Thus, we take the
recovered probability to be β = 1 for simplicity. The infection
probability λ should be chosen more carefully. On the one
hand, it should be above the epidemic threshold to ensure that
the disease can spread to a large part of the network [41].
On the other hand, too large an infection probability gives
spreading efficiencies of the nodes that are too close to each
other to clearly distinguish their relative importance. In the
results that follow, we choose an infection probability λ that
is above the epidemic threshold and makes the final infected
range amount to 1%–20% of the system for most nodes as the
spreading origins [6].
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C. Kendall’s τ correlation and imprecision function

Two figures of merit are used to quantify the performance of
different topology-based measures for predicting the spreading
efficiency of the nodes. Kendall’s τ correlation coefficient
measures the ranking consistency of two lists that rank the
same set of objects. By referring to the number of concordant
ranking pairs and the number of discordant ranking pairs in
two ranking lists of N objects, the correlation coefficient is
evaluated as

τ =
∑

i<j sgn[(xi − xj )(yi − yj )]
1
2N (N − 1)

, (1)

where sgn(x) is the sign function, which returns 1 if x > 0,
−1 if x < 0, and 0 if x = 0, and the summation is over all
distinguished pairs i and j . Here xi is the rank of node i in
ranking list 1, while yi is the rank of node i in ranking list
2. In the present context, list 1 is a topology-based ranking
and list 2 is the SIR dynamics-based ranking. If (xi − xj ) has
the same sign as (yi − yj ), the two lists give the same relative
ranking of node i and node j . Therefore, a large τ implies a
more concordant relation between two methods of ranking the
nodes.

For spreading processes, it is also important to quantify the
accuracy in pinpointing the most influential spreaders. For a
topology-based measure θ , e.g., some kind of node centrality,
let Mθ (p) be the average spreading efficiency of the pN nodes
carrying the highest measure θ . Similarly, let Meff(p) be the
average spreading efficiency of pN nodes carrying the highest
actual spreading efficiency according to the SIR dynamics.
The imprecision function [6]

εθ (p) = 1 − Mθ (p)

Meff(p)
(2)

quantifies how close to the actual spreading is the average
spreading of the pN nodes based on centrality measure. A
smaller εθ represents a higher accuracy of θ in identifying the
most influential spreaders.

III. DYNAMICAL IMPORTANCE OF EDGES
AND WEIGHTED NODE CENTRALITY

The dynamical importance of an edge is analyzed by
focusing on the spreading dynamics and the edge’s local
structure. This leads to the necessity of assigning bidirectional
and asymmetric weights to an edge. A node strength s can then
be defined to quantify the impact of a node on spreading. An
s-shell decomposition method is proposed to be a reliable way
of ranking the nodes for spreading processes.

A. Dynamical importance of edges

Figure 1 shows part of a network. When a disease originates
from node i and spreads along the edge eij , node j will be
infected first. Once node j is infected, it could spread to
other parts of the network through node j ’s outgoing edges,
which are edges that connect node j to nodes that are not
in i’s neighborhood. The number of outgoing edges from j is
denoted by kout

j and it is 3 in the example of Fig. 1. Note that kout
j

should depend on the node i, as j must be a neighboring node
of i. In contrast, the edge eik has zero outgoing edges after

FIG. 1. Local structure of a network emphasizing the role of the
link eij in spreading a disease from node i to node j and then to
reach out to nodes that node i itself cannot reach. The same link
eji , however, plays a different role as it does not help spread the
disease to nodes beyond the reach of node j after it infects node i.
The asymmetry requires the assignment of directional weights with
wij �= wji .

it is infected by node i. Therefore, the edge eij is expected
to be more important in that it is more likely to lead to a
larger infected area than confining the infection to node i’s
neighborhood as eik does [18,39]. We are therefore motivated
to introduce a measure to distinguish the different importance
of edges in a spreading process, even though the links may be
unweighted in the construction of the network.

For our purpose, we define a weight wij for an edge eij by

wij = 1 + (
kik

out
j

)a
(3)

to represent its importance in a spreading process from node i

to node j . The first term stands for the basic effect of infecting
the direct neighbor j of node i through the edge. We test
the result of neglecting this element and find that the ranking
accuracy is not as good as keeping it, implying that the basic
effect of an edge on the direct neighbor should not be neglected.
The factor kout

j is included to reflect the potential impact of
node i through infecting its neighbor j . The product kik

out
j

include the degree of node i in the consideration. The idea can
be illustrated by considering a leaf node (node of degree 1)
connected to a hub (a node of large degree), the number of
outgoing links is very large for this leaf node. However, its
impact is not necessarily high because only when it and its
neighboring hub are infected could the infection spread to the
other part of the network. The parameter a serves to tune the
contribution of kik

out
j to the importance of edge eij .

The presence of (kik
out
j )a emphasizes the asymmetric

importance of an edge. The weight wij is different from
wji for the same link connecting node i and node j . From
Eq. (3), wji = 1 + (kjk

out
i )a , which measures the importance

of the edge eji when a spread goes from node j to node i

along the link eji and then moves on to other parts of the
network. Note that wij �= wji generally as they are defined
by considering the neighborhoods of the neighbors of node
i and node j , respectively. Given a network, wij and wji

can be evaluated entirely based on the network topology and
they label every edge to better reflect the bidirectional and yet
asymmetric contributions of the edge in spreading processes.
There are many other ways to define the edge weight from the
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network topology [30,33]. For example, the edge multiplicity
is defined as the number of triangles an edge participates in
Ref. [42]. This method defines the weight symmetrically in
both directions and focuses on the influence of clustering, i.e.,
counting the number of nodes that are both first and second
neighbors. This idea is partly in contrast to our method of
weakening the effect of nodes that are both first and second
neighbors. While the edge multiplicity focuses on the effect
of spreading in the first neighborhood, our way of defining
the link impact considers further steps of spreading out of the
first neighborhood, thus resulting in asymmetrically defined
weights.

B. Node strength and s-shell decomposition

It will be advantageous to introduce a node-level quantity
analogous to the degree to quantify the importance of a
node in spreading dynamics. This will put the computational
complexity at the same level as those based on the degree and
k-shell decomposition. Motivated by the idea of a weighted
degree [22] that the strength of a node in a weighted graph is
the sum of the weights of its edges, we define the strength si

of a node i by

si =
∑

j∈�i

wij , (4)

where the summation is over the nodes j belonging to the
neighborhood �i of node i. Invoking wij in the definition of si

makes it a better measure in quantifying a node’s importance
in spreading dynamics.

We propose an s-shell decomposition method as an exten-
sion of the k-shell decomposition. The algorithm is as follows.
With the strengths si evaluated for all nodes, the algorithm
starts with removing the nodes with the smallest strength sm

and the links associated with the nodes. Let node i be removed.
The strength of its neighboring node j is then updated to
sj − wji as the edge eij is removed. Continue to remove nodes
with strength less than or equal to sm until no such nodes
remains. The deleted nodes are assigned an s-shell index of
ss = 1, where the variable emphasizes that the decomposition
is based on the nodes’ strength and the subscript represents a
shell. Next find the smallest strength in the remaining network
and remove nodes in the same way as before; the nodes so
removed are assigned the index ss = 2. This pruning process
is continued until all nodes are removed and assigned an ss

index. This s-shell index of a node reflects the order (hierarchy)
of a node being removed in the pruning process and can be
regarded the weighted coreness of the node, emphasizing its
importance in the spreading dynamics.

IV. PERFORMANCE IN IDENTIFYING INFLUENTIAL
SPREADERS IN REAL-WORLD NETWORKS

To examine the effectiveness of using the node strength
and weighted coreness in identifying influential spreaders, we
apply the measures to nine real-world networks as listed in
Table I. The networks studied are CA-Hep (giant connected
component of collaboration network of arXivs in high-energy
physics theory) [43], Astro (collaboration network of as-
trophysics scientists) [44], Emailcontact (email contacts at

TABLE I. Properties of the real-world networks studied in this
work. Structural properties of the number of nodes N , number
of edges E, average degree 〈k〉, degree assortativity r , clustering
coefficient C, epidemic threshold λc, infection probability λ used in
the SIR dynamics, and the optimal value of a as given by Kendall’s
τ correlation coefficient aopt.

Network N E 〈k〉 r C λc λ aopt

CA-Hep 8638 24806 5.7 0.239 0.482 0.08 0.12 1.0
Astro 14845 119652 16.1 0.228 0.670 0.02 0.05 0.9
Emailcontact 12625 20362 3.2 −0.387 0.109 0.01 0.10 0.3
PGP 10680 24340 4.6 0.240 0.266 0.06 0.19 1.0
Blog 3982 6803 3.4 −0.133 0.284 0.08 0.27 0.9
AS 22963 48436 4.2 −0.198 0.230 0.004 0.13 0.2
Router 5022 6258 2.5 −0.138 0.012 0.08 0.27 0.7
Hamster 2000 16097 16.1 0.023 0.540 0.02 0.04 0.8
Netsci 379 914 4.8 −0.082 0.741 0.14 0.30 0.8

Computer Science Department of University College London)
[6], PGP (an encrypted communication network) [45], Blog
[the communication relationships between owners of blogs on
the MSN (Windows Live) Spaces website] [46], AS (Internet
at the autonomous system level) [47], Router (the router level
topology of the Internet, collected by the Rocketfuel Project)
[48], Hamster (friendships and family links between users of
the website hamsterster.com) [49], and (9) Netsci (collabo-
ration network of network scientists) [50]. Our measures are
found to outperform predictions based on the degree centrality
and k-shell decomposition, as we now show.

A. Performance of node strength

From the structure of each network, every node carries a
degree ki and a node strength si . Using the SIR dynamics,
the spreading efficiency Mi of each node can be obtained by
simulations. Figure 2 compares the correlations between the
spreading efficiency with the node strength and with the degree
in nine real-world networks. Here we set a = 0.5 in Eq. (3) in
determining wij for the edges. The sensitivity to the parameter
a will be discussed later. The strength and the degree are both
positively correlated with the spreading efficiency. The merit
of using the strength over the degree as a measure is that its
value covers a much wider range and it can distinguish the
spreading efficiency more specifically. This advantage is built
into the definition of the node strength as it captures the key
elements in the spreading dynamics.

The node strength provides a ranking of the nodes. This list
can be compared with the list based on the actual spreading
efficiency by calculating Kendall’s τ correlation coefficient.
We calculate the ranking correlation of nodes’ spreading
efficiency and their strength for different values of a and
obtained τ (a), as shown in Fig. 3 (squares). For a = 0 [see
Eq. (4)], si reduces to the degree ki and thus τ (a = 0) measures
the correlation between the rankings based on the degree and
the spreading efficiency. Note that τ is significantly enhanced
for a > 0, implying that the node strength, which includes the
bidirectional and asymmetric weights of the edges, ranks the
nodes more accurately. Results in Fig. 3 further show that there
exists an optimal value of a for each network at which τ is
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FIG. 2. Mean spreading efficiency M of nodes as classified by
their degree k (black squares) or their node strength s (red circles)
in nine real-world networks. As the node strengths are real numbers
instead of integers, data are grouped in intervals of size unity. The
corresponding average spreading efficiency and node strength in each
interval are displayed, starting from the minimal strength. The real-
world networks are (a) CA-Hep, (b) Astro, (c) Emailcontact, (d) PGP,
(e) Blog, (f) AS, (g) Router, (h) Hamster, and (i) Netsci.

a maximum. The optimal value of each network is given in
Table I, together with the other network properties. Figure 3
also shows the τ (a) obtained by ranking the nodes according
to the s-shell index. The results will be discussed later.

Figure 4 shows the imprecision function of the ranking
based on the node strength, together with the results based
on the degree and k-shell index for comparison. Recall that
a lower imprecision implies a higher accuracy in identifying

FIG. 3. Kendall’s τ correlation coefficients evaluated between the
actual spreading efficiency of the nodes and the ranking based on node
strength (black square) and based on the s-shell index (red circle) for
different values of the parameter a in Eq. (3). The real-world networks
are (a) CA-Hep, (b) Astro, (c) Emailcontact, (d) PGP, (e) Blog, (f) AS,
(g) Router, (h) Hamster, and (i) Netsci.

FIG. 4. Imprecision of rankings based on the degree (k, black
squares), k-shell index (kS , red circles), and node strength (s, blue
triangles) evaluated at the optimal value of a as a function of p for nine
real-world networks. The node strength provides a better measure
for identifying influential spreaders. The real-world networks are
(a) CA-Hep, (b) Astro, (c) Emailcontact, (d) PGP, (e) Blog, (f) AS,
(g) Router, (h) Hamster, and (i) Netsci.

the influential spreaders. The node strength (triangles) give an
imprecision that is less than 0.1 for all p in nearly all cases.
Only in the network Netsci is the imprecision slightly larger
than 0.1 for a few values of p. The results show that the
node strength outperforms the degree (squares) in almost all
networks. Only in the network Hamster do the imprecisions
based on node strength and on the degree become comparable,
but they are both small. The node strength is therefore a
better index for pinpointing the influential spreaders than the
degree. More noticeable is that the node strength performs
even better than the k-shell index in most cases, except at
some small values of p in the AS and Netsci networks.
The k-shell index is regarded as an efficient measure for
identifying influential spreaders and it is widely used in
ranking algorithms. However, the assignment of a k-shell
index requires a complete network structure rather than indices
relying solely on the local structure such as the degree or the
node strength. The node strength introduced here provides
not only a more accurate measure, but also a computationally
efficient method in handling large-scale networks.

B. Performance of weighted coreness

The k-shell index works better than the degree in identifying
influential spreaders [39]. Here we investigate how the s-shell
index ss or weighted coreness works in comparison to the other
measures. The results of Kendall’s τ correlation of ss ranking
in Fig. 3 suggest that it is a better measure than using the
node strength in eight systems out of nine. In the Emailcontact
network, ss and s rankings work equally well. In fact, the ss

and s rankings approach the same value of τ as a increases.
Given that the optimal values of a in the networks are less than
or equal to 1, the weighted coreness gives a better ranking.
Note that the a = 0 case gives the value of τ corresponding to
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FIG. 5. Imprecision of rankings based on the node strength (s,
black dash) and weighted coreness (ss , red solid) obtained by s-shell
decomposition as a function of p. The weighted coreness ss provides
a further improvement over s in identifying influential spreaders. The
real-world networks are (a) CA-Hep, (b) Astro, (c) Emailcontact,
(d) PGP, (e) Blog, (f) AS, (g) Router, (h) Hamster, and (i) Netsci.

the k-shell index kS . Using ss to rank the nodes always gives a
higher τ than the a = 0 value, implying that the s-shell index
is also a better measure than the k-shell index.

The imprecision functions of rankings using ss and s are
compared in Fig. 5. Their performances are comparable and
they both work better than measures based on the degree
alone (see Fig. 4). Looking closer, the lower imprecision of ss

ranking in six (CA-Hep, PGP, Blog, AS, Router, and Netsci)
out of nine cases suggests that the s-shell decomposition
method is more accurate in identifying influential spreaders
in real-world networks. Even in the networks of Astro,
Emailcontact, and Hamster in which ss and s work almost
equally well, the imprecision of ss is slightly lower than
or equal to that of s. Only in the Hamster network does
s work slightly better than ss at p = 0.01; even so the
imprecision functions are small (under 0.05) on the absolute
scale.

We analyze the reason why the proposed node strength and
s-shell index outperform the degree and k-shell index. First, the
method proposed herein can identify weak nodes, which have
a low degree but are influential spreaders [51]. For example, a
node i of degree 2 has two neighbors with large outgoing links.
The edges connecting i and its neighbors will be assigned a
large link weight, thus resulting in a large strength, as well as a
large s-shell index. If evaluated by degree and the k-shell index,
node i will be ranked low as a less important node. Second, the
methods proposed herein can identify nodes that are in fact not
influential spreaders but are ranked high by degree and k-shell
index, which form a local clique structure [39]. For example, in
the real-world network CA-Hep, there exists a cliquelike local
structure composed of 32 mutually connected nodes with very
few outgoing links. In our methods, the edges of these nodes
will be assigned low weights, due to the very few or even no
outgoing links, thus having a low strength and s-shell index. If

FIG. 6. Imprecision of rankings based on the degree (k, black
squares), k-shell index (kS , red circles), and node strength (s, blue
triangles) evaluated by a = 0.5 for nine real-world networks as a
function of p. The real-world networks are (a) CA-Hep, (b) Astro,
(c) Emailcontact, (d) PGP, (e) Blog, (f) AS, (g) Router, (h) Hamster,
and (i) Netsci.

evaluated by the k-shell index, these nodes have the maximal
k-shell index of 31 in the network.

Though we use the SIR spreading dynamics to obtain the
spreading influence of each node, which can be interpreted as a
percolation process, previous researches have pointed out the
correlation between the existence of a large component and
the ratio of the average number of second and first neighbors
[52,53]. In Ref. [53] the authors indicated that clustering
strongly affects the percolation properties and size of a giant
component. By avoiding the edges that are responsible for
clustering, the percolation properties of clustered random
networks can be computed correctly. This idea is very similar
to our way of defining the dynamical importance of edges,
which synthesizes the first and second neighbors but neglects
the nodes that are both first and second neighbors. This
guarantees that the contribution of triangles is not overcounted.
How to use the percolation theory to distinguish the influence
of each node requires further exploration [54,55]. For example,
researchers used the optimal percolation and message-passing
method to predict the spreading influence of nodes and the
proposed index counts the degree of nodes that is at a certain
distance from the central node [51].

C. Robustness of proposed weighted centrality

So far, we have used the optimal value of a to evaluate
wij and si and compared our results with other measures.
However, the optimal value is not often known precisely in
real applications. It will be useful to examine the performance
of the node strength si for some arbitrarily chosen value of a.
Let us set a = 1/2 so that the term (kik

out
j )a in wij represents a

geometric mean. The comparison in Fig. 6 of the imprecision
function shows that si ranking gives a lower imprecision than
the degree and k-shell index. An interesting point is that the
imprecision of node strength evaluated at a = 1/2 is even
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FIG. 7. Imprecision of rankings based on the node strength (s,
black dashed line) and weighted coreness (ss , red solid line) obtained
by s-shell decomposition for a = 1/2 as a function of p. The real-
world networks are (a) CA-Hep, (b) Astro, (c) Emailcontact, (d) PGP,
(e) Blog, (f) AS, (g) Router, (h) Hamster, and (i) Netsci.

lower than that evaluated at the optimal value of a in the AS
network for p < 0.1. The result indicates that although the
best performing overall ranking correlation coefficient occurs
at some optimal a, the same value does not necessarily give
the best identification of the most influential spreaders.

Figure 7 compares the effectiveness of the node strength
and the s-shell decomposition for a = 1/2. Again, the s-shell
index works better in most cases. In fact, the results resemble
those in Fig. 5 when the optimal a is used. These results
further support the assertion that the node strength and the
corresponding s-shell index are better measures for spreading
processes than methods based on the degree. Between them,
the s-shell index performs slightly better, but evaluating the
index requires more computing effort than the node strength
alone.

V. CONCLUSION

The roles of nodes and edges in deciding the structural
properties of a network should be carefully distinguished from
their roles in determining the extent of spreading processes.
Although an edge between nodes i and j certainly helps spread
a disease, its role may be different when the infection goes
from i to j than in the other direction. This is because what
matters is whether the node j , after infected by i, would reach
out to other nodes that node i itself could not reach. If so,
the link carries a greater importance for infection from i to
j , which is quantified by a higher weight wij for the link. It
is therefore necessary to invoke asymmetric and bidirectional
weights with wij �= wji for a link so as to capture the dynamics
in spreading processes. Here we introduced a form of wij [see
Eq. (3)] and showed that it facilitates accurate ranking in the
node’s importance. Pictorially, the network is better described
by the nodes connected by links with asymmetric weights in
different directions when spreading dynamics is concerned.

FIG. 8. Kendall’s τ correlation coefficients evaluated between the
actual spreading efficiency of the nodes and the rankings based on
weighted coreness ss (red circles) as obtained by assigning asym-
metric weighting wij of Eq. (3) to the links and based on weighted
coreness s ′

s (black square) by assigning symmetric weighting w′
ij of

Eq. (5) to the links. The necessity of invoking asymmetric weights
is demonstrated by the higher accuracy in the ranking based on ss

rather than on s ′
s . The real-world networks are (a) CA-Hep, (b) Astro,

(c) Emailcontact, (d) PGP, (e) Blog, (f) AS, (g) Router, (h) Hamster,
and (i) Netsci.

To establish the effectiveness of our method, the weights
of the links were used to construct a node strength s that
predicts the importance of a node in spreading processes. An
s-shell decomposition scheme based on the node strength was
then introduced. The s-shell index ss of the nodes provides
another way of ranking them. Applying s and ss rankings
to nine real-world networks, it was found that our measures
generally outperform the standard rankings based on the
degree of the nodes and the k-shell decomposition method.
Superiority is shown in both the overall performance of the
ranking as indicated by Kendall’s τ correction coefficient and
in identifying the influential spreaders as indicated by the
imprecision.

The success of our measure relies on the asymmetry in
the weights contained in wij and wji . To stress the point, we
constructed a related network with weighted links, but the
weights are symmetric by assigning a weight w′

ij to a link
according to

w′
ij = 1

2 (wij + wji), (5)

with wij given by Eq. (3). The weights w′
ij can then be used to

assign a strength s ′ to the nodes and a corresponding s-shell
decomposition based on s ′ can be carried out to assign an index
s ′
s to each node. Figure 8 compares Kendall’s τ correlation of

rankings based on ss and s ′
s with the actual SIR spreading

efficiency for different values of the parameter a. In all cases,
the measure with asymmetric weights ss works better than
that without the asymmetry. In the Emailcontact and Hamster
networks, the two measures are equally accurate. The results
confirm that it is important to include the different roles of

022323-7



YING LIU, MING TANG, YOUNGHAE DO, AND PAK MING HUI PHYSICAL REVIEW E 96, 022323 (2017)

a link in spreading a disease between nodes i and j in two
different directions into the construction of a reliable measure.

In summary, we proposed a node strength as an alternative
centrality measure for efficient and accurate identification of
influential spreaders. The idea of examining the functionality
of a link in spreading in either direction is a general one and
thus could be further developed for ranking a set of objects. As
the current method only considers one step, it may be extended
to further steps. Consider if node j in Fig. 1 has three outgoing
nodes that are leaf nodes, while node k has only one outgoing
node which further connects to many nodes. Whether taking
further steps into consideration is a better choice for defining
the dynamical link weights needs to be verified in future
research. Previous results indicated that taking the two-step
neighborhood into consideration balanced the calculation cost
and ranking accuracy the best in a ranking method [56].
Although we work on defining the link weight from the
network structure, it is worth considering how to integrate the
artificial link weight with real weight on weighted networks.
We think that the formation of a network structure depends
on the function of the network elements of nodes and links.

Thus, the artificial link weight defined by the structure and
the real weight on weighted networks that reflects the function
may be highly correlated. How to merge and balance these
two features in weighted networks is a valuable question to be
explored in future work. In addition, we used the SIR model
as the spreading dynamics. However, the idea of invoking
asymmetric weights wij �= wji for a link remains valid for
other processes such as rumor spreading and information
diffusion, although the exact form of the weights may depend
on the details of the process under consideration.
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