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Characterizing complicated behavior from time series constitutes a fundamental problem of con-
tinuing interest and it has attracted a great deal of attention from a wide variety of fields on
account of its significant importance. We in this paper propose a novel wavelet multiresolu-
tion complex network (WMCN) for analyzing multivariate nonlinear time series. In particular,
we first employ wavelet multiresolution decomposition to obtain the wavelet coefficients series
at different resolutions for each time series. We then infer the complex network by regarding
each time series as a node and determining the connections in terms of the distance among the
feature vectors extracted from wavelet coefficients series. We apply our method to analyze the
multivariate nonlinear time series from our oil–water two-phase flow experiment. We construct
various wavelet multiresolution complex networks and use the weighted average clustering coef-
ficient and the weighted average shortest path length to characterize the nonlinear dynamical
behavior underlying the derived networks. In addition, we calculate the permutation entropy
to support the findings from our network analysis. Our results suggest that our method allows
characterizing the nonlinear flow behavior underlying the transitions of oil–water flows.

Keywords : Nonlinear time series analysis; wavelet multiresolution; complex network; oil–water
flows.

1. Introduction

Characterizing dynamical processes in a time-
dependent complex system from observed time
series of just one or at most a few variables is a
fundamental problem of significant importance in
many research fields. Different nonlinear time series
analysis methods have been developed to fulfill this

challenging task, e.g. chaotic analysis [Daw et al.,
1995], permutation entropy [Bandt & Pompe, 2002],
recurrence plot [Marwan et al., 2007]. Nonlin-
ear time series analysis has been broadly adopted
in scientific research and engineering applications.
Many theoretical developments and new methods
for nonlinear time series analysis have significantly
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contributed to the understanding of complex sys-
tems. Complex network originates from graph the-
ory, which is an abstract description of the complex
system, consisting of nodes and the edges between
the nodes [Wang et al., 2016a; Boccaletti et al.,
2014; Zou et al., 2015; Kim et al., 2013; Huang
et al., 2014; Lu et al., 2013; Kenett et al., 2015;
Lu & Chen, 2005; Feldhoff et al., 2012]. Recently,
the complex network theory has been incorporated
into the analysis of time series and many suc-
cessful applications have been achieved in differ-
ent research fields [Wang et al., 2016b; Zhang &
Small, 2006; Zhang et al., 2008; Xu et al., 2008;
Lacasa et al., 2008; Marwan et al., 2009; Majhi
et al., 2016; Wang et al., 2015; Xiang et al., 2012;
Marwan & Kurths, 2015; Peng et al., 2013; Wang
et al., 2012; Huang et al., 2012; Livi et al., 2016;
Wang et al., 2011; Donges et al., 2012; Gao et al.,
2015a; Gao et al., 2016a, 2016b; Gao et al., 2017;
Shen et al., 2014; Jachan et al., 2009; Nakamura
et al., 2016], including turbulence [Liu et al., 2010;
Scarsoglio et al., 2016], brain network [Zhang et al.,
2016], traffic network [Tang et al., 2016], climate
network [Donges et al., 2011], sunspots [Zou et al.,
2014] and multiphase flows [Gao et al., 2013; Mos-
dorf & Górski, 2015], etc. Despite the existing
results [Schelter et al., 2014], network-based meth-
ods dedicated to analyzing multivariate nonlinear
time series still remain much to be developed. More-
over, most of the complex network inference meth-
ods do not pay much attention to the character-
istics of the time series at different resolutions,
which is of great value in the analysis of multi-
variate nonlinear time series. And in multiresolu-
tion analysis domain, the wavelet transform is a
powerful mathematical tool which can not only get
the frequency domain characteristics (correspond-
ing to the global characteristics) of the signal, but
also the local characteristics. In addition, one of
the advantages of wavelet transform techniques is
the ability to deal with nonstationary time series,
which are very common in the analysis of mul-
tivariate nonlinear time series, given the continu-
ous presence of abrupt changes and volatility. The
wavelet analysis has been widely incorporated into
the analysis of time series and many successful
applications have been achieved in different research
fields [Kao et al., 2013; Jammazi, 2012; He et al.,
2012; Goyal & Mehra, 2017]. In this regard, we
in this paper propose a novel wavelet multiresolu-
tion complex network (WMCN), which enables to

characterize dynamical behavior from multivari-
ate nonlinear time series at different resolutions.
We take the multivariate nonlinear time series
from experimental oil–water flows as an example
to demonstrate the effectiveness of our approach.
Vertical oil–water two-phase flow exists in a wide
range of industrial applications, such as petroleum
industry, chemical industry and energy. The mul-
tiphase flow [Gao et al., 2013; Gao et al., 2015b;
Deising et al., 2015] is a typical nonlinear dynamic
system and numerous studies have been carried
out. In particular, characterization of nonlinear flow
behavior from flow signals has attracted a lot of
attention. Moreover, as the appearance of multi-
electrode sensor [Gao et al., 2016c], the acquisi-
tion of multichannel flow signals becomes possible.
However, the sensor measurements acquired from
oil–water flows usually consist of lots of nonsta-
tionary multiresolution components, which bring
many difficulties for the characterization of complex
dynamical behaviors in such a complex system. In
this regard, a novel method is required to realize
the multichannel information fusion and multivari-
ate nonlinear time series analysis. We demonstrate
that our WMCN method enables to fulfill this chal-
lenging task. We infer and analyze WMCN from
experimental multivariate flow signals at different
resolutions. The results suggest that our method
is capable of obtaining the essential and impor-
tant flow information at different resolutions and
further allows uncovering the complicated nonlin-
ear flow dynamical behaviors governing the transi-
tions of three typical oil-in-water flow patterns. We
also carry out the permutation entropy analysis to
demonstrate the effectiveness of WMCN. The com-
bination of wavelet multiresolution technique and
multivariate complex network opens up new venues
to address the challenge in multivariate nonlinear
time series.

2. Methodology

Wavelet multiresolution technique allows us to
decompose a time series into some wavelet coeffi-
cients series, including details and approximations.
As an efficient signal processing method, wavelet
multiresolution technique has been widely used in
image processing [Tee et al., 2011], EEG signal anal-
ysis [Guler & Ubeyli, 2005], etc. For a multivari-
ate nonlinear time series {xk,l}L

l=1, k = 1, 2, . . . , S
with S subsignals of equal length L, we first use
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the wavelet multiresolution technique to obtain the
wavelet coefficients series at different resolutions for
each time series. All wavelet transforms can be spec-
ified in terms of a low-pass filter h, which satisfies
the standard quadrature mirror filter condition:

H(z)H(z−1) + H(−z)H(−z−1) = 1, (1)

where H(z) denotes the z-transform of the fil-
ter h. Correspondingly, the high-pass filter g can
be defined as:

G(z) = zH(−z−1). (2)

A sequence of filters with increasing length (indexed
by i) can be obtained:

Hi+1(z) = H(z2i)Hi(z), i = 0, . . . , I − 1, (3)

Gi+1(z) = G(z2i)Hi(z), i = 0, . . . , I − 1. (4)

The normalized wavelet and resolution basis func-
tion can be defined as

Φi,l(k) = 2i/2hi(k − 2il), (5)

Ψi,l(k) = 2i/2gi(k − 2il), (6)

where the factor 2i/2 is an inner product normal-
ization, i and l are the resolution parameter and
the translation parameter, respectively. Therefore,
the discrete wavelet transform decomposition can
be described as:

CAi(l) = x(k)Φi,l(k), (7)

CD i(l) = x(k)Ψi,l(k). (8)

In this paper, we choose the Daubechies2
wavelet [Lina & Mayrand, 1995] and set the max-
imum resolution as six. Thus a multivariate non-
linear time series {xk,l}L

l=1, k = 1, 2, . . . , S can be
decomposed into six details {CD i

n}k, i = 1, 2, . . . , 6,
k = 1, 2, . . . , S, n = 1, 2, . . . , N and approxima-
tions {CAi

n}k, i = 1, 2, . . . , 6, k = 1, 2, . . . , S, n =
1, 2, . . . , N , where i represents the resolution, and
the larger i is, the higher the resolution will be;
N is the length of the wavelet coefficients series
corresponding to the resolution i. We decompose
each single time series, for example {xk,l}L

l=1, k =
1, 2, . . . , S, into 12 wavelet coefficients series at six
different resolutions and six are for details, six for
approximations. Under each resolution, we extract
12 statistical features of wavelet coefficients series
as follows:

(a) Maximum of the wavelet coefficients series in
each subband:

xi
k,A1 = max{CAi

n}k, i = 1, 2, . . . , 6,

n = 1, 2, . . . , N, k = 1, 2, . . . , S,

(9)

xi
k,D1 = max{CD i

n}k, i = 1, 2, . . . , 6,

n = 1, 2, . . . , N, k = 1, 2, . . . , S.

(10)

(b) Minimum of the wavelet coefficients series in
each subband:

xi
k,A2 = min{CAi

n}k, i = 1, 2, . . . , 6,

n = 1, 2, . . . , N, k = 1, 2, . . . , S,

(11)

xi
k,D2 = min{CD i

n}k, i = 1, 2, . . . , 6,

n = 1, 2, . . . , N, k = 1, 2, . . . , S.

(12)

(c) Mean of the wavelet coefficients series in each
subband:

xi
k,A3 =

1
N

N∑
n=1

{CAi
n}k, i = 1, 2, . . . , 6,

n = 1, 2, . . . , N, k = 1, 2, . . . , S,

(13)

xi
k,D3 =

1
N

N∑
n=1

{CD i
n}k, i = 1, 2, . . . , 6,

n = 1, 2, . . . , N, k = 1, 2, . . . , S.

(14)

(d) Standard deviation of the wavelet coefficients
series in each subband:

xi
k,A4 =

√√√√ 1
N − 1

N∑
n=1

(CAi,k
n − xi

k,A3)
2,

i = 1, 2, . . . , 6, n = 1, 2, . . . , N,

k = 1, 2, . . . , S, (15)

xi
k,D4 =

√√√√ 1
N − 1

N∑
n=1

(CD i,k
n − xi

k,D3)
2,

i = 1, 2, . . . , 6, n = 1, 2, . . . , N,

k = 1, 2, . . . , S. (16)
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(e) Steepness function of the wavelet coefficients
series in each subband:

xi
k,A5 =

1
N − 1

N∑
n=1

(CAi,k
n − xi

k,A3)
3

(xi
k,A4)3

,

i = 1, 2, . . . , 6, n = 1, 2, . . . , N,

k = 1, 2, . . . , S, (17)

xi
k,D5 =

1
N − 1

N∑
n=1

(CD i,k
n − xi

k,D3)
3

(xi
k,D4)3

,

i = 1, 2, . . . , 6, n = 1, 2, . . . , N,

k = 1, 2, . . . , S. (18)

(f) Kurtosis function of the wavelet coefficients
series in each subband:

xi
k,A6 =

1
N − 1

N∑
n=1

(CAi,k
n − xi

k,A3)
4

(xi
k,A4)

4
,

i = 1, 2, . . . , 6, n = 1, 2, . . . , N,

k = 1, 2, . . . , S, (19)

xi
k,D6 =

1
N − 1

N∑
n=1

(CD i,k
n − xi

k,D3)
4

(xi
k,D4)4

,

i = 1, 2, . . . , 6, n = 1, 2, . . . , N,

k = 1, 2, . . . , S. (20)

Then we construct a new feature vector {Xi
k},

i = 1, 2, . . . , 6, k = 1, 2, . . . , S for each single time
series as follows

X i
k = {xi

k,A1, x
i
k,A2, x

i
k,A3, x

i
k,A4, x

i
k,A5, x

i
k,A6,

xi
k,D1, x

i
k,D2, x

i
k,D3, x

i
k,D4, x

i
k,D5, x

i
k,D6},

(21)

where xi
k,A1 is the normalized value of xi

k,A1 given
by the following formula and for the others:

xi
k,A1 =

[xi
k,A1 − min(xi

k,A1)]

[max(xi
k,A1) − min(xi

k,A1)]
,

k = 1, 2, . . . , S. (22)

We regard each time series as a node and then
determine the connections between nodes p and q
in terms of the distance between the feature vectors
extracted from time series p and q as follows

ri
p,q = ‖X i

p − Xi
q‖

=

√√√√ 6∑
c=1

(xi
p,Ac − xi

q,Ac)2 +
6∑

c=1

(xi
p,Dc − xi

q,Dc)2,

c = 1, 2, . . . , 6, p = 1, 2, . . . , S,

q = 1, 2, . . . , S, i = 1, 2, . . . , 6. (23)

The above operations allow us to obtain a distance
matrix Ri, i = 1, 2, . . . , 6 for six resolutions. Then
we choose the threshold

rr i = M i + nσi, (24)

where M i is the mean of the distance matrix Ri,
i = 1, 2, . . . , 6 and σi is the corresponding standard
deviation and n = 0.10. We can then obtain the
network adjacency matrix RAi

pq of the size S × S
at different resolutions i = 1, 2, . . . , 6 through the
following rule:

RAi
pq =


ri

pq, ri
pq ≤ rri

0, ri
pq > rri

,

p = 1, 2, . . . , S, q = 1, 2, . . . , S,

i = 1, 2, . . . , 6, (25)

where RAi
pq represents the weight of edges in com-

plex networks. That is, a weighted edge between
nodes p and q exist if ri

pq ≤ rri; otherwise, nodes
p and q are disconnected. The topological structure
of the derived complex network can be described by
RAi

pq. Therefore, we can obtain a wavelet multireso-
lution complex network (WMCN), which consists of
six adjacency matrices at six different resolutions.

Our method allows mapping a multivariate
nonlinear time series into weighted complex net-
works at different resolutions, which can be quanti-
tatively characterized via network measures [Anto-
niou & Tsompa, 2008]. We use the weighted average
clustering coefficient and weighted average short-
est path length to characterize the derived weighted
complex networks. The weighted average clustering
coefficient Ci

RAi is defined as:

Ci
RAi =

1
S

S∑
v=1

CRAi(v), (26)
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Ci
RAi(v) =

∑
p,q

RAi
vpRAi

pqRAi
qv

∑
p,q

RAi
vpRAi

qv

, p �= q,

(27)

where RAi
vp is the weight between the nodes v and

p, i.e. the element of weighted matrix RAi, Ci
RAi(v)

is the weighted clustering coefficient of each node v.
The weighted average shortest path length Li

RAi is
defined as:

Li
RAi =

1
S(S − 1)

∑
p,q∈S,p �=q

di
pq, (28)

di
pq = min

γ(p,q)∈Γ(p,q)

[ ∑
m,n∈γ(p,q)

RAi
mn

]
, (29)

where RAi
pq is the weight between nodes p and q,

di
pq is the weighted shortest path between nodes p

and q, and γ(p, q) is a path from nodes p and q and
Γ(p, q) is the class of paths from p to q.

3. WMCN Analysis of Multivariate
Nonlinear Flow Signals

We carry out the vertical oil–water two-phase flow
experiment in the multiphase flow facility, where the
inner diameter of the plexiglas pipe is 20 mm. The
experimental process is as follows: first, we fix the
water-cut (Kw), and gradually increase the mixture
flow velocity (Vm). And then, through changing the

water-cut, we repeat the above operation to gener-
ate all flow conditions. The sampling rate is 4 kHz
and the sampling duration for each flow condition is
30 s. For each flow condition, a novel HCMC sensor
(High-speed Cycle Motivation Conductance sensor)
is employed to acquire 48 channel time series from
different spatial locations. The HCMC sensor allows
capturing the local oil-in-water flow information in
different spaces. Meanwhile, we use the snapshots
from high-speed video camera to define different
experimental flow patterns. During the experi-
ments, we have observed three oil-in-water flow pat-
terns: slug flow (D OS/W), bubble flow (D O/W)
and very fine dispersed bubble flow (VFD O/W).

We implement our WMCN method to analyze
the multivariate nonlinear flow signals. In particu-
lar, we infer various complex networks at different
resolutions for each flow condition. Note that, we
choose the proper resolution for different flow pat-
terns, with the aim of obtaining the essential and
important flow information. The selection of reso-
lutions depends on the distinct movement frequen-
cies of different flow patterns. We then calculate
the weighted network measures for each gener-
ated networks. We show the calculated results in
Figs. 1–4, where Kw represents the fixed water-
cut and Vm represents mixture flow velocity. When
the water-cut and mixture flow velocity are low,
e.g. by fixing Kw = 60% and increasing Vm from
0.0184 m/s to 0.2579 m/s, the oil–water flows grad-
ually evolve from oil-in-water slug flow to oil-in-
water bubble flow. For a low mixture flow velocity,

(a) (b)

Fig. 1. Distributions of the network measures with the change of total mixture flow velocity for different flow conditions for
a fixed Kw = 60%. (a) Weighted average clustering coefficient and (b) weighted average shortest path length.
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(a) (b)

Fig. 2. Distributions of the network measures with the change of total mixture flow velocity for different flow conditions for
a fixed Kw = 84%. (a) Weighted average clustering coefficient and (b) weighted average shortest path length.

the oil–water flows appear as vertical oil-in-water
slug flow (D OS/W). The nonlinear flow dynam-
ical behavior underlying this flow pattern lies in
the nonlinear quasi-periodic movements of large oil
slugs, trailed by some small oil droplets. The flow
structure of D OS/W flow presents a nonhomoge-
neous distribution characteristic. Specifically, the
oil slugs can simultaneously impact more than one
channel when the flows pass through the designed
sensor. The nonlinear signals from D OS/W flow
exhibit the features of chaotic oscillations. Conse-
quently, the network from D OS/W flow presents

a high value of weighted average clustering coeffi-
cient and a low value of weighted average shortest
path length. As the mixture flow velocity constantly
increases, the turbulence energy is enhanced, lead-
ing to the breakage of large oil slugs and the forma-
tion of small oil bubbles. That is, a transition from
oil-in-water slug flow (D OS/W) to oil-in-water bub-
ble flow (D O/W) occurs. As shown in Figs. 1–3,
we find that the measures of WMCN allow effi-
ciently characterizing the underlying nonlinear flow
behaviors governing the transition of flow patterns.
Specifically, the complexity and nonlinearity of the

(a) (b)

Fig. 3. Distributions of the network measures with the change of total mixture flow velocity for different flow conditions for
a fixed Kw = 86%. (a) Weighted average clustering coefficient and (b) weighted average shortest path length.
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(a) (b)

Fig. 4. Distributions of the network measures with the change of total mixture flow velocity for different flow conditions for
a fixed Kw = 96%. (a) Weighted average clustering coefficient and (b) weighted average shortest path length.

flow signals gradually become more significant in
such a flow transition, induced by the nonlinear
dynamical movements of large numbers of oil bub-
bles. Meanwhile, the nonhomogeneous distribution
is weakened as the flow evolves from D OS/W flow
to D O/W flow. Correspondingly, the connectivity
of the network is weakened and the connections
between the nodes gradually become sparse. As a
result, the weighted average clustering coefficient
decreases while the weighted average shortest path
length increases in the transition from D OS/W
flow to D O/W flow. When the water-cut and mix-
ture flow velocity are high, e.g. Kw = 96% and Vm

exceeds 0.1842 m/s, the flow pattern evolves from
D O/W flow to very fine dispersed bubble flow
(VFD O/W), in which the oil bubbles are further
crushed into very fine oil droplets, whose diameters
are almost equal. The complexity and nonlinearity
of the flow signals are further strengthened in this
flow transition. As shown in Fig. 4, the weighted
average clustering coefficient further decreases and
the weighted average shortest path length contin-
ually increases in the transition from D O/W flow
to VFD O/W flow, indicating that a mass of oil
droplets flow in a water continuum with a com-
plicated nonlinear dynamics and its flow struc-
ture exhibits a feature of homogeneous distribution.
These interesting results indicate that the WMCN
analysis is capable of characterizing the nonlinear
flow behaviors associated with the flow transitions
from the multivariate nonlinear time series.

4. Permutation Entropy Analysis
of Nonlinear Flow Signals

We calculate the permutation entropy (PE)
[Bandt & Pompe, 2002; Liu et al., 2011] for the
multivariate nonlinear flow signals, aiming at inter-
preting and supporting our MWCN results. The
permutation entropy enables to measure the com-
plexity of a univariate time series. The basic idea
of the permutation entropy can be described as
follows:

Firstly, we embed a one-dimensional time series
{x(i)}, i = 1, 2, . . . , n to a m-dimensional space:

Xi = [x(i), x(i + τ), . . . , x(i + (m − 1)τ)], (30)

where m represents the embedded dimensions and
τ is the delay time. For a given, but otherwise arbi-
trary i, the m number of real value Xi = [x(i),
x(i + τ), . . . , x(i + (m− 1)τ)] can be arranged in an
increasing order:

x[i + (j1 − 1)τ ] ≤ x[i + (j2 − 1)τ ]

≤ · · · ≤ x[i + (jm − 1)τ ]. (31)

When an equality occurs, e.g. x[i + (j1 −
1)τ ] = x[i + (j2 − 1)τ ], we sort them according
to the value of j1 and j2 by the following rules:
If j1 < j2, x[i + (j1 − 1)τ ] < x[i + (j2 − 1)τ ]; else,
x[i + (j1 − 1)τ ] ≥ x[i + (j2 − 1)τ ]. Thus, for each
one-dimensional time series {x(i)}, i = 1, 2, . . . , n,
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Fig. 5. Distributions of permutation entropy of multivariate nonlinear flow signals for three different flow patterns.

we can obtain a set of symbol sequences:

S(l) = (j1, j2, . . . , jm), l = 1, 2, . . . , k, k ≤ m!,
(32)

where S(l) represents one of the m! different symbol
sequences of the m-dimensional phase space map.
The permutation entropy [Bandt & Pompe, 2002]
of time series can be defined as

Hp(m) = −
k∑

j=1

Pj lnPj , (33)

where Pj represents the probability of occurrence of
each symbol sequence. The permutation entropy Hp

allows measuring the complexity of nonlinear time
series.

We calculate the permutation entropy (PE) of
48 channel signals for three different flow patterns
and show the results in Fig. 5, where the distri-
bution of permutation entropy is presented in the
form of a radar map. As can be seen, the permu-
tation entropies of oil-in-water slug flow (D OS/W)
exhibit small values and their distribution is rather
nonuniform, indicating the chaotic quasi-periodic
dynamics of large oil slugs and heterogeneous dis-
tribution of oil phase. For the oil-in-water bubble
flow (D O/W), the value of permutation entropy
of each channel is slowly increasing, and the differ-
ence between the channels is narrowing, suggesting
that the heterogeneity of mixture flow is weakened
and meanwhile the complexity and nonlinearity of
the flow signals become more significant. For the

very fine dispersed bubble flow (VFD O/W), the
distribution of permutation entropy presents a uni-
form feature and the values are large, indicating
that the flow distribution is homogeneous and the
nonlinear dynamics underlying VFD O/W flow is
most complicated among three vertical oil–water
flow patterns. These results well support the find-
ings from WMCN analysis, rendering the WMCN
method potentially powerful for realizing multi-
channel information fusion.

5. Conclusion

In summary, we have articulated a novel wavelet
multiresolution complex network (WMCN) for ana-
lyzing multivariate nonlinear time series. The basic
idea of WMCN is to extract wavelet coefficients
series at different resolutions from each time series
by using wavelet multiresolution decomposition. We
then infer the WMCN by regarding each time
series as a node and determining the connections
in terms of the distance between the feature vec-
tors extracted from wavelet coefficients series. We
infer WMCNs from multivariate nonlinear flow sig-
nals and use the weighted average clustering coeffi-
cient and the weighted average shortest path length
to characterize the derived networks. The results
suggest that our method is capable of uncovering
the chaotic and nonlinear flow behavior governing
the transitions of different oil-in-water flow pat-
terns at different resolutions. In addition, we cal-
culate the distributions of permutation entropy for
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multivariate nonlinear flow signals and the results
well support the findings from WMCN analysis.
Bridging wavelet multiresolution and multivariate
complex network provides a novel methodology for
analyzing multivariate nonlinear time series which
widely exist in nonlinear science and engineering.
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