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In this paper, we introduce a new tensor named B-tensor which generalizes the Z-tensor
introduced by Mantica and Suh [Pseudo Z symmetric Riemannian manifolds with har-
monic curvature tensors, Int. J. Geom. Methods Mod. Phys. 9(1) (2012) 1250004]. Then,
we study pseudo-B-symmetric manifolds (PBS)n which generalize some known struc-
tures on pseudo-Riemannian manifolds. We provide several interesting results which gen-
eralize the results of Mantica and Suh [Pseudo Z symmetric Riemannian manifolds with
harmonic curvature tensors, Int. J. Geom. Methods Mod. Phys. 9(1) (2012) 1250004].
At first, we prove the existence of a (PBS)n. Next, we prove that a pseudo-Riemannian
manifold is B-semisymmetric if and only if it is Ricci-semisymmetric. After this, we
obtain a sufficient condition for a (PBS)n to be pseudo-Ricci symmetric in the sense
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of Deszcz. Also, we obtain the explicit form of the Ricci tensor in a (PBS)n if the
B-tensor is of Codazzi type. Finally, we consider conformally flat pseudo-B-symmetric

manifolds and prove that a (PBS)n(n > 3) spacetime is a pp-wave under certain
conditions.

Keywords: Pseudo-symmetric manifolds; pseudo-Ricci symmetric manifolds; pseudo-
Z-symmetric manifolds; pseudo-B-symmetric manifolds.

Mathematics Subject Classification 2010: 53C25

1. Introduction

As is well known, symmetric spaces play an important role in differential geometry.
The study of pseudo-Riemannian symmetric spaces was initiated in the late 20s
by Cartan [6], who, in particular, obtained a classification of those spaces. Let
(Mn, g), (n = dimM) be a pseudo-Riemannian manifold, i.e. a manifold M with the
pseudo-Riemannian metric g, and let ∇ be the Levi-Civita connection of (Mn, g).
A pseudo-Riemannian manifold is called locally symmetric [6] if ∇R = 0, where R
is the Riemannian curvature tensor of (Mn, g).

As a generalization of Ricci symmetric manifolds (∇kRij = 0, Rij is the Ricci
tensor), Chaki [3] introduced pseudo-Ricci symmetric manifolds. A non-flat pseudo-
Riemannian manifold (Mn, g), (n > 2) is said to be a pseudo-Ricci symmetric man-
ifold if its curvature tensor satisfies the condition

∇kRij = 2AkRij +AiRkj +AjRik, (1.1)

where Ai is a nonzero 1-form. ∇k denotes the covariant differentiation with respect
to the metric tensor g. The 1-form Ai is called the associated 1-form of the manifold.
If Ai = 0, then the manifold reduces to a symmetric manifold in the sense of Cartan.
An n-dimensional pseudo-Ricci symmetric manifold is denoted by (PRS)n.

In 1993, Tamassy and Binh [26] introduced weakly Ricci symmetric manifolds.
It may be mentioned that a pseudo-Ricci symmetric manifold is a particular case of
a weakly Ricci symmetric manifold. In a recent paper [19], Mantica and Suh intro-
duced pseudo-Z-symmetric manifolds which is denoted by (PZS)n. It is a general-
ization of the notion of pseudo-Ricci symmetric manifolds, pseudo-projective-Ricci
symmetric manifolds [5]. A (0, 2) symmetric tensor is a generalized Z-tensor if

Zij = Rij + φgij , (1.2)

where φ is an arbitrary scalar function. The scalar Z is obtained by transvect-
ing (1.2) with gij as follows:

Z = R+ nφ. (1.3)

In this paper, we introduce a (0, 2) symmetric tensor Bij as follows:

Bij = aRij + bRgij, (1.4)
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where a and b are nonzero arbitrary scalar functions and R is the scalar curvature.
The scalar B is obtained by transvecting (1.4) with gij as follows:

B = (a+ nb)R. (1.5)

Pseudo-Z-symmetric, weakly Z-symmetric and recurrent Z forms on pseudo-
Riemannian manifolds have been studied in ([19–21]), respectively.

Inspired by these works, we introduce a new type of manifold called pseudo-
B-symmetric manifolds. A manifold is called pseudo-B-symmetric and denoted by
(PBS)n, if the B-tensor of type (0, 2) is nonzero and satisfies the condition

∇kBij = 2AkBij +AiBkj +AjBik, (1.6)

where Ai is a nonzero 1-form. Obviously, one can see that for a = 1 and b = φ
R ,

the (PBS)n reduces to (PZS)n ([19, 22]) and for a = 1 and b = 0, the (PBS)n
reduces to pseudo-Ricci symmetric manifolds [3].

On the other hand, quasi-Einstein manifolds arose during the study of exact
solutions of the Einstein field equations as well as during considerations of quasi-
umbilical hypersurfaces of semi-Euclidean spaces. A non-flat pseudo-Riemannian
manifold (Mn, g)(n > 2) is defined to be a quasi Einstein manifold [4] if its Ricci
tensor Rij of type (0, 2) is not identically zero and satisfies the following condition:

Rij = αgij + βηiηj ,

where α, β are scalars and ηi is a nonzero 1-form for all vector fields X. The quasi-
Einstein manifold is denoted by (QE)n.

Gray [11] introduced the notion of cyclic parallel Ricci tensor and Codazzi-type
of Ricci tensor. A pseudo-Riemannian manifold is said to satisfy cyclic parallel Ricci
tensor [11] if its Ricci tensor Rij of type (0, 2) is nonzero and satisfies the condition

∇kRij + ∇iRkj + ∇jRik = 0. (1.7)

Again, a pseudo-Riemannian manifold is said to satisfy Codazzi-type of Ricci tensor
if its Ricci tensor Rij of type (0, 2) is nonzero and satisfy the following condition:

∇kRij = ∇jRik. (1.8)

We also have a very useful lemma as follows.

Walker’s Lemma ([28]). If aij , bij are numbers satisfying aij = aji, and aijbk +
ajkbi + akibj = 0 for i, j, k = 1, 2, . . . , n, then either all aij = 0 or, all bi are zero.

The paper is organized as follows: After preliminaries in Sec. 3, we prove the
existence of a (PBS)n(n > 2). In Sec. 4, we consider B-semisymmetric manifolds.
Next, we obtain a sufficient condition for a (PBS)n to be pseudo-Ricci symmetric
in the sense of Deszcz [10]. In Sec. 6, we consider a (PBS)n(n > 2) with cyclic
parallel B-tensor and Codazzi-type of B-tensor. Finally, we consider conformally
flat (PBS)n.

Throughout the paper, all manifolds under consideration are assumed to be
connected Hausdorff manifolds endowed with a non-degenerate metric of arbitrary
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signature, that is, n-dimensional pseudo-Riemannian manifolds. Particularly, we
will take into consideration n-dimensional Lorentzian manifolds, that is, with met-
rics of signature s = n− 2 [13].

2. Preliminaries

In this section, we study some well-known structures on pseudo-Riemannian man-
ifolds satisfied by B-tensor as follows:

(i) If Bij = 0 (the B-flat manifold), then the manifold is an Einstein manifold [1],
Rij = − bR

a gij .
(ii) If ∇kBij = λkBij , (the B-recurrent manifold) then the manifold is a general-

ized Ricci-recurrent manifold [8]. The condition is equivalent to

∇kRij = µkRij + (n− 1)γkgij ,

where µk = −∇ka
a + aλk and γk = −(R∇kb+ ∇kRb) + λkbR.

If µk = 1 and γk = 0, then the manifold reduces to a Ricci recurrent
manifold.

(iii) Einstein equation [7] with cosmological constant λ and energy–stress tensor
Tkl may be written as

1
a
Bij = κTij ,

where bR
a = − 1

2R+λ, a �= 0 and κ is the gravitational constant. Then, 1
a times

of Bij tensor may be thought of as a generalized Einstein gravitational tensor
with arbitrary scalar function bR

a .

Various conditions on the energy–momentum tensor determine constraints on
the B-tensor. The vacuum solution B = 0 determines an Einstein space with λ =
n−2
2n R; conservation of total energy–momentum (∇lTkl = 0) implies that

∇l

(
1
a

)
Bkl +

1
a
∇lBkl = 0

and

∇k

{(
1
2

+
b

a

)}
= 0;

the condition ∇iBkl = 0 describes a space-time with conserved energy–momentum
density.

3. Existence of a (PBS)n(n > 2)

In this section, it is shown that there exists a pseudo-Riemannian manifold
(Mn, g)(n ≥ 2), where B tensor satisfies the condition (1.1) and for which
∇iBjk �= 0.
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For this, we consider a pseudo-Riemannian manifold (Mn, g)(n ≥ 2) which
admits a linear connection Γ̄hij defined by

Γ̄hij = Γhij +Aiδ
h
j +Ajδ

h
i , (3.1)

where Ai is a nonzero 1-form and which is such that

∇̄iBjk = 0, (3.2)

where ∇̄i denotes the covariant differentiation with respect to the connection Γ̄hij .
If (3.2) is to hold, then we obtain

∂

∂xi
Bjk −BhkΓ̄hji −BjhΓ̄hki = 0. (3.3)

Using (3.1) in (3.3), we get

∂

∂xi
Bjk −Bhk(Γhji +Ajδ

h
i +Aiδ

h
j ) −Bjh(Γhki +Akδ

h
i +Aiδ

h
k ) = 0. (3.4)

From (3.4), we obtain

∇iBjk = 2AiBjk +AjBik +AkBji. (3.5)

The connection ∇̄ is not identical with ∇. Hence, ∇iBjk �= 0. Thus, if a pseudo-
Riemannian manifold (Mn, g)(n ≥ 2) admits a linear connection ∇̄ which satis-
fies (3.1) and (3.2), then the manifold is a (PBS)n.

Hence, we have the following.

Theorem 3.1. If a pseudo-Riemannian manifold (Mn, g)(n ≥ 2) admits a linear
connection ∇̄ which satisfies (3.1) and (3.2), then the manifold is a (PBS)n(n ≥ 2).

4. B-Semisymmetric Manifolds

A pseudo-Riemannian manifold is said to be Ricci-semisymmetric if R ◦S = 0 holds,
that is, (R(X,Y ) ◦S)(U, V ) = 0 for all vector fields X, Y, U and V, where R(X,Y )
denotes the curvature operator and S is the Ricci tensor of type (0, 2), which can
be rewritten in local coordinate system as (R ◦ S)ijlm = 0, where (R ◦ S)ijlm =
RrjR

r
ilm+RriRrjlm and Rij and Rlijk are local components of Ricci tensor S of type

(0, 2) and Riemann curvature tensor R of type (1, 3), respectively. Analogous to this
definition, we define B-semisymmetric manifold. A pseudo-Riemannian manifold is
said to be B-semisymmetric if (R ◦B)ijlm = 0.

In this section, we consider a B-semisymmetric manifold. Thus, we have

(R ◦B)ijlm = 0. (4.1)

Now,

(R ◦B)ijlm = BrjR
r
ilm +BriR

r
jlm. (4.2)
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Using (4.1) in (4.2), we get

BrjR
r
ilm +BriR

r
jlm = 0. (4.3)

From (4.3) and (1.4), we obtain

a(RrjRrilm +RriR
r
jlm) + bR(grjRrilm + griR

r
jlm) = 0, (4.4)

which implies

a(RrjRrilm +RriR
r
jlm) = 0. (4.5)

Since a �= 0, thus (4.5) can be rewritten as follows:

RrjR
r
ilm +RriR

r
jlm = 0, (4.6)

which implies

(R ◦ S)ijlm = 0. (4.7)

Hence, the manifold is a Ricci-semisymmetric manifold. Conversely, if (4.7) holds,
then from (4.2), we can conclude that (4.1) holds, that is, Ricci-semisymmetry
implies B-semisymmetry.

Thus, we have the following.

Theorem 4.1. A pseudo-Riemannian manifold is B-semisymmetric if and only if
it is Ricci-semisymmetric.

5. Sufficient Conditions for a (PBS)n(n > 2) to be Ricci
Pseudo-Symmetric in the Sense of Deszcz

In this section, we investigate sufficient conditions for pseudo-B-symmetric mani-
folds to be Ricci pseudo-symmetric in the sense of Deszcz.

We have from (1.6)

∇sBkl = 2AsBkl +AkBsl +AlBsk. (5.1)

Taking covariant derivative on (5.1), we get

∇i∇sBkl = 2(∇iAs)Bkl + 2As(2AiBkl +AkBil +AlBik) + (∇iAk)Bsl

+Ak(2AiBsl +AsBil +AlBis) + (∇iAl)Bsk +Al(2AiBsk

+AsBik +AkBis). (5.2)

Interchanging the indices s and i in (5.2) and subtracting, we obtain

(∇s∇i −∇i∇s)Bkl = 2(∇sAi −∇iAs)Bkl +Bil(∇sAk −AkAs)

−Bsl(∇iAk −AkAi) +Bki(∇sAl −AlAs)

−Bsk(∇iAl −AlAi). (5.3)
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Now, if possible let

∇sAk = AkAs + γgks, (5.4)

where γ is an arbitrary scalar function. Then, we have

(∇s∇i −∇i∇s)Bkl = γ(Bilgsk −Bslgik +Bkigsl −Bskgil). (5.5)

Now, using (1.4) in (5.5) yields

(∇s∇i −∇i∇s)Bkl = γ(Rilgsk −Rslgik +Rkigsl −Rskgil). (5.6)

If (5.6) holds, then we call the manifold pseudo-Ricci symmetric in the sense of
Deszcz [10]. Thus, we have the following.

Theorem 5.1. If M is an n-dimensional (PBS)n and the associated 1-form is
concircular of the form ∇sAk = AkAs + γgks, then the manifold is pseudo-Ricci
symmetric in the sense of Deszcz.

On the other hand, if we consider a pseudo-B-symmetric manifold, which is
also pseudo-Ricci symmetric in the sense of Deszcz [10], then we can obtain an
interesting result.

From the contracted second Bianchi identity ∇mR
m
jkl = ∇kRjl − ∇jRkl and

from the definition of the B-tensor, we have

a∇mR
m
jkl = ∇kBjl −∇jBkl + [(∇j(bR))gkl − (∇k(bR))gjl]. (5.7)

From (1.6) and (5.7), we get

a∇mR
m
jkl = AkBjl −AjBkl + [(∇j(bR))gkl − (∇k(bR))gjl]. (5.8)

Taking covariant derivative of (5.8) yields

∇ia∇mR
m
jkl + a∇i∇mR

m
jkl = (∇iAk)Bjl +Ak(∇iBjl) − (∇iAj)Bkl −Aj(∇iBkl)

+ [(∇i∇j(bR))gkl − (∇i∇k(bR))gjl]. (5.9)

By performing a cyclic permutation of indices i, j, k and then adding the resulting
three equations and using the contracted Bianchi identity, we obtain

∇ia∇mR
m
jkl + ∇ja∇mR

m
kil + ∇ka∇mR

m
ijl

+ a[(∇i∇k −∇k∇i)Rjl + (∇j∇i −∇i∇j)Rkl + (∇k∇j −∇j∇k)Ril]

= (∇iAk −∇kAi)Bjl + (∇jAi −∇iAj)Bkl + (∇kAj −∇jAk)Bil]. (5.10)

Now if the manifold is pseudo-Ricci symmetric in the sense of Deszcz [10], then
from (5.10), we obtain

(∇iAk −∇kAi)Bjl + (∇jAi −∇iAj)Bkl + (∇kAj −∇jAk)Bil

= ∇ia∇mR
m
jkl + ∇ja∇mR

m
kil + ∇ka∇mR

m
ijl. (5.11)

Suppose a is constant, then (5.11) reduces to

(∇iAk −∇kAi)Bjl + (∇jAi −∇iAj)Bkl + (∇kAj −∇jAk)Bil = 0. (5.12)
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Now if det(Bkl) �= 0, then there exists a (2, 0) tensor (B−1)km with the property
Bkl(B−1)km = δml .

Multiplying (5.12) by (B−1)hl, we obtain

(∇iAk −∇kAi)δhj + (∇jAi −∇iAj)δhk + (∇kAj −∇jAk)δhi = 0. (5.13)

Putting h = j and summing from (5.13) yields

(n− 2)(∇iAk −∇kAi) = 0. (5.14)

Thus for n > 2, the 1-form Ak is a closed 1-form. Hence, we have the following.

Theorem 5.2. If a (PBS)n(n > 2) is pseudo-Ricci symmetric in the sense of
Deszcz and a is constant, then the associated 1-form A is closed, provided the
B-tensor is non-singular.

6. (PBS)n(n > 2) with Cyclic Parallel B-Tensor and Codazzi
Type of B-Tensor

In analogy to the definition in (1.7), we define cyclic B-tensor as follows.
An n-dimensional manifold is said to be cyclic B-tensor if the following condition

holds:

∇kBij + ∇iBkj + ∇jBik = 0. (6.1)

Now from (1.6), we obtain

∇kBij + ∇iBkj + ∇jBik = 4AkBij + 4AiBkj + 4AjBik. (6.2)

Using (6.1) in (6.2) yields

4AkBij + 4AiBkj + 4AjBik = 0. (6.3)

Then by Walker’s lemma, we can see that either Ai = 0 or Bij = 0 for all i, j. But
both of Ai and Bij are not zero in a (PBS)n. Hence, we have the following.

Theorem 6.1. There does not exist a (PBS)n(n > 2) with cyclic parallel B-tensor.

Now, we suppose that the B-tensor in a (PBS)n(n > 2) is of Codazzi type.
Now from (1.6), we obtain

∇kBjl −∇jBkl = AkBjl −AjBkl. (6.4)

Since B is of Codazzi type, we have from (6.4)

AkBjl −AjBkl = 0. (6.5)

Now multiplying (6.5) by Ak and taking sum, we get

AkAkBjl −AjA
kBkl = 0. (6.6)

Again transvecting (6.5) by gjl yields

AkB −AlBkl = 0. (6.7)

1750119-8
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Using (6.7) in (6.6), we get

Bjl =
AjAl
AkAk

B. (6.8)

Using (1.4), (1.5) in (6.8) and simplifying, we obtain

Rjl = −bR
a
gjl +

(a+ bn)
a

REjEl, (6.9)

where Ej = Aj

‖A‖ .
We rewrite (6.9) as follows:

Rjl = αgjl + βEjEl, (6.10)

where α = − bR
a and β = (a+bn)

a R. Thus, we have the following.

Theorem 6.2. A (PBS)n(n > 2) with Codazzi type of B-tensor is a quasi-Einstein
manifold.

Remark 1. The above theorem generalizes the results of [9].

Moreover from (6.5) and definition (1.6), we have ∇kBij = 2AkBij + 2AiBkj =
4AkBij and the tensor Bij is recurrent.

Theorem 6.3. Let M be an n(n > 3) dimensional (PBS)n pseudo-Riemannian
manifold : if the condition ∇kBjl = ∇jBkl is satisfied, then the tensor Bij is
recurrent, that is, ∇kBjl = 4AkBjl.

The case in which the vector Ak results to be a null vector, that is, AjAj = 0
is even more interesting. Let θk be a vector such that θkAk = 1: from AjBkl =
AkBjl we have Bkl = Akθ

jBjl and by symmetry also AkθjBjl = Alθ
jBjk and thus

θjBjl = Al(θkθjBkj) from which finally:

Bkl = ψAkAl, (6.11)

being θmθjBmj = ψ a scalar function. The rank of the tensor Bkl is thus one.
Contracting (6.11) with gkl, we get B = 0, so that R = 0 or b = − a

n . In the first
case, the Ricci tensor is given by Rkl = ψ

aAkAl and its rank is one; in the second
case, the Ricci tensor turns out to be Rkl = ψ

aAkAl +
R
n gkl. The following theorem

may be stated.

Theorem 6.4. Let M be an n(n > 3)-dimensional (PBS)n pseudo-Riemannian
manifold : if the condition ∇kBjl = ∇jBkl is satisfied, and the vector Aj results to be
a null vector, that is, AjAj = 0, then the Ricci tensor takes the form Rkl = ψ

aAkAl
or Rkl = ψ

aAkAl +
R
n gkl.

We follow now a trick due to Roter in [24], Theorem 1. Inserting (6.11) in
∇kBjl = 4AkBjl after a straightforward calculation, we infer:

(∇jAk)Al +Ak(∇jAl) = [4Aj −∇j ln|ψ|]AkAl. (6.12)

1750119-9



July 24, 2017 13:47 WSPC/S0219-8878 IJGMMP-J043 1750119

Y. J. Suh et al.

On multiplying the previous result by θk, we get easily:

(∇jAk) +Akθ
l(∇jAl) = [4Aj −∇j ln|ψ|]Ak. (6.13)

Again a multiplication by θk gives:

(∇jAk)θk =
1
2
[4Aj −∇j ln|ψ|]Ak, (6.14)

and inserting back in (6.13) the covector Aj results to be recurrent, that is,

∇jAk =
1
2
[4Aj −∇j ln|ψ|]Ak = pjAk. (6.15)

If the covector Aj is closed, then from the recurrence relation we get pjAk = pkAj
and transvecting this with θk it is easily seen that pj = γAj for some function γ

and thus,

∇jAk = γAjAk. (6.16)

Now let us suppose that the one form Ak is locally a gradient, that is, Aj = ∇jh

for some scalar function h on the manifold: it can be see easily that the rescaled
null covector Āk = Ake

− 1
2 [4h−ln |ψ|] is a covariantly constant, that is, ∇jĀk = 0; we

have proved the following.

Theorem 6.5. Let M be an n(n > 3)-dimensional (PBS)n pseudo-Riemannian
manifold : if the condition ∇kBjl = ∇jBkl is satisfied and the vector Aj satisfies
AjAj = 0 then the null covector Ak is recurrent, that is, ∇jAk = pjAk for some
one form pj ; further if the same covector is locally a gradient, then it can be rescaled
to a null covariant constant.

Lorentzian manifolds, that is, space-times with recurrent null vectors were stud-
ied for a long time (see for example [2, 14, 15, 25, 27]). In particular, Walker [27]
found a set of canonical coordinates for the metric in such case. Here, we refer to
[15, Proposition 1].

Theorem 6.6. Let (M, g) be a Lorentzian manifold of dimension n+2 > 2 with a
recurrent null vector field ∇kXj = pXj.

(1) This is equivalent to the existence of coordinates (v, x1, . . . , xn, u) in which the
metric has the following local shape:

ds2 = 2dudv + ai(x1, . . . , xn, u)dxidu+H(v, x1, . . . , xn, u)du2

+ g(x1, . . . , xn, u)dxidxj (6.17)

with ∂gij

∂v = ∂ai

∂v = 0, H ∈ C∞(M). To these coordinates, we refer as Walker
coordinates.

(2) ∇kXj = 0 if and only if H does not depend on v, that is, ∂H∂v = 0. To these
coordinates, we refer as Brinkmann coordinates.

1750119-10
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A Lorentzian manifold with null covariantly constant vector field is named
Brinkmann wave after [2]. In [17], an n-dimensional pseudo-Riemannian manifold
on which the Ricci tensor has the form Rkl = ψXkXl and the null vector Xk is
recurrent, that is, ∇kXj = pkXj , is named pure radiation metric with parallel rays
or aligned pure radiation metric. In view of Theorem 6.3, we can thus state the
following.

Theorem 6.7. Let M be an n(n > 3)-dimensional (PBS)n space-time: if the
condition ∇kBjl = ∇jBkl is satisfied and the vector satisfies AjAj = 0, then the
metric assumes the local shape (6.17) in Walker coordinates ; further if the null
vector Ak is locally a gradient, then the manifold is a Brinkmann wave.

These results generalize similar ones in [23].

7. Conformally Flat (PBS)n(n > 2)

In general, the B-tensor in a (PBS)n is not of Codazzi type. In this section, it is
shown that the B-tensor in a conformally flat (PBS)n(n > 2) is of Codazzi type.
It is known that in a conformally flat manifold, the following relation holds:

∇kRij −∇jRik =
1

2(n− 1)
[gij∇kR− gik∇jR]. (7.1)

Here, we consider a conformally flat (PBS)n(n > 2). Now from (1.4), we obtain

∇kRij −∇jRik = ∇kBij −∇jBik. (7.2)

Let a, b and R be constants.
Then from (7.1) and (7.2), we get

∇kBij −∇jBik = 0.

Thus B-tensor in the (PBS)n(n > 2) of Codazzi type. Hence, we have the following.

Theorem 7.1. The B-tensor in a conformally flat (PBS)n(n > 2) with constant
value of a, b and R is of Codazzi type.

Next, we consider conformally flat (PBS)n Lorentzian manifolds with a,b,
b �= − a

n constants and vanishing of the scalar curvature, that is, R = 0. Then,
∇kBjl = ∇jBkl and if the vector Aj satisfies AjAj = 0, the Ricci tensor
writes as Rkl = ψ

aAkAl. Moreover, from Theorem 6.5, the null vector is recurrent,
that is, ∇jAk = pjAk.

Now, we introduce the definition of a pp-wave and related properties as stated
in ([14–16]).

Definition 7.1 ([14–16]). A Brinkmann wave is called pp-wave if its curvature
tensor satisfies the trace condition RpqjkRpqlm = 0.

1750119-11
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In [25], the following coordinate description and equivalence are proved. Here,
we remand to ([14–16]).

Lemma 7.1 ([14–16, 25]). A Lorentzian manifold (M, g) of dimension n+2 > 2
is a pp-wave if and only if there exist coordinates (v, x1, . . . , xn, u) in which the
metric has the following local shape:

ds2 = 2dudv +H(x1, . . . , xn, u)du2 + dxjdx
j , (7.3)

where H(x1, . . . , xn, u) is an arbitrary smooth function with the property ∂H
∂v = 0,

usually called the potential function of the pp-wave.

Lemma 7.2 ([14–16, 25]). A Lorentzian manifold (M, g) of dimension n+2 > 2
with parallel null vector field ∇kX=0 is a pp-wave if and only if one of the following
conditions is satisfied :

XiRjklm +XjRkilm +XkRijlm = 0, (7.4)

Rjklm = XjXmDkl −XjXlDmk −XkXmDjl +XkXlDjm, (7.5)

RpqjkRplmq = χXjXkXlXm, (7.6)

being Dij a symmetric tensor and χ a suitable scalar function. The Ricci tensor of
a pp-wave is given by Rkl = ψXkXl for a smooth function ψ. In dimension n = 4,
this is even equivalent to RpqjkRplmq = 0 (see [18]).

As a first from the definition of the conformal curvature tensor and from the
local form of the Ricci tensor, the following relation is displayed immediately:

AiCjklm +AjCkilm +AkCijlm = AiRjklm +AjRkilm +AkRijlm. (7.7)

Transvecting the previous equation by gim and taking account of Rkl = ψ
aAkAl,

we easily get AmCjklm = AmRjklm. Since the space is conformally flat, we have
AiRjklm + AjRkilm + AkRijlm = 0 from (7.7) and AmRjklm = 0. A skew sym-
metrization of the covariant derivative of the recurrence condition ∇jAk = pjAk
and the Ricci identity give RmjklAm = (∇jAk−∇kAj)Al. This result ensures that, at
least locally, Ak(see [12, pp. 242–243]) is a gradient, that is, Aj = ∇jh and thus such
covector can be locally rescaled to a null covariantly constant Āk = Ake

− 1
2 [4h−ln|ψ|]

so that ∇jĀk = 0 and ĀiRjklm+ ĀjRkilm+ ĀkRijlm = 0. Lemma 7.2. ensures that
the metric is (7.3) and thus pp-wave metric.

Theorem 7.2. Let M be a conformally flat n-dimensional (PBS)n space-time with
a, b, b �= − a

n constants and vanishing of the scalar curvature, that is, R = 0 : if
AkA

k = 0 then Aj is locally a gradient and can be rescaled to a covariantly constant
vector Āj , the relation ĀiRjklm + ĀjRkilm + ĀkRijlm = 0 holds and the space is
thus a pp-wave with metric (7.3).

These results generalize similar ones in [23].
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