SCIENCE CHINA
 Mathematics

Real hypersurfaces in the complex quadric with commuting Ricci tensor

SUH Young Jin* \& HWANG Doo Hyun
Department of Mathematics, Kyungpook National University, Daegu 41566, Republic of Korea
Email: yjsuh@knu.ac.kr, engus0322@knu.ac.kr
Received January 30, 2016; accepted May 16, 2016; published online August 2, 2016

Abstract

We introduce the notion of commuting Ricci tensor for real hypersurfaces in the complex quadric $Q^{m}=S O_{m+2} / S O_{m} S O_{2}$. It is shown that the commuting Ricci tensor gives that the unit normal vector field N becomes \mathfrak{A}-principal or \mathfrak{A}-isotropic. Then according to each case, we give a complete classification of Hopf real hypersurfaces in $Q^{m}=S O_{m+2} / S O_{m} S_{2}$ with commuting Ricci tensor.

Keywords commuting Ricci tensor, \mathfrak{A}-isotropic, \mathfrak{A}-principal, Kähler structure, complex conjugation, complex quadric

MSC(2010) 53C40, 53C55

Citation: Suh Y J, Hwang D H. Real hypersurfaces in the complex quadric with commuting Ricci tensor. Sci China Math, 2016, 59: 2185-2198, doi: 10.1007/s11425-016-0067-7

1 Introduction

Considering Hermitian symmetric spaces of rank 2, we can usually give examples of Riemannian symmetric spaces $S U_{m+2} / S\left(U_{2} U_{m}\right)$ and $S U_{2, m} / S\left(U_{2} U_{m}\right)$, which are said to be complex two-plane Grassmannians and complex hyperbolic two-plane Grassmannians, respectively (see [13-16, 18]). These are regarded as Hermitian symmetric spaces and quaternionic Kähler symmetric spaces equipped with the Kähler structure J and the quaternionic Kähler structure \mathfrak{J} and they have rank 2.

Among the other different types of Hermitian symmetric spaces with rank 2 in the class of compact type, one can give the example of complex quadric $Q^{m}=S O_{m+2} / S O_{m} S O_{2}$, which is a complex hypersurface in complex projective space $\mathbb{C} P^{m+1}$ (see $[12,17,19]$). We can also view the complex quadric as a kind of real Grassmann manifold of compact type with rank 2 (see [6]). Consequently, the complex quadric admits two important geometric structures, a complex conjugation structure A and a Kähler structure J, which anti-commute with each other, i.e., $A J=-J A$. Then the triple $\left(Q^{m}, J, g\right)(m \geqslant 2)$ is an Hermitian symmetric space of compact type with rank 2 and its maximal sectional curvature equals 4 (see [5,11]).

In the complex projective space $\mathbb{C} P^{m+1}$ and the quaternionic projective space $\mathbb{H} P^{m+1}$ some classifications related to commuting Ricci tensor or commuting structure Jacobi operator were investigated by Kimura [3, 4], Pérez [7] and Pérez and Suh [8, 9], respectively. Under the invariance of the shape operator along some distributions a new classification in the complex 2-plane Grassmannian $G_{2}\left(\mathbb{C}^{m+2}\right)=S U_{m+2} / S\left(U_{m} U_{2}\right)$ was investigated.

[^0]By the Kähler structure J of the complex quadric Q^{m}, we can decompose its action on any tangent vector field X on M in Q^{m} as follows:

$$
J X=\phi X+\eta(X) N
$$

where $\phi X=(J X)^{\mathrm{T}}$ denotes the tangential component of $J X, \eta$ denotes a 1-form defined by $\eta(X)=$ $g(J X, N)=g(X, \xi)$ for the Reeb vector field $\xi=-J N$ and N a unit normal vector field on M in Q^{m}.

When the Ricci tensor Ric of M in Q^{m} commutes with the structure tensor ϕ, i.e., Ric $\phi=\phi \cdot \operatorname{Ric}$, we say that M is Ricci commuting or commuting Ricci tensor.

Pérez and Suh [10] proved a non-existence property for Hopf hypersurfaces in $G_{2}\left(\mathbb{C}^{m+2}\right)$ with parallel and commuting Ricci tensor. Moreover, Suh [13] strengthened this result to hypersurfaces in $G_{2}\left(\mathbb{C}^{m+2}\right)$ with commuting Ricci tensor and gave a characterization of real hypersurfaces in $G_{2}\left(\mathbb{C}^{m+2}\right)=$ $S U_{m+2} / S\left(U_{m} U_{2}\right)$ as follows:
Theorem 1.1. Let M be a Hopf real hypersurface in $G_{2}\left(\mathbb{C}^{m+2}\right)$ with commuting Ricci tensor, $m \geqslant 3$. Then M is locally congruent to a tube of radius r over a totally geodesic $G_{2}\left(\mathbb{C}^{m+1}\right)$ in $G_{2}\left(\mathbb{C}^{m+2}\right)$.

Moreover, Suh [18] studied another classification for Hopf hypersurfaces in complex hyperbolic twoplane Grassmannians $S U_{2, m} / S\left(U_{2} U_{m}\right)$ with commuting Ricci tensor as follows:
Theorem 1.2. Let M be a Hopf hypersurface in $S U_{2, m} / S\left(U_{2} U_{m}\right)$ with commuting Ricci tensor, $m \geqslant 3$. Then M is locally congruent to an open part of a tube around some totally geodesic $S U_{2, m-1} / S\left(U_{2} U_{m-1}\right)$ in $S U_{2, m} / S\left(U_{2} U_{m}\right)$ or a horosphere whose center at infinity with $J X \in \mathfrak{J} X$ is singular.

It is known that the Reeb flow on a real hypersurface in $G_{2}\left(\mathbb{C}^{m+2}\right)$ is isometric if and only if M is an open part of a tube around a totally geodesic $G_{2}\left(\mathbb{C}^{m+1}\right) \subset G_{2}\left(\mathbb{C}^{m+2}\right)$. Corresponding to this result, Suh [16] asserted that the Reeb flow on a real hypersurface in $S U_{2, m} / S\left(U_{2} U_{m}\right)$ is isometric if and only if M is an open part of a tube around a totally geodesic $S U_{2, m-1} / S\left(U_{2} U_{m-1}\right) \subset S U_{2, m} / S\left(U_{2} U_{m}\right)$. Here, the Reeb flow on a real hypersurface in $S U_{m+2} / S\left(U_{m} U_{2}\right)$ or $S U_{2, m} / S\left(U_{2} U_{m}\right)$ is said to be isometric if the shape operator commutes with the structure tensor. Berndt and Suh [1], and Suh [19] have introduced this problem for real hypersurfaces in the complex quadric $Q^{m}=S O_{m+2} / S O_{m} S O_{2}$ and obtained the following result:
Theorem 1.3. Let M be a real hypersurface of the complex quadric $Q^{m}, m \geqslant 3$. The Reeb flow on M is isometric if and only if m is even, say $m=2 k$, and M is an open part of a tube around a totally geodesic $\mathbb{C} P^{k} \subset Q^{2 k}$.

In addition to the complex structure J there is another distinguished geometric structure on Q^{m}, namely a parallel rank two vector bundle \mathfrak{A} which contains an S^{1}-bundle of real structures, i.e., complex conjugations A on the tangent spaces of Q^{m}. The set is denoted by $\mathfrak{A}_{[z]}=\left\{A_{\lambda \bar{z}} \mid \lambda \in S^{1} \subset \mathbb{C}\right\},[z] \in Q^{m}$, and means the set of all complex conjugations defined on Q^{m}. Then $\mathfrak{A}_{[z]}$ becomes a parallel rank 2subbundle of $\operatorname{End} T Q^{m}$. This geometric structure determines a maximal \mathfrak{A}-invariant subbundle \mathcal{Q} of the tangent bundle $T M$ of a real hypersurface M in Q^{m}.

When we consider the hypersurface M in the complex quadric Q^{m}, under the assumption of some geometric properties the unit normal vector field N of M in Q^{m} belongs to one of two classes, depending on whether N is \mathfrak{A}-isotropic or \mathfrak{A}-principal (see $[17,19]$). In the first case where N is \mathfrak{A}-isotropic, it is known that M is locally congruent to a tube over a totally geodesic $\mathbb{C} P^{k}$ in $Q^{2 k}$. In the second case, when the unit normal N is \mathfrak{A}-principal, we proved that a contact hypersurface M in Q^{m} is locally congruent to a tube over a totally geodesic and totally real submanifold S^{m} in Q^{m} (see [19]).

Now at each point $z \in M$ let us consider a maximal \mathfrak{A}-invariant subspace \mathcal{Q}_{z} of $T_{z} M, z \in M$, defined by

$$
\mathcal{Q}_{z}=\left\{X \in T_{z} M \mid A X \in T_{z} M \text { for all } A \in \mathfrak{A}_{z}\right\}
$$

Then when the unit normal vector field N is \mathfrak{A}-isotropic it can be easily checked that the orthogonal complement $\mathcal{Q}_{z}^{\perp}=\mathcal{C}_{z} \ominus \mathcal{Q}_{z}, z \in M$, of the distribution \mathcal{Q} in the complex subbundle \mathcal{C}, becomes $\mathcal{Q}_{z}^{\perp}=$ $\operatorname{Span}\{A \xi, A N\}$. Here it can be easily checked that the vector fields $A \xi$ and $A N$ belong to the tangent space $T_{z} M, z \in M$ if the unit normal vector field N becomes \mathfrak{A}-isotropic. Then motivated by the above
result, Suh [19] gave a theorem for real hypersurfaces in the complex quadric Q^{m} with parallel Ricci tensor and \mathfrak{A}-isotropic unit normal vector field.

In the study of complex two-plane Grassmannian $G_{2}\left(\mathbb{C}^{m+2}\right)$ or complex hyperbolic two-plane Grassmannian $S U_{2, m} / S\left(U_{2} U_{m}\right)$, we considered hypersurfaces with parallel Ricci tensor and gave non-existence properties respectively (see [14,23]). Suh [19] also considered the notion of parallel Ricci tensor ∇ Ric $=0$ for hypersurfaces M in Q^{m}. As a generalization of such facts, we consider the notion of harmonic curvature, i.e., $\left(\nabla_{X}\right.$ Ric $) Y=\left(\nabla_{Y}\right.$ Ric $) X$ for any tangent vector fields X and Y on M in Q^{m} and proved the following (see [20]).
Theorem 1.4. Let M be a Hopf real hypersurface in the complex quadric $Q^{m}, m \geqslant 4$, with harmonic curvature and \mathfrak{A}-isotropic unit normal N. If the shape operator commutes with the structure tensor on the distribution \mathcal{Q}^{\perp}, then M is locally congruent to an open part of a tube around k-dimensional complex projective space $\mathbb{C} P^{k}$ in $Q^{m}, m=2 k$, or M has at most 6 distinct constant principal curvatures given by $\alpha, \gamma=0(\alpha), \lambda_{1}, \mu_{1}, \lambda_{2}$ and $m u_{2}$ with corresponding principal curvature spaces

$$
\begin{gathered}
T_{\alpha}=[\xi], \quad T_{\gamma}=[A \xi, A N], \quad \phi\left(T_{\lambda_{1}}\right)=T_{\mu_{1}}, \quad \phi T_{\lambda_{2}}=T_{\mu_{2}} \\
\operatorname{dim} T_{\lambda_{1}}+\operatorname{dim} T_{\lambda_{2}}=m-2, \quad \operatorname{dim} T_{\mu_{1}}+\operatorname{dim} T_{\mu_{2}}=m-2
\end{gathered}
$$

Here four roots λ_{i} and $\mu_{i}, i=1,2$ satisfy the equation

$$
2 x^{2}-2 \beta x+2+\alpha \beta=0
$$

where the function β denotes $\beta=\frac{\alpha^{2}+2 \pm \sqrt{\left(\alpha^{2}+2\right)^{2}+4 \alpha h}}{\alpha}$ and the function h is the mean curvature of M in Q^{m}. In particular, $\alpha=\sqrt{\frac{2 m-1}{2}}, \gamma(=\alpha)=\sqrt{\frac{2 m-1}{2}}, \lambda=0, \mu=-\frac{2 \sqrt{2}}{\sqrt{2 m-1}}$, with multiplicities 1,2 , $m-2$ and $m-2$, respectively.

But from the assumption of harmonic curvature, it was impossible to derive the fact that either the unit normal N is \mathfrak{A}-isotropic or \mathfrak{A}-principal. So Suh [20] gave a complete classification with the further assumption of \mathfrak{A}-isotropic as in Theorem 1.4. For the case where the unit normal vector field N is \mathfrak{A}-principal, we have proved that real hypersurfaces in Q^{m} with harmonic curvature do not exist.

However, when we consider a Ricci commuting real hypersurface M in Q^{m}, i.e., Ric• $\phi=\phi \cdot \operatorname{Ric}$ for hypersurfaces M in Q^{m}, we can assert that the unit normal vector field N becomes either \mathfrak{A}-isotropic or \mathfrak{A}-principal. Then motivated by such a result and using Theorem 1.3, in this paper we give a complete classification for real hypersurfaces in the complex quadric Q^{m} with commuting Ricci tensor, i.e., Ric• ϕ $=\phi \cdot$ Ric as follows:
Theorem 1.5. Let M be a Hopf real hypersurface in the complex quadric $Q^{m}, m \geqslant 4$, with commuting Ricci tensor. If the shape operator commutes with the structure tensor on the distribution \mathcal{Q}^{\perp}, then M is locally congruent to an open part of a tube around totally geodesic $\mathbb{C} P^{k}$ in $Q^{2 k}, m=2 k$, or M has 3 distinct constant principal curvatures given by

$$
\begin{array}{llll}
\alpha=\sqrt{2(m-3)}, & \gamma=0, \quad \lambda=0, \quad \text { and } \quad \mu=-\frac{2}{\sqrt{2(m-3)}} \quad \text { or } \\
\alpha=\sqrt{\frac{2}{3}(m-3),} \quad \gamma=0, \quad \lambda=0, \quad \text { and } \quad \mu=-\frac{\sqrt{6}}{\sqrt{m-3}}
\end{array}
$$

with corresponding principal curvature spaces, respectively

$$
T_{\alpha}=[\xi], \quad T_{\gamma}=[A \xi, A N], \quad \phi\left(T_{\lambda}\right)=T_{\mu}, \quad \text { and } \quad \operatorname{dim} T_{\lambda}=\operatorname{dim} T_{\mu}=m-2
$$

Remark 1.6. In Theorem 1.5, the second and the third cases can be explained geometrically as follows: the real hypersurface M is locally congruent to $M_{1} \times \mathbb{C}$, where M_{1} is a tube of radius $r=$ $\frac{1}{\sqrt{2}} \tan ^{-1} \sqrt{m-3}$ or respectively, of radius $r=\frac{1}{\sqrt{2}} \tan ^{-1} \sqrt{\frac{m-3}{3}}$, around $(m-1)$-dimensional sphere S^{m-1} in Q^{m-1}, i.e., M_{1} is a contact hypersurface defined by $S \phi+\phi S=k \phi, k=-\frac{2}{\sqrt{2(m-3)}}$, and $k=-\frac{\sqrt{6}}{\sqrt{m-3}}$,
respectively (see [2,19]). By the Segre embedding, the embedding $M_{1} \times \mathbb{C} \subset Q^{m-1} \times \mathbb{C} \subset Q^{m}$ is defined by $\left(z_{0}, z_{1}, \ldots, z_{m}, w\right) \rightarrow\left(z_{0} w, z_{1} w, \ldots, z_{m} w, 0\right)$. Here $\left(z_{0} w\right)^{2}+\left(z_{1} w\right)^{2}+\cdots+\left(z_{m} w\right)^{2}=\left(z_{0}^{2}+\cdots+z_{m}^{2}\right) w^{2}=0$, where $\left\{z_{0}, \ldots, z_{m}\right\}$ denotes a coordinate system in Q^{m-1} satisfying $z_{0}^{2}+\cdots+z_{m}^{2}=0$.

Our paper is organized as follows. In Section 2, we present basic material about the complex quadric Q^{m}, including its Riemannian curvature tensor and a description of the singular vectors of Q^{m} like \mathfrak{A}-principal or \mathfrak{A}-isotropic unit normal vector field. In Section 3, we investigate the geometry of the subbundle \mathcal{Q} for hypersurfaces in Q^{m} and some equations including Codazzi and fundamental formulas related to the vector fields $\xi, N, A \xi$ and $A N$ for the complex conjugation A of M in Q^{m}.

In Section 4, the first step is to derive the formula of Ricci commuting from the equation of Gauss for real hypersurfaces M in Q^{m} and to get a key lemma that the unit normal vector field N is either \mathfrak{A}-isotropic or \mathfrak{A}-principal, and show that a real hypersurface in $Q^{m}, m=2 k$, which is a tube over a totally geodesic $\mathbb{C} P^{k}$ in $Q^{2 k}$ naturally has a commuting Ricci tensor. In Section 5, by the expressions of the shape operator S for real hypersurfaces M in Q^{m}, we present the proof of Theorem 1.5 with \mathfrak{A}-isotropic unit normal vector field.

In Section 6, we give a complete proof of Theorem 1.5 with \mathfrak{A}-principal unit normal vector field. The first part of this proof is devoted to giving some fundamental formulas from Ricci commuting and $\mathfrak{A}-$ principal unit normal vector field. Then in the latter part of the proof, we will use the decomposition of two eigenspaces of the complex conjugation A in Q^{m} such that $T_{z} M=V(A) \oplus J V(A)$, where such eigenspaces are defined by $V(A)=\left\{X \in T_{z} Q^{m} \mid A X=X\right\}$ and $J V(A)=\left\{X \in T_{z} Q^{m} \mid A X=-X\right\}$, respectively.

2 The complex quadric

One can refer to $[5,6,11,17,19]$ for more preliminaries. The complex quadric Q^{m} is the complex hypersurface in $\mathbb{C} P^{m+1}$ and defined by the equation $z_{0}^{2}+\cdots+z_{m+1}^{2}=0$, where z_{0}, \ldots, z_{m+1} are homogeneous coordinates on $\mathbb{C} P^{m+1}$. We equip Q^{m} with the Riemannian metric g which is induced from the FubiniStudy metric \bar{g} on $\mathbb{C} P^{m+1}$ with constant holomorphic sectional curvature 4. Define the Fubini-Study metric \bar{g} as $\bar{g}(X, Y)=\Phi(J X, Y)$ for any vector fields X and Y on $\mathbb{C} P^{m+1}$ and a globally closed (1,1)form Φ given by $\Phi=-4 \mathrm{i} \partial \bar{\partial} \log f_{j}$ on an open set $U_{j}=\left\{\left[z^{0}, z^{1}, \ldots, z^{m+1}\right] \in \mathbb{C} P^{m+1} \mid z^{j} \neq 0\right\}$, where the function f_{j} is denoted by $f_{j}=\sum_{k=0}^{m+1} t_{j}^{k} \bar{t}_{j}^{k}$, and $t_{j}^{k}=\frac{z^{k}}{z^{j}}$ for $j, k=0, \ldots, m+1$. Consequently, the Kähler structure on $\mathbb{C} P^{m+1}$ induces canonically a Kähler structure (J, g) on the complex quadric Q^{m}.

Alternatively, the complex projective space $\mathbb{C} P^{m+1}$ is defined by using the Hopf fibration

$$
\pi: S^{2 m+3} \rightarrow \mathbb{C} P^{m+1}, \quad z \rightarrow[z]
$$

which is said to be a Riemannian submersion. Then we naturally can consider the following diagram for the complex quadric Q^{m} :

The submanifold \tilde{Q} of codimension 2 in $S^{2 m+3}$ is called the Stiefel manifold of orthonormal 2-frames in $\mathbb{R}^{2 m+4}$, which is given by

$$
\tilde{Q}=\left\{x+\mathrm{i} y \in \mathbb{C}^{m+2} \left\lvert\, g(x, x)=g(y, y)=\frac{1}{2}\right. \text { and } g(x, y)=0\right\}
$$

where $g(x, y)=\sum_{i=1}^{m+2} x_{i} y_{i}$ for any $x=\left(x_{1}, \ldots, x_{m+2}\right)$ and $y=\left(y_{1}, \ldots, y_{m+2}\right) \in \mathbb{R}^{m+2}$. Then the tangent space is decomposed as $T_{z} S^{2 m+3}=H_{z} \oplus F_{z}$ and $T_{z} \tilde{Q}=H_{z}(Q) \oplus F_{z}(Q)$ at $z=x+\mathrm{i} y \in \tilde{Q}$, respectively,
where the horizontal subspaces H_{z} and $H_{z}(Q)$ are given by $H_{z}=(\mathbb{C} z)^{\perp}$ and $H_{z}(Q)=(\mathbb{C} z \oplus \mathbb{C} \bar{z})^{\perp}$, and F_{z} and $F_{z}(Q)$ are fibers which are isomorphic to each other. Here $H_{z}(Q)$ becomes a subspace of H_{z} of real codimension 2 and orthogonal to the two unit normals $-\bar{z}$ and $-J \bar{z}$. Explicitly, at the point $z=x+\mathrm{i} y \in \tilde{Q}$ it can be described as

$$
H_{z}=\left\{u+\mathrm{i} v \in \mathbb{C}^{m+2} \mid g(x, u)+g(y, v)=0, g(x, v)=g(y, u)\right\}
$$

and

$$
H_{z}(Q)=\left\{u+\mathrm{i} v \in H_{z} \mid g(u, x)=g(u, y)=g(v, x)=g(v, y)=0\right\}
$$

where $\mathbb{C}^{m+2}=\mathbb{R}^{m+2} \oplus \mathbb{R}^{m+2}$, and $g(u, x)=\sum_{i=1}^{m+2} u_{i} x_{i}$ for any $u=\left(u_{1}, \ldots, u_{m+2}\right), x=\left(x_{1}, \ldots, x_{m+2}\right)$ $\in \mathbb{R}^{m+2}$.

These spaces can be naturally projected by the differential map π_{*} as $\pi_{*} H_{z}=T_{\pi(z)} \mathbb{C} P^{m+1}$ and $\pi_{*} H_{z}(Q)=T_{\pi(z)} Q$, respectively. Hence, at the point $\pi(z)=[z]$ the tangent subspace $T_{[z]} Q^{m}$ becomes a complex subspace of $T_{[z]} \mathbb{C} P^{m+1}$ with complex codimension 1 and has two unit normal vector fields $-\bar{z}$ and $-J \bar{z}$ (see [11]).

Now let us denote by $A_{\bar{z}}$ the shape operator of Q^{m} in $\mathbb{C} P^{m+1}$ with respect to the unit normal $-\bar{z}$. Then, by virtue of the Weingarten equation, it is defined by $A_{\bar{z}} w=\bar{\nabla}_{w} \bar{z}=\bar{w}$ for a complex Euclidean connection $\bar{\nabla}$ induced from \mathbb{C}^{m+2} and all $w \in T_{[z]} Q^{m}$, i.e., the shape operator $A_{\bar{z}}$ is just a complex conjugation restricted to $T_{[z]} Q^{m}$. Moreover, it satisfies the following: For any $w \in T_{[z]} Q^{m}$ and any $\lambda \in S^{1} \subset \mathbb{C}$,

$$
\begin{aligned}
A_{\lambda \bar{z}}^{2} w & =A_{\lambda \bar{z}} A_{\lambda \bar{z}} w=A_{\lambda \bar{z}} \lambda \bar{w} \\
& =\lambda A_{\bar{z}} \lambda \bar{w}=\lambda \bar{\nabla}_{\lambda \bar{w}} \bar{z}=\lambda \bar{\lambda} \overline{\bar{w}} \\
& =|\lambda|^{2} w=w .
\end{aligned}
$$

Accordingly, $A_{\lambda \bar{z}}^{2}=I$ for any $\lambda \in S^{1}$. So the shape operator $A_{\bar{z}}$ becomes an anti-commuting involution such that $A_{\bar{z}}^{2}=I$ and $A J=-J A$ on the complex vector space $T_{[z]} Q^{m}$ and

$$
T_{[z]} Q^{m}=V\left(A_{\bar{z}}\right) \oplus J V\left(A_{\bar{z}}\right)
$$

where $V\left(A_{\bar{z}}\right)=\mathbb{R}^{m+2} \cap T_{[z]} Q^{m}$ is the (+1)-eigenspace and $J V\left(A_{\bar{z}}\right)=\mathrm{i} \mathbb{R}^{m+2} \cap T_{[z]} Q^{m}$ is the (-1)eigenspace of $A_{\bar{z}}$, i.e., $A_{\bar{z}} X=X$ and $A_{\bar{z}} J X=-J X$, respectively, for any $X \in V\left(A_{\bar{z}}\right)$.

The Gauss equation for $Q^{m} \subset \mathbb{C} P^{m+1}$ implies that the Riemannian curvature tensor \bar{R} of Q^{m} can be described using the complex structure J and the complex conjugations $A \in \mathfrak{A}$:

$$
\begin{aligned}
\bar{R}(X, Y) Z= & g(Y, Z) X-g(X, Z) Y+g(J Y, Z) J X-g(J X, Z) J Y-2 g(J X, Y) J Z \\
& +g(A Y, Z) A X-g(A X, Z) A Y+g(J A Y, Z) J A X-g(J A X, Z) J A Y
\end{aligned}
$$

Note that J and each complex conjugation A anti-commute, i.e., $A J=-J A$ for each $A \in \mathfrak{A}$.
Recall that a nonzero tangent vector $W \in T_{[z]} Q^{m}$ is called singular if it is tangent to more than one maximal flat in Q^{m}. There are two types of singular tangent vectors for the complex quadric Q^{m} :

1. If there exists a conjugation $A \in \mathfrak{A}$ such that $W \in V(A)$, then W is singular. Such a singular tangent vector is called \mathfrak{A}-principal.
2. If there exist a conjugation $A \in \mathfrak{A}$ and orthonormal vectors $X, Y \in V(A)$ such that $W /\|W\|=$ $(X+J Y) / \sqrt{2}$, then W is singular. Such a singular tangent vector is called \mathfrak{A}-isotropic.

3 Some general equations

Let M be a real hypersurface in Q^{m} and denote the induced almost contact metric structure by (ϕ, ξ, η, g). Note that $\xi=-J N$ with N being a (local) unit normal vector field of M and η the corresponding 1-form defined by $\eta(X)=g(\xi, X)$ for any tangent vector field X on M. The tangent bundle $T M$ of M splits
orthogonally into $T M=\mathcal{C} \oplus \mathbb{R} \xi$, where $\mathcal{C}=\operatorname{ker}(\eta)$ is the maximal complex subbundle of $T M$. The structure tensor field ϕ restricted to \mathcal{C} coincides with the complex structure J restricted to \mathcal{C}, and $\phi \xi=0$.

At each point $z \in M$ we define a maximal \mathfrak{A}-invariant subspace of $T_{z} M, z \in M$ as follows:

$$
\mathcal{Q}_{z}=\left\{X \in T_{z} M \mid A X \in T_{z} M \text { for all } A \in \mathfrak{A}_{z}\right\}
$$

Then we want to introduce an important lemma which will be used in the proof of our Theorem 1.5 in Introduction.
Lemma 3.1 (See $[17,19]$). For each $z \in M$ we have
(i) If N_{z} is \mathfrak{A}-principal, then $\mathcal{Q}_{z}=\mathcal{C}_{z}$.
(ii) If N_{z} is not \mathfrak{A}-principal, there exist a conjugation $A \in \mathfrak{A}$ and orthonormal vectors $X, Y \in V(A)$ such that $N_{z}=\cos (t) X+\sin (t) J Y$ for some $t \in(0, \pi / 4]$. Then we have $\mathcal{Q}_{z}=\mathcal{C}_{z} \ominus \mathbb{C}(J X+Y)$.

Assume that M is a Hopf hypersurface. Then the shape operator S of M in Q^{m} satisfies

$$
S \xi=\alpha \xi
$$

where $\alpha=g(S \xi, \xi)$ denotes the Reeb function on M. Considering the transform $J X$ by the Kähler structure J on Q^{m} for any vector field X on M in Q^{m}, we get

$$
J X=\phi X+\eta(X) N
$$

for a unit normal N to M. Setting $Z=\xi$ in the following Codazzi equation:

$$
\begin{align*}
g\left(\left(\nabla_{X} S\right) Y-\left(\nabla_{Y} S\right) X, Z\right)= & \eta(X) g(\phi Y, Z)-\eta(Y) g(\phi X, Z)-2 \eta(Z) g(\phi X, Y) \\
& +g(X, A N) g(A Y, Z)-g(Y, A N) g(A X, Z) \\
& +g(X, A \xi) g(J A Y, Z)-g(Y, A \xi) g(J A X, Z) \tag{3.1}
\end{align*}
$$

we can eventually get the following:

$$
\begin{align*}
0= & 2 g(S \phi S X, Y)-\alpha g((\phi S+S \phi) X, Y)-2 g(\phi X, Y) \\
& +g(X, A N) g(Y, A \xi)-g(Y, A N) g(X, A \xi) \\
& -g(X, A \xi) g(J Y, A \xi)+g(Y, A \xi) g(J X, A \xi) \\
& +2 g(\xi, A N) g(X, A \xi) \eta(Y)-2 g(X, A N) g(\xi, A \xi) \eta(Y) \\
& -2 g(\xi, A N) g(Y, A \xi) \eta(X)+2 g(Y, A N) g(\xi, A \xi) \eta(X) . \tag{3.2}
\end{align*}
$$

At each point $z \in M$, one can choose $A \in \mathfrak{A}_{z}$ such that

$$
N=\cos (t) Z_{1}+\sin (t) J Z_{2}
$$

for some orthonormal vectors $Z_{1}, Z_{2} \in V(A)$ and $0 \leqslant t \leqslant \frac{\pi}{4}$ (see [11, Proposition 3]). Note that t is a function on M. Since $\xi=-J N$, we have

$$
\begin{align*}
& N=\cos (t) Z_{1}+\sin (t) J Z_{2} \\
& A N=\cos (t) Z_{1}-\sin (t) J Z_{2} \\
& \xi=\sin (t) Z_{2}-\cos (t) J Z_{1} \tag{3.3}\\
& A \xi=\sin (t) Z_{2}+\cos (t) J Z_{1}
\end{align*}
$$

It implies that $g(\xi, A N)=0$ and hence (3.2) becomes

$$
\begin{align*}
0= & 2 g(S \phi S X, Y)-\alpha g((\phi S+S \phi) X, Y)-2 g(\phi X, Y) \\
& +g(X, A N) g(Y, A \xi)-g(Y, A N) g(X, A \xi) \\
& -g(X, A \xi) g(J Y, A \xi)+g(Y, A \xi) g(J X, A \xi) \\
& -2 g(X, A N) g(\xi, A \xi) \eta(Y)+2 g(Y, A N) g(\xi, A \xi) \eta(X) . \tag{3.4}
\end{align*}
$$

4 Ricci commuting and a key lemma

By the equation of Gauss, the curvature tensor $R(X, Y) Z$ for a real hypersurface M in Q^{m} induced from the curvature tensor \bar{R} of Q^{m} in Section 2 can be described in terms of the complex structure J and the complex conjugation $A \in \mathfrak{A}$ as follows:

$$
\begin{aligned}
R(X, Y) Z= & g(Y, Z) X-g(X, Z) Y+g(\phi Y, Z) \phi X-g(\phi X, Z) \phi Y-2 g(\phi X, Y) \phi Z \\
& +g(A Y, Z) A X-g(A X, Z) A Y+g(J A Y, Z) J A X-g(J A X, Z) J A Y \\
& +g(S Y, Z) S X-g(S X, Z) S Y
\end{aligned}
$$

for any $X, Y, Z \in T_{z} M, z \in M$.
Now let us put

$$
A X=B X+\rho(X) N
$$

for any vector field $X \in T_{z} Q^{m}, z \in M, \rho(X)=g(A X, N)$, where $B X$ and $\rho(X) N$ respectively denote the tangential and normal components of the vector field $A X$. Then $A \xi=B \xi+\rho(\xi) N$ and $\rho(\xi)=g(A \xi, N)$ $=0$. Then it follows that

$$
\begin{aligned}
A N & =A J \xi=-J A \xi=-J(B \xi+\rho(\xi) N) \\
& =-(\phi B \xi+\eta(B \xi) N)
\end{aligned}
$$

where we have used $N=J \xi$ from the Reeb vector field $\xi=-J N$ and $J^{2}=-I$. The equation gives $g(A N, N)=-\eta(B \xi)$. From this, together with the definition of the Ricci tensor, we have

$$
\begin{aligned}
\operatorname{Ric}(X)= & (2 m-1) X-3 \eta(X) \xi-g(A N, N) A X+g(A X, N) A N \\
& +\eta(A X) A \xi+(\operatorname{Tr} S) S X-S^{2} X
\end{aligned}
$$

Then, summing up the above formulas, we have

$$
\begin{aligned}
\operatorname{Ric}(X)= & (2 m-1) X-3 \eta(X) \xi+\eta(B \xi)\{B X+\rho(X) N\} \\
& +\rho(X)\{-\phi B \xi-\eta(B \xi) N\}+\eta(B X) B \xi+(\operatorname{Tr} S) S X-S^{2} X
\end{aligned}
$$

From this, together with the assumption of Ricci commuting, i.e., $\phi \cdot \operatorname{Ric}(X)=\operatorname{Ric} \cdot \phi X$, it follows that

$$
\begin{align*}
& (2 m-1) \phi X+\eta(B \xi) \phi B X-\rho(X) \phi^{2} B \xi+\eta(B X) \phi B \xi+(\operatorname{Tr} S) \phi S X-\phi S^{2} X \\
& \quad=(2 m-1) \phi X+\eta(B \xi) B \phi X-\rho(\phi X) \phi B \xi+\eta(B \phi X) B \xi+(\operatorname{Tr} S) S \phi X-S^{2} \phi X \tag{4.1}
\end{align*}
$$

Here we want to use the following formulas:

$$
\begin{aligned}
& \eta(B X)=g(A \xi, X), \\
& \eta(B \phi X)=g(A \xi, \phi X)=g(A \xi, J X-\eta(X) N)=g(A J \xi, X) \\
& =g(A N, X)=\rho(X), \\
& \rho(\phi X)=g(A \phi X, N)=g(A J \phi X, \xi)=g(J \phi X, A \xi) \\
& =g\left(\phi^{2} X+\eta(\phi X) N, A \xi\right)=-g(X, A \xi)+\eta(X) g(\xi, A \xi), \\
& \rho(X)=\eta(B \phi X) .
\end{aligned}
$$

Substituting these formulas into (4.1), we have

$$
\begin{align*}
& \eta(B \xi) \phi B X-\eta(B \phi X) \eta(B \xi) \xi+(\operatorname{Tr} S) \phi S X-\phi S^{2} X \\
& \quad=\eta(B \xi) B \phi X-\eta(X) \eta(B \xi) \phi B \xi+(\operatorname{Tr} S) S \phi X-S^{2} \phi X \tag{4.2}
\end{align*}
$$

Then, by taking the inner product of (4.2) with ξ and using that M is Hopf, it follows that

$$
\begin{equation*}
\eta(B \xi) \phi B \xi=0 \tag{4.3}
\end{equation*}
$$

Then the formula (4.2) becomes

$$
\begin{equation*}
\eta(B \xi)(\phi B-B \phi) X+(\operatorname{Tr} S)(\phi S-S \phi) X-\left(\phi S^{2}-S^{2} \phi\right) X=0 \tag{4.4}
\end{equation*}
$$

Remark 4.1. Let M be a real hypersurface over a totally geodesic $\mathbb{C} P^{k} \subset Q^{2 k}, m=2 k$. Then in $[17,19]$, the structure tensor commutes with the shape operator, i.e., $S \phi=\phi S$. Moreover, the unit normal vector field N becomes \mathfrak{A}-isotropic. This gives $\eta(B \xi)=g(A \xi, \xi)=0$. So it naturally satisfies the formula (4.2), i.e., the condition of Ricci commuting is satisfied.

On the other hand, from (4.3) we assert an important lemma as follows:
Lemma 4.2. Let M be a real hypersurface in $Q^{m}, m \geqslant 3$, with commuting Ricci tensor. Then the unit normal vector field N becomes singular, i.e., N is \mathfrak{A}-isotropic or \mathfrak{A}-principal.
Proof. From (4.3) we get

$$
\eta(B \xi)=0 \quad \text { or } \quad \phi B \xi=0
$$

The first case gives that $\eta(B \xi)=g(A \xi, \xi)=\cos 2 t=0$, i.e., $t=\frac{\pi}{4}$. This implies that the unit normal N becomes

$$
N=\frac{X+J Y}{\sqrt{2}}
$$

which means that N is \mathfrak{A}-isotropic.
The second case gives that

$$
\rho(X)=g(A X, N)=\eta(B \phi X)=-g(X, \phi B \xi)=0
$$

which means that $A X \in T_{z} M$ for any $A \in \mathfrak{A}, X \in T_{z} M, z \in M$. This implies $\mathcal{Q}_{z}=\mathcal{C}_{z}, z \in M$, and N is \mathfrak{A}-principal, i.e., $A N=N$.

In order to prove Theorem 1.5 in Section 1, by virtue of Lemma 4.2, we can consider two classes of hypersurfaces in Q^{m} with the unit normal N being \mathfrak{A}-principal or \mathfrak{A}-isotropic. When M has an \mathfrak{A} isotropic unit normal N, in Section 5 we will give the proof in detail and in Section 6 we will give the remainder proof for the case that M has an \mathfrak{A}-principal unit normal vector field.

5 Proof of Theorem 1.5 for \mathfrak{A}-isotropic unit normal vector field

In this section, we want to prove our Theorem 1.5 for real hypersurfaces M in Q^{m} with commuting Ricci tensor when the unit normal vector field becomes \mathfrak{A}-isotropic.

Since we assume that the unit normal N is \mathfrak{A}-isotropic, by the definition in Section 3 we know that $t=\frac{\pi}{4}$. Then by the expression of \mathfrak{A}-isotropic unit normal vector field, (3.3) gives $N=\frac{1}{\sqrt{2}} Z_{1}+\frac{1}{\sqrt{2}} J Z_{2}$. Since the unit normal N is \mathfrak{A}-isotropic, we know that $g(\xi, A \xi)=0$. Moreover, by (3.4) and using the anti-commuting property $A J=-J A$ between the complex conjugation A and the Kähler structure J, we can prove the following (see also [17, Lemma 4.2]) lemma.
Lemma 5.1. Let M be a Hopf real hypersurface in Q^{m} with (local) \mathfrak{A}-isotropic unit normal vector field N. For each point $z \in M$ we choose $A \in \mathfrak{A}_{z}$ such that $N_{z}=\cos (t) Z_{1}+\sin (t) J Z_{2}$ holds for some orthonormal vectors $Z_{1}, Z_{2} \in V(A)$ and $0 \leqslant t \leqslant \frac{\pi}{4}$. Then

$$
\begin{aligned}
0= & 2 g(S \phi S X, Y)-\alpha g((\phi S+S \phi) X, Y)-2 g(\phi X, Y) \\
& +2 g(X, A N) g(Y, A \xi)-2 g(Y, A N) g(X, A \xi) \\
& +2 g(\xi, A \xi)\{g(Y, A N) \eta(X)-g(X, A N) \eta(Y)\}
\end{aligned}
$$

holds for all vector fields X, Y on M.
Then by virtue of \mathfrak{A}-isotropic unit normal, from Lemma 5.1 we obtain

$$
\begin{equation*}
2 S \phi S X=\alpha(S \phi+\phi S) X+2 \phi X-2 g(X, A N) A \xi+2 g(X, A \xi) A N \tag{5.1}
\end{equation*}
$$

Now let us consider the distribution \mathcal{Q}^{\perp}, which is an orthogonal complement of the maximal \mathfrak{A}-invariant subspace \mathcal{Q} in the complex subbundle \mathcal{C} of $T_{z} M, z \in M$ in Q^{m}. Then by Lemma 3.1 in Section 3, the orthogonal complement $\mathcal{Q}^{\perp}=\mathcal{C} \ominus \mathcal{Q}$ becomes $\mathcal{C} \ominus \mathcal{Q}=\operatorname{Span}[A N, A \xi]$. From the assumption of $S \phi=\phi S$ on
the distribution \mathcal{Q}^{\perp} it can be easily checked that the distribution \mathcal{Q}^{\perp} is invariant by the shape operator S. Then (5.1) gives the following for $S A N=\lambda A N$,

$$
\begin{aligned}
(2 \lambda-\alpha) S \phi A N & =(\alpha \lambda+2) \phi A N-2 A \xi \\
& =(\alpha \lambda+2) \phi A N-2 \phi A N \\
& =\alpha \lambda \phi A N
\end{aligned}
$$

Then $A \xi=\phi A N$ gives the following:

$$
\begin{equation*}
S A \xi=\frac{\alpha \lambda}{2 \lambda-\alpha} A \xi \tag{5.2}
\end{equation*}
$$

Then from the assumption $S \phi=\phi S$ on $\mathcal{Q}^{\perp}=\mathcal{C} \ominus \mathcal{Q}$, it follows that $\lambda=\frac{\alpha \lambda}{2 \lambda-\alpha}$ gives

$$
\begin{equation*}
\lambda=0 \quad \text { or } \quad \lambda=\alpha \tag{5.3}
\end{equation*}
$$

On the other hand, on the distribution \mathcal{Q} we know that $A X \in T_{z} M, z \in M$, because $A N \in Q$. So (5.1), together with the fact that $g(X, A \xi)=0$ and $g(X, A N)=0$ for any $X \in \mathcal{Q}$, implies that

$$
\begin{equation*}
2 S \phi S X=\alpha(S \phi+\phi S) X+2 \phi X \tag{5.4}
\end{equation*}
$$

Then we can take an orthonormal basis $X_{1}, \ldots, X_{2(m-2)} \in \mathcal{Q}$ such that $S X_{i}=\lambda_{i} X_{i}$ for $i=1, \ldots, m-2$. Then by (5.1) we know that

$$
S \phi X_{i}=\frac{\alpha \lambda_{i}+2}{2 \lambda_{i}-\alpha} \phi X_{i} .
$$

Accordingly, by (5.3) the shape operator S can be expressed as

$$
S=\left[\begin{array}{ccccccccc}
\alpha & 0 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
0 & 0(\alpha) & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
0 & 0 & 0(\alpha) & 0 & \cdots & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & \lambda_{1} & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & \lambda_{m-2} & 0 & \cdots & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & \mu_{1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & \cdots & \mu_{m-2}
\end{array}\right],
$$

where $\mu_{i}=\frac{\alpha \lambda_{i}+2}{2 \lambda_{i}-\alpha}$ for $i=1, \ldots, m-2$. From (4.4), together with $\eta(B \xi)=g(A \xi, \xi)=0$, we have that

$$
\begin{equation*}
h(\phi S-S \phi) X=\left(\phi S^{2}-S^{2} \phi\right) X \tag{5.5}
\end{equation*}
$$

where $h=\operatorname{Tr} S$ denotes the trace of the shape operator of M in Q^{m}.
Now let us consider the Ricci commuting property with \mathfrak{A}-isotropic normal vector field for $S X=\lambda X$, $X \in \mathcal{C}$. Then by (5.5), it follows that from $S X=\lambda X, X \in \mathcal{C}$,

$$
\begin{equation*}
(\lambda-\mu)\{h-(\lambda+\mu)\} \phi X=0 \tag{5.6}
\end{equation*}
$$

where we have used $S \phi X=\mu \phi X$ with $\mu=\frac{\alpha \lambda+2}{2 \lambda-\alpha}, X \in \mathcal{Q}$ and $\mu=\frac{\alpha \lambda}{2 \lambda-\alpha}, X \in Q^{\perp}$ respectively. Then (5.6) gives

$$
\begin{equation*}
\lambda=\mu \quad \text { or } \quad h=\lambda+\mu \tag{5.7}
\end{equation*}
$$

On the other hand, for such an $S X=\lambda X, X \in \mathcal{C}$, (5.5) gives

$$
\begin{equation*}
h \lambda \phi X-h S \phi X=\lambda^{2} \phi X-S^{2} \phi X \tag{5.8}
\end{equation*}
$$

Here we decompose $X \in \mathcal{C}=\mathcal{Q} \oplus \mathcal{Q}^{\perp}$ as

$$
X=Y+Z
$$

where $Y \in \mathcal{Q}$ and $Z \in \mathcal{Q}^{\perp}$. Then $S X=\lambda X=\lambda Y+\lambda Z$ gives the following:

$$
S Y=\lambda Y \quad \text { and } \quad S Z=\lambda Z
$$

because the distributions \mathcal{Q} and \mathcal{Q}^{\perp} are invariant by the shape operator. Then by using the matrix representation of the shape operator, (5.8) gives the following decompositions:

$$
\begin{align*}
& h \lambda \phi Y-h\left(\frac{\alpha \lambda+2}{2 \lambda-\alpha}\right) \phi Y=\lambda^{2} \phi Y-\left(\frac{\alpha \lambda+2}{2 \lambda-\alpha}\right)^{2} \phi Y, \tag{5.9}\\
& h \lambda \phi Z-h\left(\frac{\alpha \lambda}{2 \lambda-\alpha}\right) \phi Z=\lambda^{2} \phi Z-\left(\frac{\alpha \lambda}{2 \lambda-\alpha}\right)^{2} \phi Z, \quad Z \in \mathcal{Q}^{\perp} . \tag{5.10}
\end{align*}
$$

By taking inner products of (5.9) and (5.10) with the vector fields ϕY and ϕZ, respectively, we have

$$
\begin{align*}
& \lambda^{2}-h \lambda+\frac{\alpha \lambda+2}{2 \lambda-\alpha}\left\{h-\frac{\alpha \lambda+2}{2 \lambda-\alpha}\right\}=0 \tag{5.11}\\
& \lambda^{2}-h \lambda+\frac{\alpha \lambda}{2 \lambda-\alpha}\left\{h-\frac{\alpha \lambda}{2 \lambda-\alpha}\right\}=0 \tag{5.12}
\end{align*}
$$

Then subtracting (5.12) from (5.11) gives

$$
\begin{equation*}
h=\frac{2 \alpha \lambda+2}{2 \lambda-\alpha} \tag{5.13}
\end{equation*}
$$

Now from (5.7) let us consider the following two cases:
Case 1. $\lambda=\mu$.
From the matrix representation of the shape operator, $\lambda=\frac{\alpha \lambda+2}{2 \lambda-\alpha}$ gives that

$$
\lambda^{2}-\alpha \lambda-1=0
$$

Since the discriminant $D=\alpha^{2}+4>0$, we have two distinct solutions $\lambda=\cot r$ and $\mu=-\tan r$ with the multiplicities $(m-2)$ and $(m-2)$, respectively, i.e., the shape operator S can be expressed as

$$
S=\left[\begin{array}{ccccccccc}
\alpha & 0 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
0 & 0(\alpha) & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
0 & 0 & 0(\alpha) & 0 & \cdots & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & \cot r & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & \cot r & 0 & \cdots & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & -\tan r & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & \cdots & -\tan r
\end{array}\right] .
$$

This means that the shape operator S commutes with the structure tensor ϕ, i.e., $S \cdot \phi=\phi \cdot S$. Then by Theorem $1.3, m=2 k$, and M is locally congruent to an open part of a tube around a totally geodesic $\mathbb{C} P^{k}$ in $Q^{2 k}$.
Case 2. $\lambda \neq \mu$.
Now we only consider $\lambda \neq \mu$ on the distribution \mathcal{Q}. Since on the distribution \mathcal{Q}^{\perp} we have assumed that $S \phi=\phi S$, it follows that $\lambda=\frac{\alpha \lambda}{2 \lambda-\alpha}$. This gives $\lambda=0$ or $\lambda=\alpha$ on the distribution \mathcal{Q}^{\perp}. Moreover, by the Ricci commuting property, we have the following from (5.3), together with (5.6), (5.7) and (5.13),

$$
\begin{equation*}
h=\lambda+\mu=\lambda+\frac{\alpha \lambda+2}{2 \lambda-\alpha}=\frac{2 \alpha \lambda+2}{2 \lambda-\alpha} . \tag{5.14}
\end{equation*}
$$

This gives $\lambda=0$ or $\lambda=\alpha$. Then we have two subcases.
Subcase 2.1. $\quad \lambda=0$.
Then we can arrange the matrix of the shape operator such that

$$
S=\left[\begin{array}{ccccccccc}
\alpha & 0 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
0 & 0(\alpha) & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
0 & 0 & 0(\alpha) & 0 & \cdots & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & -\frac{2}{\alpha} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & \cdots & -\frac{2}{\alpha}
\end{array}\right] .
$$

In this case the formula $h=\lambda+\mu$ and the notion of trace h of the shape operator S give

$$
h=0-\frac{2}{\alpha}=\alpha+(m-2)\left(-\frac{2}{\alpha}\right) .
$$

Then it gives that $\alpha^{2}=2(m-3)$, i.e., $\alpha=\sqrt{2(m-3)}$.
Now let us consider the case $h=3 \alpha+(m-2)\left(-\frac{2}{\alpha}\right)$. Then, from this, together with $h=\lambda+\mu=-\frac{2}{\alpha}$, we know $\alpha^{2}=\frac{2}{3}(m-3)$. Then $\alpha=\sqrt{\frac{2}{3}(m-3)}$.
Subcase 2.2. $\quad \lambda=\alpha$.
In this subcase, the expression of the shape operator becomes

$$
S=\left[\begin{array}{ccccccccc}
\alpha & 0 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
0 & \alpha(0) & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
0 & 0 & \alpha(0) & 0 & \cdots & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & \alpha & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & \alpha & 0 & \cdots & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & \frac{\alpha^{2}+2}{\alpha} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & \cdots & \frac{\alpha^{2}+2}{\alpha}
\end{array}\right] .
$$

In this case also the formula $h=\lambda+\mu$ and the notion of trace h of the shape operator S yield

$$
h=\alpha+\frac{\alpha^{2}+2}{\alpha}=(m+1) \alpha+(m-2) \frac{\alpha^{2}+2}{\alpha} .
$$

Then it implies that $(2 m-3) \alpha^{2}=-2 m+4$, which gives us a contradiction for $m \geqslant 3$.
Next, we consider the case that $h=(m-1) \alpha+(m-2) \frac{\alpha^{2}+2}{\alpha}$ in the above expression. Then

$$
h=\lambda+\mu=\alpha+\frac{\alpha^{2}+2}{\alpha}
$$

gives

$$
(2 m-5) \alpha^{2}+2(m-3)=0,
$$

which also gives a contradiction for $m \geqslant 4$.
Summing up the above discussions, we assert the following:

Theorem 5.2. Let M be a real hypersurface in complex quadric Q^{m}, $m \geqslant 4$, with commuting Ricci tensor and \mathfrak{A}-isotropic normal. If the shape operator commutes with the structure tensor on the distribution \mathcal{Q}^{\perp}, then M is locally congruent to a tube of radius r over a totally geodesic $\mathbb{C} P^{k}, m=2 k$, in $Q^{2 k}$ or M has 3 distinct constant principal curvatures given by

$$
\begin{array}{lllll}
\alpha=\sqrt{2(m-3)}, & \gamma=0, & \lambda=0, \quad \text { and } \quad \mu=-\frac{2}{\sqrt{2(m-3)}} \quad \text { or } \\
\alpha=\sqrt{\frac{2}{3}(m-3),} \quad \gamma=0, \quad \lambda=0, \quad \text { and } \quad \mu=-\frac{\sqrt{6}}{\sqrt{m-3}}
\end{array}
$$

with corresponding principal curvature spaces

$$
T_{\alpha}=[\xi], \quad T_{\gamma}=[A \xi, A N], \quad \phi\left(T_{\lambda}\right)=T_{\mu}, \quad \operatorname{dim} T_{\lambda}=\operatorname{dim} T_{\mu}=m-2
$$

6 Proof of Theorem 1.5 for \mathfrak{A}-principal unit normal vector field

In this section, we want to prove our Theorem 1.5 for real hypersurfaces with commuting Ricci tensor and \mathfrak{A}-principal unit normal vector field.

From the basic formulas for the real structure A and the Kähler structure J we have the following:

$$
\begin{aligned}
& J A X=J\{B X+\rho(X) N\}=\phi B X+\eta(B X) N-\rho(X) \xi \\
& A J X=A\{\phi X+\eta(X) N\}=B \phi X+\rho(\phi X) N-\eta(X) \phi B \xi-\eta(X) \eta(B \xi) N
\end{aligned}
$$

From this, the anti-commuting structure $A J=-J A$ gives the following:

$$
\begin{equation*}
\phi B X+\eta(B X) N-\rho(X) \xi=-B \phi X-\rho(\phi X) N+\eta(X) \phi B \xi+\eta(X) \eta(B \xi) N . \tag{6.1}
\end{equation*}
$$

Then comparing the tangential and normal component of (6.1) gives the following:

$$
\begin{equation*}
\eta(B X)=-\rho(\phi X)+\eta(X) \eta(B \xi) \tag{6.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi B X=-B \phi X+\rho(X) \xi+\eta(X) \phi B \xi . \tag{6.3}
\end{equation*}
$$

Since N is \mathfrak{A}-principal, i.e., $A N=N$, we know that $B \xi=-\xi$, and $\phi B X=-B \phi X$. Then (6.3) yields

$$
\begin{equation*}
-2 \phi B X+(\operatorname{Tr} S)(\phi S-S \phi) X-\left(\phi S^{2}-S^{2} \phi\right) X=0 \tag{6.4}
\end{equation*}
$$

where we have used $\rho(X)=g(A X, N)=0$. When N is \mathfrak{A}-principal, on the distribution $\mathcal{C}=\mathcal{Q}$ we have

$$
\begin{equation*}
2 S \phi S-\alpha(\phi S+S \phi)=2 \phi \tag{6.5}
\end{equation*}
$$

So if we put $S X=\lambda X$ in (6.5), we have

$$
\begin{equation*}
S \phi X=\mu \phi X=\frac{\alpha \lambda+2}{2 \lambda-\alpha} \phi X \tag{6.6}
\end{equation*}
$$

Then from (6.3) and (6.5), it follows that

$$
\begin{equation*}
-2 \phi B X+(\lambda-\mu)\{h-(\lambda+\mu)\} \phi X=0 . \tag{6.7}
\end{equation*}
$$

It is well known that the tangent space $T_{z} Q^{m}$ of the complex quadric Q^{m} is decomposed as

$$
T_{z} Q^{m}=V(A) \oplus J V(A)
$$

where $V(A)=\left\{X \in T_{z} Q^{m} \mid A X=X\right\}$ and $J V(A)=\left\{X \in T_{z} Q^{m} \mid A X=-X\right\}$. So $S X=\lambda X$ for $X \in \mathcal{C}$. The vector field X can be decomposed as follows:

$$
X=Y+Z, \quad Y \in V(A), \quad Z \in J V(A)
$$

where $A Y=B Y=Y$ and $A Z=B Z=-Z$. So it follows that $B X=A X=A Y+A Z=Y-Z$. Then $\phi B X=\phi Y-\phi Z$. From this, together with (6.7), it follows that

$$
-2(\phi Y-\phi Z)+(\lambda-\mu)\{h-(\lambda+\mu)\}(\phi Y+\phi Z)=0
$$

Then by taking inner products with ϕY and ϕZ, respectively, we get

$$
\begin{equation*}
(\lambda-\mu)\{h-(\lambda+\mu)\}-2=0 \tag{6.8}
\end{equation*}
$$

and

$$
\begin{equation*}
(\lambda-\mu)\{h-(\lambda+\mu)\}+2=0 \tag{6.9}
\end{equation*}
$$

This gives a contradiction. Accordingly, we conclude that real hypersurfaces in Q^{m} with commuting Ricci tensor and \mathfrak{A}-principal normal vector field do not exist.

Summing up the above discussions, we assert the following:
Theorem 6.1. There does not exist any real hypersurface in complex quadric $Q^{m}, m \geqslant 4$, with commuting Ricci tensor and \mathfrak{A}-prinicipal normal vector field.

From Theorems 5.2 and 6.1, together with Lemma 4.2, we give a complete proof of our Theorem 1.5 in Section 1.
Remark 6.2. In this paper, we have proved that a tube over a totally geodesic $\mathbb{C} P^{k}$ in $Q^{m}, m=2 k$, mentioned in our main theorem is Ricci commuting, i.e., Ric $\cdot \phi=\phi \cdot$ Ric. But related to the notion of Ricci parallel, Suh [19] asserted that a tube over $\mathbb{C} P^{k}$ never has parallel Ricci tensor, i.e., the Ricci tensor does not satisfy ∇ Ric $=0$.
Remark 6.3. In [21], a non-existence property of parallel normal Jacobi operator $\nabla \bar{R}_{N}=0$ for Hopf real hypersurfaces in Q^{m} was given. Motivated by this result, it is interesting to consider the classification problem of commuting normal Jacobi operator, i.e., $\bar{R}_{N} \cdot \phi=\phi \cdot \bar{R}_{N}$, where \bar{R} denotes the curvature tensor of the complex quadric Q^{m}.
Remark 6.4. In [22], Suh has also given a classification of parallel structure Jacobi operator R_{ξ}, i.e., $\nabla R_{\xi}=0$. Related to this fact, another problem is to consider a complete classification of commuting structure Jacobi operator, i.e., $R_{\xi} \cdot \phi=\phi \cdot R_{\xi}$, where the structure Jacobi operator R_{ξ} is defined by $R_{\xi} X=R(X, \xi) \xi$ for the Reeb vector field ξ and any vector field X on a real hypersurface M in Q^{m}. Here R denotes the curvature tensor of M in Q^{m}.
Remark 6.5. As another commuting problem between Jacobi operators \bar{R}_{N}, R_{ξ} and the Ricci tensor Ric, it will be interesting to study complete classifications of Hopf hypersurfaces in Q^{m} with commuting properties like $R_{\xi} \cdot \bar{R}_{N}=\bar{R}_{N} \cdot R_{\xi}$, Ric $\cdot R_{\xi}=R_{\xi} \cdot$ Ric or Ric $\cdot \bar{R}_{N}=\bar{R}_{N} \cdot$ Ric.

Acknowledgements This work was supported by National Research Foundation of Korea (Grant No. NRF-2015-R1A2A1A-01002459). The authors express their deep gratitude to the referees for their valuable comments and suggestions to develop the first version of this manuscript.

References

1 Berndt J, Suh Y J. Real hypersurfaces with isometric Reeb flow in complex quadrics. Internat J Math, 2013, 24: 1350050
2 Berndt J, Suh Y J. Contact hypersurfaces in Kaehler manifold. Proc Amer Math Soc, 2015, 143: 2637-2649
3 Kimura M. Real hypersurfaces and complex submanifolds in complex projective space. Trans Amer Math Soc, 1986, 296: 137-149
4 Kimura M. Some real hypersurfaces of a complex projective space. Saitama Math J, 1987, 5: 1-5
5 Klein S. Totally geodesic submanifolds in the complex quadric. Differential Geom Appl, 2008, 26: 79-96
6 Kobayashi S, Nomizu K. Foundations of Differential Geometry: Vol II. New York: Wiley-Interscience, 1996
7 Pérez J D. Commutativity of Cho and structure Jacobi operators of a real hypersurface in a complex projective space. Ann Mat Pura Appl, 2015, 194: 1781-1794

8 Pérez J D, Suh Y J. Real hypersurfaces of quaternionic projective space satisfying $\nabla_{U_{i}} R=0$. Differential Geom Appl, 1997, 7: 211-217
9 Pérez J D, Suh Y J. Certain conditions on the Ricci tensor of real hypersurfaces in quaternionic projective space. Acta Math Hungar, 2001, 91: 343-356
10 Pérez J D, Suh Y J. The Ricci tensor of real hypersurfaces in complex two-plane Grassmannians. J Korean Math Soc, 2007, 44: 211-235
11 Reckziegel H. On the geometry of the complex quadric. In: Geometry and Topology of Submanifolds, vol. 8. Singapore: World Scientific, 1995, 302-315
12 Smyth B. Differential geometry of complex hypersurfaces. Ann of Math, 1967, 85: 246-266
13 Suh Y J. Real hypersurfaces in complex two-plane Grassmannians with commuting Ricci tensor. J Geom Phys, 2010, 60: 1792-1805
14 Suh Y J. Real hypersurfaces in complex two-plane Grassmannians with parallel Ricci tensor. Proc Roy Soc Edinburgh Sect A, 2012, 142: 1309-1324
15 Suh Y J. Real hypersurfaces in complex two-plane Grassmannians with harmonic curvature. J Math Pures Appl, 2013, 100: 16-33
16 Suh Y J. Hypersurfaces with isometric Reeb flow in complex hyperbolic two-plane Grassmannians. Adv Appl Math, 2013, 50: 645-659
17 Suh Y J. Real hypersurfaces in the complex quadric with Reeb parallel shape operator. Internat J Math, 2014, 25: 1450059
18 Suh Y J. Real hypersurfaces in the complex hyperbolic two-plane Grassmannians with commuting Ricci tensor. Internat J Math, 2015, 26: 1550008
19 Suh Y J. Real hypersurfaces in the complex quadric with parallel Ricci tensor. Adv Math, 2015, 281: 886-905
20 Suh Y J. Real hypersurfaces in complex quadric with harmonic curvature. J Math Pures Appl, 2016, 106: 393-410
21 Suh Y J. Real hypersurfaces in the complex quadric with parallel normal Jacobi tensor. Math Nachr, 2016, doi: 10.1002/mana. 201500428

22 Suh Y J. Real hypersurfaces in the complex quadric with parallel structure Jacobi tensor. ArXiv:1605.05316, 2016
23 Suh Y J, Woo C. Real hypersurfaces in complex hyperbolic two-plane Grassmannians with parallel Ricci tensor. Math Nachr, 2014, 55: 1524-1529

[^0]: * Corresponding author

