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r é s u m é

On introduit la notion de courbure harmonique pour les hypersurfaces réelles de 
la quadrique complexe Qm = SOm+2/SOmSO2. On en déduit une classification 
complète des hypersurfaces réelles de Qm = SOm+2/SOmSO2 à tenseur de courbure 
harmonique. Cette classification utilise leur A-principal ou leur champ A-isotrope 
de vecteurs unités normaux.

© 2016 Elsevier Masson SAS. All rights reserved.

1. Introduction

Usually, for a Riemannian manifold (N, g) the Ricci tensor Ric can be regarded as a 1-form with values in 
the cotangent bundle T ∗N . Then a Riemannian manifold N is said to have harmonic curvature or harmonic 
Weyl tensor, if RicN or RicN − rNgN/2(n − 1) for the scalar curvature r is a Codazzi tensor, that is, it 
satisfies

dRic = 0 or d{Ric − rg/2(n− 1)} = 0,

where d denotes the exterior differential. For the harmonic Weyl tensor, it is seen that in the case of n ≥ 4
the Weyl curvature tensor W which is regarded as a 2-form with values in the bundle Λ2T ∗N is closed and 
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coclosed, namely it is harmonic. In the case of n = 3 the Riemannian manifold N is conformally flat (see 
Besse [2]).

In the geometry of real hypersurfaces in complex space forms or in quaternionic space forms it can be 
easily checked that there does not exist any real hypersurface with parallel shape operator A by virtue of 
the equation of Codazzi.

From this point of view many differential geometers have considered a notion weaker than the parallel 
Ricci tensor, that is, ∇Ric = 0. In particular, Kwon and Nakagawa [9] have proved that there are no Hopf 
real hypersurfaces M in a complex projective space CPm with harmonic curvature, that is, (∇XRic)Y =
(∇Y Ric)X for any X, Y in M . Moreover, Ki, Nakagawa and Suh [7] have also proved that there are no real 
hypersurface with harmonic Weyl tensor in non-flat complex space forms Mn(c), c �= 0, n ≥ 3.

Now let us denote by G2(Cm+2) the set of all complex 2-dimensional linear subspaces in Cm+2. Then 
the above situation is not so simple if we consider a real hypersurface in complex two-plane Grassmannians 
G2(Cm+2). Suh [16] has shown that there does not exist any hypersurface in G2(Cm+2) with parallel Ricci 
tensor, that is, ∇Ric = 0, and have investigated the problem related to the Reeb parallel Ricci tensor Ric
for real hypersurfaces M in complex two-plane Grassmannians G2(Cm+2), that is, ∇ξRic = 0 for the Reeb 
vector field ξ tangent to M (see [18]).

The ambient space G2(Cm+2) is known to be the unique compact irreducible Riemannian symmetric 
space equipped with both a Kähler structure J and a quaternionic Kähler structure J = Span{J1, J2, J3}
not including J (see Berndt and Suh [3]).

In other words, G2(Cm+2) is the unique compact, irreducible, Kähler, quaternionic Kähler manifold 
which is not a hyperkähler manifold. So, we have considered the two natural geometric conditions for 
real hypersurfaces M in G2(Cm+2) with unit normal vector field N , that the 1-dimensional distribution 
[ξ] = Span{ξ}, ξ = −JN and the 3-dimensional distribution D⊥ = Span{ξ1, ξ2, ξ3}, ξi = −JiN , i = 1, 2, 3
both are invariant under the shape operator. By using such two geometric conditions and the results in 
Alekseevskii [1], Berndt and Suh [3] proved the following:

Theorem A. Let M be a connected real hypersurface in G2(Cm+2), m ≥ 3. Then both [ξ] and D⊥ are 
invariant under the shape operator of M if and only if

(A) M is an open part of a tube around a totally geodesic G2(Cm+1) in G2(Cm+2), or
(B) m is even, say m = 2n, and M is an open part of a tube around a totally geodesic HPn in G2(Cm+2).

In the proof of Theorem A we proved that the 1-dimensional distribution [ξ] is contained in either the 
3-dimensional distribution D⊥ or in the orthogonal complement D such that TxM = D ⊕D⊥. The case (A)
in Theorem A is just the case that the 1-dimensional distribution [ξ] is contained in the distribution D⊥. 
Of course, it is not difficult to check that the Ricci tensor of any real hypersurface mentioned in Theorem A
is not parallel. Then it must be a natural question to ask whether real hypersurfaces in G2(Cm+2) with 
conditions more weaker than parallel Ricci tensor can exist or not.

From such a view point, Besse [2] has introduced a notion of harmonic curvature which is given by 
�Ric = (dδ + δd)Ric = 0 for the Ricci tensor Ric. Then the notion of harmonic curvature is equivalent to 
δRic = 0, because dRic = 0 always holds from the contraction of the 2nd Bianchi identity.

Then a real hypersurface M in G2(Cm+2) with harmonic curvature satisfies

(∇XRic)Y = (∇Y Ric)X

for any tangent vector fields X and Y on M in G2(Cm+2).
But considering real hypersurfaces of harmonic curvature in complex two-plane Grassmannians 

G2(Cm+2), the situation is quite different from the complex projective space CPm. Instead of the non-
existence results in CPm, we [17] gave a classification of all Hopf real hypersurfaces in G2(Cm+2) with 
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harmonic or Weyl harmonic tensor. First for a real hypersurface in G2(Cm+2) with harmonic curvature 
tensor, we asserted the following:

Theorem B. Let M be a Hopf real hypersurface of harmonic curvature with constant scalar and mean 
curvatures. If the shape operator commutes with the structure tensor on the distribution D⊥, then M is locally 
congruent to a tube over a totally geodesic G2(Cm+1) in G2(Cm+2) with radius r, cot2

√
2r = 4

3 (m − 1).

On the other hand, a (4m − 1)-dimensional real hypersurface M in G2(Cm+2) is said to have harmonic 
Weyl tensor if ΔW = 0 for Weyl curvature tensor W defined by W = Ric − rg/4(2m − 1), where Ric and 
r denotes respectively the Ricci tensor and the scalar curvature of M in G2(Cm+2). Then from the 2nd 
Bianchi identity this is equivalent to δW = 0, that is, (∇XW )Y = (∇Y W )X. Naturally it means that

(∇XRic)Y − (∇Y Ric)X = {dr(X)Y − dr(Y )X}/4(2m− 1).

When we consider some Hermitian symmetric spaces of rank 2, we can usually give examples of Rie-
mannian symmetric spaces SUm+2/S(U2Um) and SU2,m/S(U2Um), which are said to be complex two-plane 
Grassmannians and complex hyperbolic two-plane Grassmannians respectively (see [3] and [19]). Those are 
said to be Hermitian symmetric spaces and quaternionic Kähler symmetric spaces equipped with the Kähler 
structure J and the quaternionic Kähler structure J on SU2,m/S(U2Um). The rank of SU2,m/S(U2Um) is 2
and there are exactly two types of singular tangent vectors X of G2(Cm+2) which are characterized by the 
geometric properties JX ∈ JX and JX ⊥ JX respectively.

As another kind of Hermitian symmetric space with rank 2 of compact type different from the above 
ones, we can give the complex quadric Qm = SOm+2/SOmSO2, which is a complex hypersurface in complex 
projective space CPm+1 (see Berndt and Suh [4], [5] and Smyth [15]). The complex quadric can also be 
regarded as a kind of real Grassmann manifolds of compact type with rank 2 (see Kobayashi and Nomizu 
[10]). Accordingly, the complex quadric admits two important geometric structures, that is, a complex 
conjugation structure A and a Kähler structure J , which anti-commute with each other, that is, AJ = −JA. 
Then for m ≥ 2 the triple (Qm, J, g) is a Hermitian symmetric space of compact type with rank 2 and its 
maximal sectional curvature is equal to 4 (see Klein [6] and Reckziegel [14]).

For the complex projective space CPm+1 and the quaternionic projective space QPm+1 some classifica-
tions related to parallel Ricci tensor were investigated in Kimura [8], and Pérez and Suh [11], respectively. 
For the complex 2-plane Grassmannian G2(Cm+2) = SUm+2/S(UmU2) a new classification was obtained by 
Berndt and Suh [3]. By using this classification Pérez and Suh [12] proved a non-existence property for Hopf 
hypersurfaces in G2(Cm+2) with parallel and commuting Ricci tensor and Pérez, Suh and Watanabe [13]
considered the notion of generalized Einstein hypersurfaces in G2(Cm+2). Suh [19] strengthened this result 
to hypersurfaces in G2(Cm+2) with parallel Ricci tensor. Moreover, Suh and Woo [22] studied another non-
existence property for Hopf hypersurfaces in complex hyperbolic two-plane Grassmannians SU2,m/S(U2Um)
with parallel Ricci tensor.

When we consider a hypersurface M in the complex quadric Qm, the unit normal vector field N of M in 
Qm can be divided into two classes according to N is A-isotropic or A-principal (see [4], [5], and [20]). In the 
first case where N is A-isotropic, we have shown in [4] that M is locally congruent to a tube over a totally 
geodesic CP k in Q2k. In the second case, when the unit normal N is A-principal, we proved that a contact 
hypersurface M in Qm is locally congruent to a tube over a totally geodesic and totally real submanifold 
Sm in Qm (see [5]). In this paper we consider the notion of harmonic curvature for hypersurfaces in Qm, 
that is, (∇XRic)Y = (∇Y Ric)X for any vector fields X and Y on M in Qm. Then motivated by the result 
in the case of A-principal normal for contact hypersurfaces in Qm, we assert the following:
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Theorem 1. Let M be a Hopf real hypersurface in the complex quadric Qm, m ≥ 4, with harmonic curvature. 
If the unit normal N is A-principal, then M has at most 5 distinct constant principal curvatures, five of 
which are given by

α, λ1, μ1, λ2, and μ2

with corresponding principal curvature spaces

Tα = [ξ], φTλ1 = Tμ1 , φTλ2 = Tμ2 ,

dimTλ1 + dimTλ2 = m− 1, dimTμ1 + dimTμ2 = m− 1.

Here four roots λi and μi, i = 1, 2 satisfy the quadratic equation

2x2 − 2βx + 2 + αβ = 0,

where the function β is denoted by β = α2+1±
√

(α2+1)2+4αh
α and the function h denotes the mean curvature 

of M in Qm.

In section 4 we will give the proof of this theorem in detail. Now at each point z ∈ M let us consider a 
maximal A-invariant subspace Qz of TzM , z ∈ M , defined by

Qz = {X ∈ TzM | AX ∈ TzM for all A ∈ Az}

of TzM , z ∈ M . Thus for a case where the unit normal vector field N is A-isotropic it can be easily checked 
that the orthogonal complement Q⊥

z = Cz 
Qz, z ∈ M , of the distribution Q in the complex subbundle C, 
becomes Q⊥

z = Span [Aξ, AN ]. Here it can be easily checked that the vector fields Aξ and AN belong to 
the tangent space TzM , z ∈ M if the unit normal vector field N becomes A-isotropic. Then motivated by 
the above result, in this paper we give another theorem for real hypersurfaces in the complex quadric Qm

with harmonic curvature and A-isotropic unit normal as follows:

Theorem 2. Let M be a Hopf real hypersurface in the complex quadric Qm, m ≥ 4, with harmonic curvature 
and A-isotropic unit normal N . If the shape operator commutes with the structure tensor on the distribution 
Q⊥, then M is locally congruent to an open part of a tube around k-dimensional complex projective space 
CP k in Qm, m = 2k, or M has at most 6 distinct constant principal curvatures given by

α, γ = 0(α), λ1, μ1, λ2 and μ2

with corresponding principal curvature spaces

Tα = [ξ], Tγ = [Aξ,AN ], φ(Tλ1) = Tμ1 , φTλ2 = Tμ2 .

dimTλ1 + dimTλ2 = m− 2, dimTμ1 + dimTμ2 = m− 2.

Here four roots λi and μi, i = 1, 2 satisfy the equation

2x2 − 2βx + 2 + αβ = 0,

where the function β denotes β = α2+2±
√

(α2+2)2+4αh
α . In particular, α =

√
2m−1

2 , γ(= α) =
√

2m−1
2 , 

λ = 0, μ = − 2
√

2√ , with multiplicities 1, 2, m − 2 and m − 2 respectively.
2m−1



Y.J. Suh / J. Math. Pures Appl. 106 (2016) 393–410 397
The particular case mentioned in Theorem 2 can occur for real hypersurfaces in Qm with parallel Ricci 
tensor, that is, ∇Ric = 0. Naturally harmonic curvature δRic = 0 includes the notion of Ricci parallel.

Our paper is organized as follows. In section 2 we present basic material about the complex quadric 
Qm, including its Riemannian curvature tensor and a description of its singular vectors for A-principal or 
A-isotropic unit normal vector field. Apart from the complex structure J there is another distinguished 
geometric structure on Qm, namely a parallel rank two vector bundle A which contains an S1-bundle of 
real structures, that is, complex conjugations A on the tangent spaces of Qm. This geometric structure 
determines a maximal A-invariant subbundle Q of the tangent bundle TM of a real hypersurface M in Qm. 
Accordingly, in section 3, we investigate the geometry of this subbundle Q for hypersurfaces in Qm and 
some equations including Codazzi and fundamental formulas related to the vector fields ξ, N , Aξ, and AN

for the complex conjugation A of M in Qm.
Finally, in sections 4 and 5, we present the proof of Theorems 1 and 2, respectively. In section 4, the 

first step is to derive the Ricci tensor from the equation of Gauss for real hypersurfaces M in Qm and to 
get some formulas by the assumption of harmonic curvature and A-principal normal vector field, and show 
that a real hypersurface in Qm which is a tube over an m-dimensional unit sphere Sm does not admit a 
harmonic curvature tensor. The next step is to show that there do not exist any real hypersurfaces in the 
complex quadric Qm with harmonic curvature and A-principal normal vector field.

In section 5, we give a complete proof of Theorem 2. The first part of this proof is devoted to give some 
fundamental formulas from harmonic curvature and A-isotropic unit normal vector field. Then in the latter 
part of the proof we will use the expression of the shape operator for real hypersurfaces in Qm when the 
shape operator and the structure tensor commutes on the distribution Q⊥, where Q⊥ denotes an orthogonal 
complement of the maximal A-invariant subspace Q in the complex subbundle C of TzM , z ∈ M in Qm.

2. The complex quadric

For more details in this section we refer to [4–6,10,14,20,21]. The complex quadric Qm is the complex 
hypersurface in CPm+1 which is defined by the equation z2

0 + · · · + z2
m+1 = 0, where z0, . . . , zm+1 are 

homogeneous coordinates on CPm+1. We equip Qm with the Riemannian metric g which is induced from 
the Fubini–Study metric ḡ on CPm+1 with constant holomorphic sectional curvature 4. The Fubini–Study 
metric ḡ is defined by ḡ(X, Y ) = Φ(JX, Y ) for any vector fields X and Y on CPm+1 and a globally closed 
(1, 1)-form Φ given by Φ = −4i∂∂̄logfj on an open set Uj = {[z0, z1, · · · , zm+1] ∈ CPm+1|zj �= 0}, where 
the function fj denotes fj =

∑m+1
k=0 tkj t̄

k
j , and tkj = zk

zj for j, k = 0, · · · , m + 1. Then naturally the Kähler 
structure on CPm+1 induces canonically a Kähler structure (J, g) on the complex quadric Qm.

The complex projective space CPm+1 is a Hermitian symmetric space of the special unitary group 
SUm+2, namely CPm+1 = SUm+2/S(Um+1U1). We denote by o = [0, . . . , 0, 1] ∈ CPm+1 the fixed point of 
the action of the stabilizer S(Um+1U1). The special orthogonal group SOm+2 ⊂ SUm+2 acts on CPm+1 with 
cohomogeneity one. The orbit containing o is a totally geodesic real projective space RPm+1 ⊂ CPm+1. 
The second singular orbit of this action is the complex quadric Qm = SOm+2/SOmSO2. This homogeneous 
space model leads to the geometric interpretation of the complex quadric Qm as the Grassmann manifold 
G+

2 (Rm+2) of oriented 2-planes in Rm+2. It also gives a model of Qm as a Hermitian symmetric space of 
rank 2. The complex quadric Q1 is isometric to a sphere S2 with constant curvature, and Q2 is isometric to 
the Riemannian product of two 2-spheres with constant curvature. For this reason we will assume m ≥ 3
from now on.

For a nonzero vector z ∈ Cm+2 we denote by [z] the complex span of z, that is, [z] = {λz | λ ∈ C}. 
Note that by definition [z] is a point in CPm+1. As usual, for each [z] ∈ CPm+1 we identify TzCP

m+1 with 
the orthogonal complement Cm+2 
 [z] of [z] in Cm+2. For [z] ∈ Qm the tangent space TzQ

m can then be 
identified canonically with the orthogonal complement Cm+2
 ([z] ⊕ [z̄]) of [z] ⊕ [z̄] in Cm+2 (see Kobayashi 
and Nomizu [10]). Note that z̄ ∈ νzQ

m is a unit normal vector of Qm in CPm+1 at the point [z].
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We denote by Az̄ the shape operator of Qm in CPm+1 with respect to the unit normal z̄. It is defined 
by Az̄w = ∇̃wz̄ = w̄ for a complex Euclidean connection ∇̃ and all w ∈ TzQ

m. That is, the shape operator 
Az̄ is just complex conjugation restricted to TzQ

m. The shape operator Az̄ is an anti-commuting involution 
such that A2

z̄ = I and AJ = −JA on the complex vector space TzQ
m and

TzQ
m = V (Az̄) ⊕ JV (Az̄),

where V (Az̄) = Rm+2 ∩ TzQ
m is the (+1)-eigenspace and JV (Az̄) = iRm+2 ∩ TzQ

m is the (−1)-eigenspace 
of Az̄. That is, Az̄X = X and Az̄JX = −JX, respectively, for any X ∈ V (Az̄).

Geometrically this means that the shape operator Az̄ defines a real structure on the complex vector space 
TzQ

m, or equivalently, is a complex conjugation on TzQ
m. Since the real codimension of Qm in CPm+1 is 2, 

this induces an S1-subbundle A of the endomorphism bundle End(TQm) consisting of complex conjugations.
There is a geometric interpretation of these conjugations. The complex quadric Qm can be viewed as the 

complexification of the m-dimensional sphere Sm. Through each point z ∈ Qm there exists a one-parameter 
family of real forms of Qm which are isometric to the sphere Sm. These real forms are congruent to each 
other under action of the center SO2 of the isotropy subgroup of SOm+2 at z. The isometric reflection of 
Qm in such a real form Sm is an isometry, and the differential at z of such a reflection is a conjugation on 
TzQ

m. In this way the family A of conjugations on TzQ
m corresponds to the family of real forms Sm of Qm

containing z, and the subspaces V (A) ⊂ TzQ
m correspond to the tangent spaces TzS

m of the real forms 
Sm of Qm.

The Gauss equation for Qm ⊂ CPm+1 implies that the Riemannian curvature tensor R̄ of Qm can be 
described in terms of the complex structure J and the complex conjugations A ∈ A:

R̄(X,Y )Z = g(Y,Z)X − g(X,Z)Y + g(JY, Z)JX − g(JX,Z)JY − 2g(JX, Y )JZ

+ g(AY,Z)AX − g(AX,Z)AY + g(JAY,Z)JAX − g(JAX,Z)JAY.

Note that J and each complex conjugation A anti-commute, that is, AJ = −JA for each A ∈ A.
Recall that a nonzero tangent vector W ∈ TzQ

m is called singular if it is tangent to more than one 
maximal flat in Qm. There are two types of singular tangent vectors for the complex quadric Qm :

1. If there exists a conjugation A ∈ A such that W ∈ V (A), then W is singular. Such a singular tangent 
vector is called A-principal.

2. If there exist a conjugation A ∈ A and orthonormal vectors X, Y ∈ V (A) such that W/‖W‖ = (X +
JY )/

√
2, then W is singular. Such a singular tangent vector is called A-isotropic.

For every unit tangent vector W ∈ TzQ
m there exist a conjugation A ∈ A and orthonormal vectors 

X, Y ∈ V (A) such that

W = cos(t)X + sin(t)JY

for some t ∈ [0, π/4]. The singular tangent vectors correspond to the values t = 0 and t = π/4. If 0 < t < π/4
then the unique maximal flat containing W is RX⊕RJY . Later we will need the eigenvalues and eigenspaces 
of the Jacobi operator RW = R(·, W )W for a singular unit tangent vector W .

1. If W is an A-principal singular unit tangent vector with respect to A ∈ A, then the eigenvalues of RW

are 0 and 2 and the corresponding eigenspaces are RW ⊕ J(V (A) 
 RW ) and (V (A) 
 RW ) ⊕ RJW , 
respectively.
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2. If W is an A-isotropic singular unit tangent vector with respect to A ∈ A and X, Y ∈ V (A), then the 
eigenvalues of RW are 0, 1 and 4 and the corresponding eigenspaces are RW ⊕ C(JX + Y ), TzQ

m 

(CX ⊕ CY ) and RJW , respectively.

3. Some general equations

Let M be a real hypersurface in Qm and denote by (φ, ξ, η, g) the induced almost contact metric structure. 
Note that ξ = −JN , where N is a (local) unit normal vector field of M and η the corresponding 1-form 
defined by η(X) = g(ξ, X) for any tangent vector field X on M . The tangent bundle TM of M splits 
orthogonally into TM = C⊕Rξ, where C = ker(η) is the maximal complex subbundle of TM . The structure 
tensor field φ restricted to C coincides with the complex structure J restricted to C, and φξ = 0.

At each point z ∈ M we define a maximal A-invariant subspace of TzM , z ∈ M as follows:

Qz = {X ∈ TzM | AX ∈ TzM for all A ∈ Az}.

Lemma 3.1. (See [20].) For each z ∈ M we have

(i) If Nz is A-principal, then Qz = Cz.
(ii) If Nz is not A-principal, there exist a conjugation A ∈ A and orthonormal vectors X, Y ∈ V (A) such 

that Nz = cos(t)X + sin(t)JY for some t ∈ (0, π/4]. Then we have Qz = Cz 
 C(JX + Y ).

We now assume that M is a Hopf hypersurface. Then the shape operator S of M in Qm satisfies

Sξ = αξ

for the Reeb vector field ξ and the smooth function α = g(Sξ, ξ) on M . When we consider a transform JX
of the Kähler structure J on Qm for any vector field X on M in Qm, we may put

JX = φX + η(X)N

for a unit normal N to M . Then we now consider the Codazzi equation

g((∇XS)Y − (∇Y S)X,Z) = η(X)g(φY,Z) − η(Y )g(φX,Z) − 2η(Z)g(φX, Y ) + g(X,AN)g(AY,Z)

− g(Y,AN)g(AX,Z) + g(X,Aξ)g(JAY,Z) − g(Y,Aξ)g(JAX,Z). (3.1)

Putting Z = ξ in (3.1) we get

g((∇XS)Y − (∇Y S)X, ξ) = −2g(φX, Y ) + g(X,AN)g(Y,Aξ) − g(Y,AN)g(X,Aξ)

− g(X,Aξ)g(JY,Aξ) + g(Y,Aξ)g(JX,Aξ).

On the other hand, we have

g((∇XS)Y − (∇Y S)X, ξ) = g((∇XS)ξ, Y ) − g((∇Y S)ξ,X)

= (Xα)η(Y ) − (Y α)η(X) + αg((Sφ + φS)X,Y ) − 2g(SφSX, Y ).

Comparing the previous two equations and putting X = ξ yields

Y α = (ξα)η(Y ) − 2g(ξ, AN)g(Y,Aξ) + 2g(Y,AN)g(ξ, Aξ). (3.2)
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Reinserting this into the previous equation yields

g((∇XS)Y − (∇Y S)X, ξ) = −2g(ξ, AN)g(X,Aξ)η(Y ) + 2g(X,AN)g(ξ, Aξ)η(Y )

+ 2g(ξ, AN)g(Y,Aξ)η(X) − 2g(Y,AN)g(ξ, Aξ)η(X)

+ αg((φS + Sφ)X,Y ) − 2g(SφSX, Y ). (3.3)

Altogether this implies

0 = 2g(SφSX, Y ) − αg((φS + Sφ)X,Y ) − 2g(φX, Y )

+ g(X,AN)g(Y,Aξ) − g(Y,AN)g(X,Aξ)

− g(X,Aξ)g(JY,Aξ) + g(Y,Aξ)g(JX,Aξ)

+ 2g(ξ, AN)g(X,Aξ)η(Y ) − 2g(X,AN)g(ξ, Aξ)η(Y )

− 2g(ξ, AN)g(Y,Aξ)η(X) + 2g(Y,AN)g(ξ,Aξ)η(X). (3.4)

At each point z ∈ M we can choose A ∈ Az such that

N = cos(t)Z1 + sin(t)JZ2

for some orthonormal vectors Z1, Z2 ∈ V (A) and 0 ≤ t ≤ π
4 (see Proposition 3 in [14]). Note that t is a 

function on M . First of all, since ξ = −JN , we have

N = cos(t)Z1 + sin(t)JZ2,

AN = cos(t)Z1 − sin(t)JZ2,

ξ = sin(t)Z2 − cos(t)JZ1,

Aξ = sin(t)Z2 + cos(t)JZ1. (3.5)

This implies g(ξ, AN) = 0 and hence

0 = 2g(SφSX, Y ) − αg((φS + Sφ)X,Y ) − 2g(φX, Y )

+ g(X,AN)g(Y,Aξ) − g(Y,AN)g(X,Aξ)

− g(X,Aξ)g(JY,Aξ) + g(Y,Aξ)g(JX,Aξ)

− 2g(X,AN)g(ξ, Aξ)η(Y ) + 2g(Y,AN)g(ξ, Aξ)η(X). (3.6)

We have JAξ = −AJξ = −AN , and inserting this into the previous equation implies

Lemma 3.2. Let M be a Hopf hypersurface in Qm with (local) unit normal vector field N . For each point 
in z ∈ M we choose A ∈ Az such that Nz = cos(t)Z1 + sin(t)JZ2 holds for some orthonormal vectors 
Z1, Z2 ∈ V (A) and 0 ≤ t ≤ π

4 . Then

0 = 2g(SφSX, Y ) − αg((φS + Sφ)X,Y ) − 2g(φX, Y ) + 2g(X,AN)g(Y,Aξ)

− 2g(Y,AN)g(X,Aξ) + 2g(ξ, Aξ){g(Y,AN)η(X) − g(X,AN)η(Y )}

holds for all vector fields X, Y on M .
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We will now apply this result to get more information on Hopf hypersurfaces.

Lemma 3.3. (See [20].) Let M be a Hopf hypersurface in Qm such that the normal vector field N is A-principal 
everywhere. Then α is constant. Moreover, if X ∈ C is a principal curvature vector of M with principal 
curvature λ, then 2λ �= α and φX is a principal curvature vector of M with principal curvature αλ+2

2λ−α .

Lemma 3.4. (See [20].) Let M be a Hopf hypersurface in Qm, m ≥ 3, such that the normal vector field N
is A-isotropic everywhere. Then α is constant.

4. Proof of Theorem 1

By the equation of Gauss, the curvature tensor R(X, Y )Z for a real hypersurface M in Qm induced 
from the curvature tensor R̄ of Qm can be described in terms of the complex structure J and the complex 
conjugation A ∈ A as follows:

R(X,Y )Z = g(Y,Z)X − g(X,Z)Y + g(φY,Z)φX − g(φX,Z)φY − 2g(φX, Y )φZ

+ g(AY,Z)AX − g(AX,Z)AY + g(JAY,Z)JAX − g(JAX,Z)JAY

+ g(SY,Z)SX − g(SX,Z)SY

for any X, Y , Z ∈ TzM , z ∈ M . From this, contracting Y and Z on M in Qm, we have

Ric(X) = (2m− 1)X −X − φ2X − 2φ2X

− g(AN,N)AX −X + g(AX,N)AN − g(JAN,N)JAX

−X + g(JAX,N)JAN + (trS)SX − S2X

= (2m− 1)X − 3η(X)ξ − g(AN,N)AX + g(AX,N)AN

− g(JAN,N)JAX + g(JAX,N)JAN + hSX − S2X, (4.1)

where h = trS denotes the mean curvature and is defined by the trace of the shape operator S of M in Qm. 
Here we have used the following

∑2m−1

i=1
g(Aei, ei) = TrA− g(AN,N) = −g(AN,N),

∑2m−1

i=1
g(AX, ei)Aei =

∑2m

i=1
g(AX, ei)Aei − g(AX,N)AN = X − g(AX,N)AN,

∑2m−1

i=1
g(JAei, ei)JAX =

∑2m

i=1
g(JAei, ei)JAX − g(JAN,N)JAX

= −g(JAN,N)JAX,

and
∑2m−1

i=1
g(JAX, ei)JAei =

∑2m

i=1
g(JAX, ei)JAei − g(JAX,N)JAN

= JAJAX − g(JAX,N)JAN

= X − g(JAX,N)JAN.

Now in this section we consider only an A-principal normal vector field N , that is, AN = N , for a real 
hypersurface M in Qm with parallel Ricci tensor. Then (4.1) becomes
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Ric(X) = (2m− 1)X − 2η(X)ξ −AX + hSX − S2X. (4.2)

Then the covariant derivative of (4.2) is given by

(∇XRic)Y = −2g(φSX, Y )ξ − 2η(Y )φSX − (∇XA)Y + (Xh)SY + h(∇XS)Y − (∇XS2)Y, (4.3)

where (∇XA)Y = ∇X(AY ) − A∇XY . Here, AY belongs to TzM , z ∈ M , from the fact that g(AY, N) =
g(Y, AN) = g(Y, N) = 0 for any tangent vector Y on M .

Now let us suppose that M has harmonic curvature, that is, δRic = 0, i.e., (∇XRic)Y = (∇Y Ric)X. 
Then it follows that

0 = (∇XRic)Y − (∇Y Ric)X

= −2g((φS + Sφ)X,Y )ξ − 2η(Y )φSX + 2η(X)φSY − {(∇XA)Y − (∇Y A)X}

+ (Xh)SY + (Y h)SX + h{(∇XS)Y − (∇Y S)X} − {(∇XS2)Y − (∇Y S
2)X}. (4.4)

Now let us consider the following equation

(∇XA)ξ = ∇X(Aξ) −A∇Xξ

= (∇̄X(Aξ))T −A∇Xξ

=
{

(∇̄XA)ξ + A∇̄Xξ
}T

−AφSX

= {−q(X)AN + αη(X)AN}T = 0,

where (· · · )T denotes the tangential component of the vector (· · · ) in Qm, and we have used the following

(∇̄XA)Y = q(X)JAY

for a certain 1-form q and any vector fields X and Y defined on TzQ
m, z ∈ Qm, (see Smyth [15]) and the 

Gauss formula

∇̄Xξ = ∇Xξ + g(SX, ξ)N

for connections ∇̄ on TzQ
m, z ∈ Qm and ∇ on M in Qm respectively, and S denotes the shape operator of 

M in Qm.
Then let us take the inner product of (4.4) with ξ, and using the above fact, we have:

αη(Y )(Xh) − αη(X)(Y h) − 2g((φS + Sφ)X,Y )

+ hg((∇XS)Y − (∇Y S)X, ξ) − g((∇XS2)Y − (∇Y S
2)X, ξ) = 0. (4.5)

Moreover, we get

(∇XS)ξ = ∇X(Sξ) − S∇Xξ = (Xα)ξ + αφSX − SφSX,

and

(∇XS2)ξ = ∇X(S2ξ) − S2∇Xξ = (Xα2)ξ + α2φSX − S2φSX.
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Then it follows that

g((∇XS)Y − (∇Y S)X, ξ) = (Xα)η(Y ) − (Y α)η(X) + αg((φS + Sφ)X,Y ) − 2g(SφSX, Y )

and

g((∇XS2)Y − (∇Y S
2)X, ξ) = η(Y )(Xα2) − η(X)(Y α2)

+ α2g((φS + Sφ)X,Y ) − 2g((S2φS + SφS2)X,Y ).

Then from (4.5), together with the above formulas, we have

αη(Y )(Xh) − αη(X)(Y h) − 2g((φSX + Sφ)X,Y )

+ h
[
(Xα)η(Y ) − (Y α)η(X) + αg((φS + Sφ)X,Y ) − 2g(SφSX, Y )

]

−
[
(Xα2)η(Y ) − (Y α2)η(X) + α2g((φS + Sφ)X,Y )

− 2g((S2φS + SφS2)X,Y )
]

= 0. (4.6)

By putting X = ξ into (4.5) and using (3.2), (4.6) can be arranged as follows:

(hα− α2 − 2)(φS + Sφ)X − 2hSφSX + (S2φS + SφS2)X = 0. (4.7)

On the other hand, by (3.6) in section 3, we know that

SφSX = α

2 (Sφ + φS)X + φX.

From this it follows that

(S2φS + SφS2)X = α

2 (S2φ + φS2)X + α2

2 (Sφ + φS)X + αφX + (Sφ + φS)X.

Using these formulas, (4.7) becomes

(−α2

2 − 1)(Sφ + φS)X + (α− 2h)φX + α

2 (S2φ + φS2)X = 0. (4.8)

Then if we put SX = λX, then SφX = μφX, μ = αλ+2
2λ−α . So (4.8) becomes

α

2 (λ + μ)2 − (α2 + 1)(λ + μ) − 2h = 0. (4.9)

Then λ + μ becomes

λ + μ =
α2 + 1±

√
(α2 + 1)2 + 4αh
α

.

Here let us denote by β = α2+1±
√

(α2+1)2+4αh
α . Then the functions λ and μ satisfy the following equations

2λ2 − 2βλ + 2 + αβ = 0 (4.10)

and
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2μ2 − 2βμ + 2 + αβ = 0. (4.11)

From (4.10) and (4.11) we have

(λ− μ)(λ + μ− β) = 0.

Then we can divide the problem into two cases, that the principal curvatures λ and μ satisfy λ = μ or 
λ + μ = β.

The first case becomes x2 −αx − 1 = 0. By Lemma 3.3, the function α is constant. In this case the shape 
operator has three constant principal curvatures α = 2 cot 2r, cot r and − tan r with multiplicities 1, m − 1
and m − 1 respectively.

In the latter part, by (4.10) and (4.11) two roots λ and μ satisfy the equation

2x2 − 2βx + 2 + αβ = 0.

Then the discriminant D of this equation is given by D = 4β2 − 8(2 + αβ). So there exists three distinct 
constant principal curvatures α, β+

√
β2−2(2+αβ)

2 , β−
√

β2−2(2+αβ)
2 with multiplicities 1, m − 1 and m − 1

respectively, provided with β > α +
√
α2 + 4 or β < α−

√
α2 + 4.

When the function α = 0, by (4.9) we know that 2h = −(λ + μ) = −λ − 1
λ . This gives that two roots λ

and μ satisfy the quadratic equation x2 + 2hx + 1 = 0. That is, λ = −h +
√
h2 − 1 and μ = −h −

√
h2 − 1

with multiplicities m − 1 and m − 1 respectively. So the trace of the shape operator S becomes

h = TrS = (m− 2){−h +
√
h2 − 1 − h−

√
h2 − 1} = −2(m− 2)h.

This gives h = 0, which implies λ2 + 1 = 0. This gives a contradiction. Summing up above discussions, we 
give a complete proof of Theorem 1 in the introduction.

Remark 4.1. It is known that in Berndt and Suh [5] a real hypersurface M is a tube over Sm in Qm if and 
only if the shape operator S of M satisfies Sφ + φS = kφ for a non-zero constant k. Then let us check 
whether a tube of radius r, 0 < r < π

2
√

2 , over Sm could satisfy (4.8) or not. Then (4.8) gives

−(α
2

2 + 1)kφX + (α− 2h)φX + α

2 (Sφ2 + φS2)X = 0.

If we consider an eigenvector such that SX = λX, then (Sφ + φS)X = kφX gives that SφX = (k− λ)φX. 
From this, together with (4.8) using αk = −2, the principal curvatures satisfy a quadratic equation such 
that

αx2 + x + 2{k − α + h} = 0.

On the other hand, the tube over Sm in Qm has 3 distinct constant principal curvatures such that α =
−
√

2 cot(
√

2r), λ = 0 and μ =
√

2 tan
√

2r with multiplicities 1, m − 1 and m − 1 respectively (see [5]). 
Then kα = −2 gives that

k = − 2
α

= 2√
2 cot(

√
2r)

=
√

2 tan(
√

2r).

Since the quadratic equation has a root λ = 0, we should have k − α + h = 0. From this, together with the 
fact kα = −2, the trace h of the shape operator becomes
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h = −
√

2 cot(
√

2r) −
√

2 tan(
√

2r)

= −
√

2 cot(
√

2r) + 1√
2
(m− 1) tan(

√
2r).

This implies (m−1√
2 +

√
2) tan

√
2r = 0, which gives a contradiction. So we conclude that a real hypersurface 

in Qm which is a tube over an m-dimensional sphere Sm with radius r satisfying 0 < r < π
2
√

2 does not 
admit harmonic curvature. Of course, in this case the unit normal N is A-principal.

5. Proof of Theorem 2

In this section we want to prove Theorem 2 for real hypersurfaces with harmonic curvature and A-isotropic 
unit normal vector field. Since we assumed that the unit normal N is A-isotropic, by the definition in 
section 3 we know that t = π

4 . Then by the expression of the A-isotropic unit normal vector field, (3.3) gives 
N = 1√

2Z1 + 1√
2JZ2. This implies that

g(ξ, Aξ) = 0, g(ξ, AN) = 0, g(AN,N) = 0, g(Aξ,N) = 0,

and

g(JAN, ξ) = −g(AN,N) = 0.

Then the vector fields AN and Aξ become tangent vector fields on M in Qm.
The Ricci tensor (4.1) for a real hypersurface M in Qm with A-isotropic unit normal gives

Ric(X) = (2m− 1)X − 3η(X)ξ − g(AN,N)AX + g(AX,N)AN

− g(JAN,N)JAX + g(JAX,N)JAN + (TrS)SX − S2X

= (2m− 1)X − 3η(X)ξ + g(X,AN)AN + g(X,Aξ)Aξ + hSX − S2X.

Then in this case we want to make the derivative of the Ricci tensor as follows:

(∇Y Ric)X = ∇Y (Ric(X)) − Ric(∇Y X)

= −3(∇Y η)(X)ξ − 3η(X)∇Y ξ + g(X,∇Y (AN))AN − g(AX,N)∇Y (AN)

+ g((∇Y (Aξ), X)Aξ + η(AX)∇Y (Aξ) + (Y h)SX + h(∇Y S)X − (∇Y S
2)X. (5.1)

Then it follows that

∇Y (AN) = {(∇̄Y A)N + A∇̄Y N}T = {q(Y )JAN −ASY }T ,

and

∇Y (Aξ) = {(∇̄Y A)ξ + A∇̄Y ξ}T = {q(Y )JAξ + AφSY }T ,

where (· · · )T denotes the tangential component of the vector (· · · ) in Qm.
By our assumption of harmonic curvature, the above formula becomes

0 = −3g(φSY,X)ξ − 3η(X)φSY + 3g(φSX, Y )ξ + 3η(Y )φSX

+ {q(Y )g(JAN,X) − g(ASY,X) − q(X)g(JAN, Y ) + g(ASX, Y )}AN
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− g(AX,N){q(Y )JAN −ASY }T + g(AY,N){q(X)JAN −ASX}T

+ {q(Y )g(JAξ,X) + g(AφSY,X) − q(X)g(JAξ, Y ) − g(AφSX, Y )}Aξ

+ η(AX){q(Y )JAξ + AφSY }T − η(AY ){q(X)JAξ + AφSX}T

+ (Y h)SX − (Xh)SY + h{(∇Y S)X − (∇XS)Y }

− {(∇Y S
2)X − (∇XS2)Y }. (5.2)

By taking inner product of (5.2) with the Reeb vector field ξ and using g(AN, N) = 0 and g(Aξ, ξ) = 0, we 
have

0 = −3g(φSY,X) + g(AX,N)η(ASY ) − 3g(φSX, Y )

+ g(AY,N)η(ASXY ) + η(AX)η(AφSY ) − η(AY )η(AφSX)

+ (Y h)αη(X) − (Xh)αη(Y ) + hg((∇Y S)X − (∇XS)Y, ξ)

− g((∇Y S
2)X − (∇XS2)Y, ξ)

− 3g(φSY,X) + g(AX,N)η(ASY ) − 3g(φSX, Y ) + g(AY,N)η(ASXY )

+ η(AX)η(AφSY ) − η(AY )η(AφSX)

+ (Y h)αη(X) − (Xh)αη(Y )

+ h{(Y α)η(X) − (Xα)η(Y ) + αg((φS + Sφ)Y,X) − 2g(SφSY,X)}
−
{
(Y α2)η(X) − (Xα2)η(Y ) + α2g((φS + Sφ)Y,X)

− 2g((S2φS + SφS2)Y,X)
}
. (5.3)

From this, putting Y = ξ, we have

(ξh)αη(X) − (Xh)α + h{(ξα)η(X) −Xα} − {η(X)ξα2 −Xα2} = 0. (5.4)

Since the unit normal N is A-isotropic, by (3.2) we know that Y α = (ξα)η(Y ), because g(ξ, Aξ) = 0 and 
g(ξ, AN) = 0. Then gradMα = dα(ξ)ξ gives

(HessMα)(X,Y ) = g(∇XgradMα, Y ) = d(dα(ξ))(X)η(Y ) + dα(ξ)g(φSX, Y ).

By using the symmetry of Hessian, we have dα(ξ)g((Sφ +φS)X, Y ) = 0 for any vector fields X and Y on M
in Qm. Then by using the same method as in [4] due to Berndt and Suh, we could prove that the function 
α is constant (see Lemma 3.4). Moreover, (5.4) gives (Xh)α = α(ξh)η(X). In this case we can also prove 
that the mean curvature h is constant, by the help of the constant function α. Accordingly, the equation 
(5.3) becomes

(2 + α2

2 )g((φS + Sφ)Y,X) = 2g(AX,N)η(ASY ) − 2g(AY,N)η(ASX)

+ (α− 2h)g(φY,X) − (α− 2h)g(Y,AN)g(Aξ,X)

+ (α− 2h)g(Y,Aξ)g(AN,X) + α

2 g((S
2φ + φS2)Y,X). (5.5)

Here, in order to get the equation (5.5) we have used two important formulas from (3.6) in section 3 for 
A-isotropic unit normal as follows:

2SφSX = α(φS + Sφ)X + 2φX − 2g(X,AN)Aξ + 2g(X,Aξ)AN (5.6)
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and

(S2φS + SφS2)X = α

2 (S2φ + φS2)X + α2

2 (φS + Sφ)X + αφX

− αg(X,AN)Aξ + αg(X,Aξ)AN

+ (Sφ + φS)X − g(X,AN)SAξ + g(X,Aξ)SAN

− g(SX,AN)Aξ + g(SX,Aξ)AN. (5.7)

Now let us consider the distribution Q⊥, which is an orthogonal complement of the maximal A-invariant 
subspace Q in the complex subbundle C of TzM , z ∈ M in Qm. For any vector fields Y and φY belonging 
to the distribution Q such that SY = λY and SφY = μφY , where μ = αλ+2

2λ−α , by putting X = φY into the 
equation (5.5), we have the following

(2 + α2

2 )(λ + μ) = (α− 2h) + α

2 (λ2 + μ2). (5.8)

On the other hand, the formula (5.6) on the distribution Q for SX = λX and SφX = μφX gives the 
following:

λμ = α

2 (λ + μ) + 1. (5.9)

From (5.8) and (5.9) it follows that

α

2 (λ + μ)2 − (α2 + 2)(λ + μ) − 2h = 0.

So if we put λ +μ = β, then the function β becomes a solution of the quadratic equation α2 x
2 − (α2 +2)x −

2h = 0 and it is given by

β =
α2 + 2±

√
(α2 + 2)2 + 4αh
α

. (5.10)

Here, for the case α = 0, (5.8) gives h = −(λ + μ) = −λ − 1
λ . Then the principal curvature λ satisfies the 

equation

x2 + hx + 1 = 0.

Then the shape operator S has the principal curvatures α = 0, γ = 0, λ = −h+
√
h2−4

2 and 

μ = −h−
√
h2−4

2 = 1
λ . Then the trace h of the shape operator S becomes

h = (m− 2)(λ + μ).

From this, together with h = −(λ + μ) of the quadratic equation, it gives h = 0, that is, λ2 + 1 = 0, which 
gives a contradiction. So such a case α = 0 cannot be considered for M in Qm with harmonic curvature.

Now we consider the distribution Q⊥. Then by Lemma 3.1 in section 3, the orthogonal complement Q⊥ =
C 
Q becomes C 
Q = Span[AN, Aξ]. From the assumption of Sφ = φS on the distribution Q⊥ it can be 
easily checked that the distribution Q⊥ is invariant by the shape operator S, because Q⊥ = span[AN, φAN ]. 
Then we may put SAN = λAN , from this together with Lemma 3.2, we have the following:
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(2λ− α)SφAN = (αλ + 2)φAN − 2Aξ

= (αλ + 2)φAN − 2φAN

= αλφAN.

Then Aξ = φAN gives the following

SAξ = αλ

2λ− α
Aξ. (5.11)

Then from the assumption Sφ = φS on Q⊥ = C 
 Q it follows that λ = αλ
2λ−α gives

λ = 0 or λ = α. (5.12)

On the other hand, on the distribution Q we know that AX ∈ TzM , z ∈ M , because AN ∈ Q. So (5.6), 
together with the fact that g(X, Aξ) = 0 and g(X, AN) = 0 for any X ∈ Q, imply that

2SφSX = α(Sφ + φS)X + 2φX. (5.13)

Then we can take an orthonormal basis X1, . . . , X2(m−2) ∈ Q such that AXi = λiXi for i = 1, . . . , m − 2. 
Then by (5.6) we know that

SφXi = αλi + 2
2λi − α

φXi.

Accordingly, by (5.12) the shape operator S can be expressed as

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α 0 0 0 · · · 0 0 · · · 0
0 0(α) 0 0 · · · 0 0 · · · 0
0 0 0(α) 0 · · · 0 0 · · · 0
0 0 0 λ1 · · · 0 0 · · · 0
...

...
...

...
. . .

...
... · · ·

...
0 0 0 0 · · · λm−2 0 · · · 0
0 0 0 0 · · · 0 μ1 · · · 0
...

...
...

...
...

...
...

. . .
...

0 0 0 0 · · · 0 0 · · · μm−2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

From λ + μ = β, and μ = αλ+2
2λ−α , we have

2λ2 − 2βλ + 2 + αβ = 0,

and

2μ2 − 2βμ + 2 + αβ = 0.

Subtracting these two equations gives

(λ− μ)(λ + μ− β) = 0.

When λ = μ, the shape operator S has at most 4 distinct constant principal curvatures 2 cot 2r, 0(α), 
cot r and − tan r with multiplicities 1, 2, m − 2 and m − 2 respectively. Then M is locally congruent to 
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a tube around CP k in Q2k, m = 2k. Now let us check whether this kind of tube could admit harmonic 
curvature or not. Here we denote by λ = cot r. Then by putting λ = μ cot r in (5.8), it becomes

αλ2 − (4 + α2)λ + (α− 2h) = 0.

On the other hand, the trace of the shape operator this tube is given by h = α + (2k − 2)(cot r − tan r) =
(2k − 1)α. Then α− 2h = (−4k + 3)α. From this, together with λ2 − αλ − 1 = 0, the equation becomes

λ = −(k − 1)α = −(k − 1)(λ− 1
λ

).

This gives kλ2 = k− 1, which means that the radius of this tube is given by r = cot−1
√

k−1
k . So M admits 

harmonic curvature.
For the case where λ �= μ, then the function β = λ + μ, where the function β becomes

β =
α2 + 2±

√
(α2 + 2)2 + 4αh
α

.

So according to the function β the principal curvatures λ and μ are solutions of the quadratic equation

2x2 − 2βx + 2 + αβ = 0.

Here we have shown that the functions α and hα−α2 are constants. So in this case M has at most 6 distinct 
constant principal curvatures

Among them, let us check the situation when the principal curvature λ vanishes. Then the corresponding 
principal curvature becomes μ = − 2

α . Now let us consider the shape operator

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α 0 0 0 · · · 0 0 · · · 0
0 0(α) 0 0 · · · 0 0 · · · 0
0 0 0(α) 0 · · · 0 0 · · · 0
0 0 0 0 · · · 0 0 · · · 0
...

...
...

...
. . .

...
... · · ·

...
0 0 0 0 · · · 0 0 · · · 0
0 0 0 0 · · · 0 − 2

α · · · 0
...

...
...

...
...

...
...

. . .
...

0 0 0 0 · · · 0 0 · · · − 2
α

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Summing up the above facts, the shape operator S has at most 4 distinct constant principal curvatures α, 
0(α), 0 and μ with multiplicities 1, 2, m − 2 and m − 2 respectively. By the quadratic equation above we 
know that 2 + αβ = 0. So naturally from the function β it follows that

α2 + 4 =
√

(α2 + 2)2 + 4αh.

So the function α satisfies α2−hα+3 = 0. In this case, first we consider the shape operator S has 3 distinct 
constant principal curvatures such that α, 0, 0 and − 2

α with multiplicities 1, 2, m −2 and m −2 respectively. 
Then h = α− 2(m−2)

α , so it follows that α2 + 3 = hα = α2 − 2(m − 2), which gives a contradiction.
Next we consider the case that M has 3 distinct constant principal curvatures α, 0 and − 2

α with multi-
plicities 3, m −2 and m −2 respectively. Then the trace h becomes h = 3α− 2(m−2)

α . From this, together with 

hα = α2+3, it follows that 2α2 = 2m −1, that is, α =
√

2m−1
2 . This gives an example of real hypersurfaces in 

Qm whose Ricci tensor is parallel, that is, ∇Ric = 0, which is a special kind of harmonic curvature (see [21]).
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