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1 Introduction

Considering Hermitian symmetric spaces of rank 2, we can usually give examples of Riemannian symmet-
ric spaces SU,,+2/S(U2U,,) and SUs ,, /S (U2U,y, ), which are said to be complex two-plane Grassmannians
and complex hyperbolic two-plane Grassmannians, respectively (see [13-16,18]). These are regarded as
Hermitian symmetric spaces and quaternionic Kahler symmetric spaces equipped with the Kahler struc-
ture J and the quaternionic Kéhler structure J and they have rank 2.

Among the other different types of Hermitian symmetric spaces with rank 2 in the class of compact type,
one can give the example of complex quadric Q™ = SO, 4+2/50,,504, which is a complex hypersurface
in complex projective space CP™* 1 (see [12,17,19]). We can also view the complex quadric as a kind
of real Grassmann manifold of compact type with rank 2 (see [6]). Consequently, the complex quadric
admits two important geometric structures, a complex conjugation structure A and a Kéhler structure J,
which anti-commute with each other, i.e., AJ = —JA. Then the triple (Q™, J, g) (m > 2) is an Hermitian
symmetric space of compact type with rank 2 and its maximal sectional curvature equals 4 (see [5,11]).

In the complex projective space CP™*! and the quaternionic projective space HP™*! some clas-
sifications related to commuting Ricci tensor or commuting structure Jacobi operator were investi-
gated by Kimura [3,4], Pérez [7] and Pérez and Suh [8,9], respectively. Under the invariance of the
shape operator along some distributions a new classification in the complex 2-plane Grassmannian
G2(C™+2) = SU,,42/S(U,,Us) was investigated.
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By the Kéhler structure J of the complex quadric @™, we can decompose its action on any tangent
vector field X on M in Q™ as follows:

JX = ¢X + n(X)N,

where ¢X = (JX)T denotes the tangential component of JX, n denotes a 1-form defined by n(X) =
g(JX,N) = g(X,§) for the Reeb vector field £ = —JN and N a unit normal vector field on M in Q™.

When the Ricci tensor Ric of M in Q™ commutes with the structure tensor ¢, i.e., Ric-¢ = ¢-Ric, we
say that M is Ricci commuting or commuting Ricci tensor.

Pérez and Suh [10] proved a non-existence property for Hopf hypersurfaces in Go(C™*2) with par-
allel and commuting Ricci tensor. Moreover, Suh [13] strengthened this result to hypersurfaces in
G2 (C™*?) with commuting Ricci tensor and gave a characterization of real hypersurfaces in Go(C™*2) =
SUp42/S (U, Us) as follows:

Theorem 1.1.  Let M be a Hopf real hypersurface in Go(C™ 2) with commuting Ricci tensor, m > 3.
Then M s locally congruent to a tube of radius r over a totally geodesic Go(C™*1) in Go(C™T2).

Moreover, Suh [18] studied another classification for Hopf hypersurfaces in complex hyperbolic two-
plane Grassmannians SUs ,,,/S(UsU,,) with commuting Ricci tensor as follows:

Theorem 1.2.  Let M be a Hopf hypersurface in SUs 1/ S(U2Up,) with commuting Ricci tensor, m > 3.
Then M s locally congruent to an open part of a tube around some totally geodesic SUs y—1/S(U2Upm—1)
in SUs,1m/S(UaUp,) or a horosphere whose center at infinity with JX € JX is singular.

It is known that the Reeb flow on a real hypersurface in Ga(C™*?2) is isometric if and only if M is
an open part of a tube around a totally geodesic Go(C™*!) C Go(C™*2). Corresponding to this result,
Suh [16] asserted that the Reeb flow on a real hypersurface in SUs ,,,/S(U2Up,) is isometric if and only
if M is an open part of a tube around a totally geodesic SUz —1/S(U2Upm—1) C SUz.,/S(U2Up,). Here,
the Reeb flow on a real hypersurface in SU,,42/S (U, Us) or SUs ,,/S(UsU,y,) is said to be isometric if the
shape operator commutes with the structure tensor. Berndt and Suh [1], and Suh [19] have introduced
this problem for real hypersurfaces in the complex quadric Q™ = SO,,+2/50,,SO2 and obtained the
following result:

Theorem 1.3.  Let M be a real hypersurface of the complex quadric Q™, m = 3. The Reeb flow on M
is isometric if and only if m is even, say m = 2k, and M is an open part of a tube around a totally
geodesic CP* c Q?F.

In addition to the complex structure J there is another distinguished geometric structure on Q™,
namely a parallel rank two vector bundle 2 which contains an S*-bundle of real structures, i.e., complex
conjugations A on the tangent spaces of Q™. The set is denoted by A.; = {Axz | A € S' € C}, [2] € Q™,
and means the set of all complex conjugations defined on Q™. Then 2. becomes a parallel rank 2-
subbundle of End7T'Q™. This geometric structure determines a maximal 2(-invariant subbundle Q of the
tangent bundle T'M of a real hypersurface M in Q™.

When we consider the hypersurface M in the complex quadric @™, under the assumption of some
geometric properties the unit normal vector field NV of M in Q™ belongs to one of two classes, depending
on whether N is -isotropic or -principal (see [17,19]). In the first case where N is 2(-isotropic, it is
known that M is locally congruent to a tube over a totally geodesic CP* in Q?*. In the second case, when
the unit normal N is -principal, we proved that a contact hypersurface M in Q™ is locally congruent
to a tube over a totally geodesic and totally real submanifold S™ in Q™ (see [19]).

Now at each point z € M let us consider a maximal 2-invariant subspace Q. of T, M, z € M, defined by

Q.={X eT.M|AX € T.M for all A€}

Then when the unit normal vector field N is Rd-isotropic it can be easily checked that the orthogonal
complement QF = C. © Q,, z € M, of the distribution Q in the complex subbundle C, becomes QF =
Span{ A&, AN}. Here it can be easily checked that the vector fields A¢ and AN belong to the tangent
space T, M, z € M if the unit normal vector field N becomes 2-isotropic. Then motivated by the above
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result, Suh [19] gave a theorem for real hypersurfaces in the complex quadric @™ with parallel Ricci
tensor and 2-isotropic unit normal vector field.

In the study of complex two-plane Grassmannian G(C™*?2) or complex hyperbolic two-plane Grass-
mannian SUs ,,,/S(UzU,, ), we considered hypersurfaces with parallel Ricci tensor and gave non-existence
properties respectively (see [14,23]). Suh [19] also considered the notion of parallel Ricci tensor VRic = 0
for hypersurfaces M in Q™. As a generalization of such facts, we consider the notion of harmonic cur-
vature, i.e., (VxRic)Y = (VyRic)X for any tangent vector fields X and Y on M in Q™ and proved the
following (see [20]).

Theorem 1.4.  Let M be a Hopf real hypersurface in the complex quadric Q™, m > 4, with harmonic
curvature and A-isotropic unit normal N. If the shape operator commutes with the structure tensor on
the distribution Q=+, then M is locally congruent to an open part of a tube around k-dimensional complex
projective space CP* in Q™, m = 2k, or M has at most 6 distinct constant principal curvatures given by
a,v = 0(a), A1, p1, A2 and mug with corresponding principal curvature spaces

Ta = [5]7 T’y = [Afa AN]; (ZS(T)\I) = TMU ¢TA2 = Tuzﬂ
dimT)y, + dimTy, = m — 2, dim7},, +dimT,, =m — 2.

Here four roots \; and p;, i = 1,2 satisfy the equation
2% —2Bx 4+ 24 af =0,

224\ /(012)2 +4ah
where the function B denotes f = = T2iy(P ) Hoh - the function h is the mean curvature of M

«@
in Q™. In particular, o = \/2""‘271, v(=a) = ,/2’"2’1, A=0, pu= 7\/3;{_2_1, with multiplicities 1, 2,
m — 2 and m — 2, respectively.

But from the assumption of harmonic curvature, it was impossible to derive the fact that either the
unit normal N is 2-isotropic or A-principal. So Suh [20] gave a complete classification with the further
assumption of 2A-isotropic as in Theorem 1.4. For the case where the unit normal vector field N is
2A-principal, we have proved that real hypersurfaces in Q™ with harmonic curvature do not exist.

However, when we consider a Ricci commuting real hypersurface M in Q™, i.e., Ric-¢ = ¢-Ric for

hypersurfaces M in Q", we can assert that the unit normal vector field N becomes either 2l-isotropic or
2-principal. Then motivated by such a result and using Theorem 1.3, in this paper we give a complete
classification for real hypersurfaces in the complex quadric Q™ with commuting Ricci tensor, i.e., Ric-¢
= ¢-Ric as follows:
Theorem 1.5.  Let M be a Hopf real hypersurface in the compler quadric Q™, m > 4, with commuting
Ricci tensor. If the shape operator commutes with the structure tensor on the distribution Q=+, then M
is locally congruent to an open part of a tube around totally geodesic CP* in Q**, m = 2k, or M has 3
distinct constant principal curvatures given by

2
a=+2(m-3), v=0, A=0, and p=-——= or

2
o= g(mf?)), y=0, A=0, and p=-——7—

with corresponding principal curvature spaces, respectively
To =1[&], T,=[A§, AN], ¢(Tx)=T,, and dimTy = dimT, =m —2.

Remark 1.6. In Theorem 1.5, the second and the third cases can be explained geometrically as

follows: the real hypersurface M is locally congruent to M; x C, where M; is a tube of radius r =

N -1

7 tan~! v/m — 3 or respectively, of radius r = % tan m=3 “around (m—1)-dimensional sphere S™

3
in Q™ 1, ie., M is a contact hypersurface defined by S¢ + ¢S = k¢, k = —ﬁ, and k = —\/%,
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respectively (see [2,19]). By the Segre embedding, the embedding M; x C C Q™1 xC C Q™ is defined by
(20,21, - - + s 2m, W) = (20w, Z1W, . . ., 2w, 0). Here (20w)?+ (z1w)2 ++ - -+ (zmw)? = (224 +22)w? = 0,
where {20, ..., 2z, } denotes a coordinate system in Q™! satisfying 22 + - -- + 22, = 0.

Our paper is organized as follows. In Section 2, we present basic material about the complex quadric Q™
including its Riemannian curvature tensor and a description of the singular vectors of Q™ like -principal
or 2-isotropic unit normal vector field. In Section 3, we investigate the geometry of the subbundle Q
for hypersurfaces in Q™ and some equations including Codazzi and fundamental formulas related to the
vector fields &, N, A¢ and AN for the complex conjugation A of M in Q™.

In Section 4, the first step is to derive the formula of Ricci commuting from the equation of Gauss
for real hypersurfaces M in Q™ and to get a key lemma that the unit normal vector field N is either
2-isotropic or A-principal, and show that a real hypersurface in @™, m = 2k, which is a tube over a
totally geodesic CP* in Q?* naturally has a commuting Ricci tensor. In Section 5, by the expressions
of the shape operator S for real hypersurfaces M in Q™, we present the proof of Theorem 1.5 with
RA-isotropic unit normal vector field.

In Section 6, we give a complete proof of Theorem 1.5 with 2A-principal unit normal vector field. The
first part of this proof is devoted to giving some fundamental formulas from Ricci commuting and 2f-
principal unit normal vector field. Then in the latter part of the proof, we will use the decomposition
of two eigenspaces of the complex conjugation A in Q™ such that T,.M = V(A) ¢ JV(A), where such
eigenspaces are defined by V(A4) = {X € T.Q™ | AX = X} and JV(A) = {X € T.Q™ | AX = - X},
respectively.

2 The complex quadric

One can refer to [5,6,11,17,19] for more preliminaries. The complex quadric Q™ is the complex hyper-
surface in CP™*! and defined by the equation 2§ + - - + 22 ., = 0, where zq, ..., 241 are homogeneous
coordinates on CP™+!. We equip Q™ with the Riemannian metric g which is induced from the Fubini-
Study metric § on CP™*+! with constant holomorphic sectional curvature 4. Define the Fubini-Study
metric g as §(X,Y) = ®(JX,Y) for any vector fields X and Y on CP™"! and a globally closed (1, 1)-
form ® given by ® = —4iddlogf; on an open set U; = {[z°, 21, ..., 2™ ] € CP™*1 | 27 # 0}, where the
function f; is denoted by f; = Z}Z:rolt?f?, and t? = z—’j for 5,k =0,...,m+ 1. Consequently, the Kahler
structure on CP™*! induces canonically a Kéhler structure (J, g) on the complex quadric Q™.
Alternatively, the complex projective space CP™*! is defined by using the Hopf fibration

7§82 et 2 5 [z,

which is said to be a Riemannian submersion. Then we naturally can consider the following diagram for
the complex quadric Q™:

Q _ ﬂil(Q) ? ; S2m+3 C (Cm+2

: |

Q=Q" —— cpmtl,
The submanifold Q of codimension 2 in $273 is called the Stiefel manifold of orthonormal 2-frames

in R?™+4 which is given by

Q:{x—i—iye(Cm”

glz,z) = g(y,y) = % and g(z,y) = 0}7

where g(z,y) = Z?:faciyi for any = (z1,...,Zmi2) and y = (Y1, . -, Ymi2) € R™T2. Then the tangent

space is decomposed as 1,5*"*+3 = H, @ F, and T.Q = H.(Q) @ F.(Q) at z = x + iy € Q, respectively,
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where the horizontal subspaces H, and H.(Q) are given by H, = (Cz)* and H.(Q) = (Cz ® Cz)*, and
F, and F,(Q) are fibers which are isomorphic to each other. Here H,(Q) becomes a subspace of H,
of real codimension 2 and orthogonal to the two unit normals —z and —Jz. Explicitly, at the point
z=x+iy € Q it can be described as

H. ={u+iveC""?* | g(z,u) +g(y,v) = 0, g(z,v) = g(y,u)}

and
H.(Q) ={u+iv € H. | g(u,x) = g(u,y) = g(v,z) = g(v,y) = 0},
where C™*2 = R™*2 @ iR™*+2 and g(u,x) = Zf:f wiz; for any u = (u1, ..., Ums2), T = (T1,..., Tmi2)
€ R™*2,
These spaces can be naturally projected by the differential map m, as 7. H, = 7T(Z)(CP"“r1 and

T H.(Q) = Tr(-)Q, respectively. Hence, at the point 7(z) = [2] the tangent subspace T7,;Q™ becomes a
complex subspace of T[Z](CP"“‘1 with complex codimension 1 and has two unit normal vector fields —Zz
and —JZ (see [11]).

Now let us denote by A: the shape operator of Q™ in CP™*! with respect to the unit normal —Z.
Then, by virtue of the Weingarten equation, it is defined by A;w = V,,Z = w for a complex Euclidean
connection V induced from C™*2 and all w € T1,)Q™, i.e., the shape operator A; is just a complex
conjugation restricted to T],;Q™. Moreover, it satisfies the following: For any w € T,;Q™ and any

Ae st cc,

Aizw = Az Axzw = Az o

= \*w = w.

Accordingly, AZ. = I for any A\ € S'. So the shape operator A; becomes an anti-commuting involution
such that A2 = I and AJ = —JA on the complex vector space T,1Q™ and

T Q™ = V(Az) ® JV(Az),

where V(Az) = R™2 N T1,;Q™ is the (+1)-eigenspace and JV (Az) = iR™2 N Tp,1Q™ is the (—1)-
eigenspace of Az, i.e., Az X = X and Az JX = —JX, respectively, for any X € V(As).

The Gauss equation for @™ ¢ CP™*t! implies that the Riemannian curvature tensor R of Q™ can be
described using the complex structure J and the complex conjugations A € 2:

R(X,Y)Z = g(Y, Z)X — g(X, 2)Y + g(JY, Z)JX — g(JX, Z2)JY —29(JX,Y)JZ
+ g(AY, Z)AX — g(AX, Z)AY + g(JAY, Z)JAX — g(JAX, Z)J AY.

Note that J and each complex conjugation A anti-commute, i.e., AJ = —JA for each A € 2.

Recall that a nonzero tangent vector W € T,;Q™ is called singular if it is tangent to more than one
maximal flat in Q™. There are two types of singular tangent vectors for the complex quadric Q™:

1. If there exists a conjugation A € 2 such that W € V(A), then W is singular. Such a singular
tangent vector is called 2-principal.

2. If there exist a conjugation A € A and orthonormal vectors X,Y € V(A) such that W/||W| =
(X +JY)/v/2, then W is singular. Such a singular tangent vector is called 2l-isotropic.

3 Some general equations

Let M be a real hypersurface in @™ and denote the induced almost contact metric structure by (¢, &, 7, g).
Note that £ = —JN with N being a (local) unit normal vector field of M and 7 the corresponding 1-form
defined by n(X) = g(&, X) for any tangent vector field X on M. The tangent bundle TM of M splits
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orthogonally into TM = C ® R, where C = ker(n) is the maximal complex subbundle of TM. The
structure tensor field ¢ restricted to C coincides with the complex structure J restricted to C, and ¢& = 0.
At each point z € M we define a maximal 2-invariant subspace of T, M, z € M as follows:

Q.={X eT.M|AX € T.M for all A€}

Then we want to introduce an important lemma which will be used in the proof of our Theorem 1.5 in
Introduction.

Lemma 3.1 (See [17,19]).  For each z € M we have

(i) If N, is A-principal, then Q. = C..

(ii) If N, is not A-principal, there exist a conjugation A € 2 and orthonormal vectors X,Y € V(A)
such that N, = cos(t)X + sin(t)JY for some t € (0,7/4]. Then we have Q, =C, 6 C(JX +Y).

Assume that M is a Hopf hypersurface. Then the shape operator S of M in Q™ satisfies
5S¢ = ag,

where a = ¢(5¢,&) denotes the Reeb function on M. Considering the transform JX by the Kéhler
structure J on Q™ for any vector field X on M in Q™, we get

JX =X +n(X)N
for a unit normal N to M. Setting Z = £ in the following Codazzi equation:
g(Vx9Y — (Vy9)X, Z) = n(X)g(8Y, Z) — n(Y)g(¢X, Z) — 2n(Z)g(¢ X, Y)

+9(X, AN)g(AY, Z) — g(Y, AN)g(AX, Z)
+9(X, A8 g(JAY, Z) — g(Y, A&)g(JAX, Z), (3.1)
we can eventually get the following:
0=29(5¢SX,Y) — ag((¢S + 59)X,Y) — 29(¢X,Y)
+9(X, AN)g(Y, AS) — g(Y, AN)g(X, AS)
—9(X, Agg(JY, AG) + g(Y, AG)g(J X, AS)

+29(§, AN)g(X, An(Y) — 29(X, AN)g(§, A n(Y)
—29(&, AN)g(Y, An(X) +29(Y, AN)g(§, A§n(X). (3.2)

At each point z € M, one can choose A € 2, such that
N = cos(t)Z1 + sin(t)JJ Z,

for some orthonormal vectors Z1,Zs € V(A) and 0 < t <
function on M. Since £ = —JN, we have

T (see [11, Proposition 3]). Note that ¢ is a
N = cos(t)Z1 + sin(t)J Zs,
AN = cos(t)Zy — sin(t)J Zs,
& =sin(t)Z2 — cos(t)JJ Zy,
A& =sin(t) Zy + cos(t)J Z;.
It implies that g(&, AN) = 0 and hence (3.2) becomes
0=29(5¢SX.Y) —ag((¢S + S4)X,Y) — 29(¢X,Y)
+9(X, AN)g(Y, AS) — g(Y, AN)g(X, Af)
— 9(X, AQ)g(JY, AS) + g(V, A&)g(J X, AE)
= 29(X, AN)g(&, An(Y) + 29(Y, AN)g (&, AEn(X). (3-4)
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4 Ricci commuting and a key lemma

By the equation of Gauss, the curvature tensor R(X,Y)Z for a real hypersurface M in Q™ induced from
the curvature tensor R of Q™ in Section 2 can be described in terms of the complex structure J and the
complex conjugation A € 2 as follows:

RX,Y)Z =g(Y,2)X — g(X, Z)Y + g(¢Y, 2)9X — g(¢X, Z)¢Y —29(¢X,Y)0Z
+g(AY, Z2)AX — g(AX, 2)AY + g(JAY, Z)JAX — g(JAX, Z)JAY
+g(SY, Z2)SX — g(SX,Z)SY

forany XY, Ze€T.M, z € M.

Now let us put
AX = BX + p(X)N,

for any vector field X € T.Q™, z € M, p(X) = g(AX, N), where BX and p(X )N respectively denote the
tangential and normal components of the vector field AX. Then A{ = BE + p(§)N and p(€) = g(AE, N)
= 0. Then it follows that

AN = AJE = —JAE = —J(BE + p(€)N)
= —(¢BE +n(BE)N),

where we have used N = J¢ from the Reeb vector field ¢ = —JN and J? = —I. The equation gives
g(AN,N) = —n(B¢). From this, together with the definition of the Ricci tensor, we have

Ric(X) = (2m —1)X = 3n(X){ — g(AN,N)AX + g(AX,N)AN
+n(AX)AE + (TrS)SX — S?X.
Then, summing up the above formulas, we have
Rie(X) = (2m — 1)X — 3n(X) + n(BE{BX + p(X)N}
+ p(X){—¢BE — n(BE)NY + n(BX)BE + (TrS)SX — S?X.
From this, together with the assumption of Ricci commuting, i.e., ¢-Ric(X) = Ric-¢X, it follows that
(2m —1)¢X +1(BEPBX — p(X)¢* BE +n(BX)BE + (TrS)pSX — S°X
= (2m — 1)§X + n(BE)BEX — p(¢X)$BE + n(BSX)BE + (TrS)SeX — S26X.  (4.1)
Here we want to use the following formulas:
n(BX) = g(Ag, X)),
n(BoX) = g(Ag, ¢X) = g(AS, JX —n(X)N) = g(AJ¢, X)
= 9(AN, X) = p(X),
p(0X) = g(A¢X, N) = g(AJ X, &) = g(JoX, AL)
= g(¢”X + n(¢X)N, A¢) = —g(X, A&) +n(X)g(&, A¢),
p(X) = n(B¢X).
Substituting these formulas into (4.1), we have
N(BEPBX — n(BoX)n(BEE + (TrS)¢SX — ¢S X
= n(BE)BoX — n(X)n(BE)$BE + (TrS)SoX — S*¢X. (4.2)
Then, by taking the inner product of (4.2) with £ and using that M is Hopf, it follows that
n(B§)¢BE = 0. (4.3)
Then the formula (4.2) becomes

1(BE)(¢B — BY)X + (TrS)(6S — S¢)X — (¢5% — S29)X = 0. (4.4)
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Remark 4.1. Let M be a real hypersurface over a totally geodesic CP* C Q?*, m = 2k. Then
in [17,19], the structure tensor commutes with the shape operator, i.e., S¢ = ¢S. Moreover, the unit
normal vector field N becomes -isotropic. This gives n(B¢) = g(Ag, &) = 0. So it naturally satisfies the
formula (4.2), i.e., the condition of Ricci commuting is satisfied.

On the other hand, from (4.3) we assert an important lemma as follows:

Lemma 4.2.  Let M be a real hypersurface in Q™, m > 3, with commuting Ricci tensor. Then the
unit normal vector field N becomes singular, i.e., N is A-isotropic or A-principal.

Proof.  From (4.3) we get
n(B§) =0 or ¢BE=0.

The first case gives that n(BE) = g(A,§) = cos2t = 0, i.e., t = 7. This implies that the unit normal N

becomes
X+ JY

N= ,
V2
which means that N is 2U-isotropic.
The second case gives that

p(X) = g(AX,N) = n(BpX) = —g(X, $BE) = 0,

which means that AX € T, M forany A€, X € T.M, z € M. This implies Q, =C,, z € M, and N is
2-principal, i.e., AN = N. O

In order to prove Theorem 1.5 in Section 1, by virtue of Lemma 4.2, we can consider two classes
of hypersurfaces in Q™ with the unit normal N being 2-principal or -isotropic. When M has an 2A-
isotropic unit normal N, in Section 5 we will give the proof in detail and in Section 6 we will give the
remainder proof for the case that M has an 2(-principal unit normal vector field.

5 Proof of Theorem 1.5 for 2-isotropic unit normal vector field

In this section, we want to prove our Theorem 1.5 for real hypersurfaces M in @™ with commuting Ricci
tensor when the unit normal vector field becomes 2A-isotropic.

Since we assume that the unit normal N is 2-isotropic, by the definition in Section 3 we know that
t = %. Then by the expression of 2-isotropic unit normal vector field, (3.3) gives N = \%Zl + %JZQ.
Since the unit normal N is 2-isotropic, we know that g(¢, A) = 0. Moreover, by (3.4) and using the
anti-commuting property AJ = —JA between the complex conjugation A and the Kéhler structure J,
we can prove the following (see also [17, Lemma 4.2]) lemma.

Lemma 5.1.  Let M be a Hopf real hypersurface in Q™ with (local) 2A-isotropic unit normal vector
field N. For each point z € M we choose A € A, such that N, = cos(t)Z1 + sin(t)J Za holds for some

orthonormal vectors Z1,Zs € V(A) and 0 <t < - Then

0=29(5¢SX.Y) — ag((¢S + S9)X,Y) — 29(¢X,Y)
+29(X, AN)g(Y, Ag) — 29(Y, AN)g(X, A¢)
+29(& AO{g(Y, AN)n(X) — g(X, AN)n(Y)}
holds for all vector fields X,Y on M.

Then by virtue of 2-isotropic unit normal, from Lemma 5.1 we obtain
2S0SX = a(So + ¢S)X + 20X — 2g(X, AN)AE + 2g(X, AE)AN. (5.1)

Now let us consider the distribution Q1, which is an orthogonal complement of the maximal 2(-invariant
subspace @ in the complex subbundle C of T,M, z € M in Q™. Then by Lemma 3.1 in Section 3, the
orthogonal complement Q+ = CS Q becomes CS Q = Span[AN, A¢]. From the assumption of S¢ = ¢S on
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the distribution Q= it can be easily checked that the distribution Q- is invariant by the shape operator S.
Then (5.1) gives the following for SAN = AAN,

(2X — @)SPAN = (a + 2)pAN — 2A¢
= (A + 2)pAN — 26AN

= aApAN.
Then A = pAN gives the following:
SAg = QAO‘_A ~Ag. (5.2)
Then from the assumption S¢ = ¢S on Q+ = C © Q, it follows that A = 2)0\‘2‘(1 gives
A=0 or A=a. (5.3)

On the other hand, on the distribution Q we know that AX € T,M, z € M, because AN € Q. So
(5.1), together with the fact that g(X, A¢) =0 and g(X, AN) =0 for any X € Q, implies that

2S6SX = a(Sé + ¢S)X + 26X. (5.4)

Then we can take an orthonormal basis X1, ..., Xo(,_2) € @ such that SX; = \; X; fori=1,...,m—2.

Then by (5.1) we know that
a\; + 2

2)\1 —
Accordingly, by (5.3) the shape operator S can be expressed as

SoX; = X

« 0 0 0 0

0 0(c) 0 0 0

0 0 0 0 0 0 0

0 0 A1 0 0 0

S = : ;
Am—2 0
0 M1
_0 0 0 0o --- 0 o --- ftm—2 |

where p; = g‘;‘fﬁ fori=1,...,m — 2. From (4.4), together with n(B¢) = g(A&,£) = 0, we have that

h($S — S9)X = (65 — 5%¢)X, (5.5)
where h = TrS denotes the trace of the shape operator of M in Q™.

Now let us consider the Ricci commuting property with 2(-isotropic normal vector field for SX = A X,
X € C. Then by (5.5), it follows that from SX = AX, X € C,

(A= mi{h = (A+p)}oX =0, (5.6)
where we have used S¢X = pu¢pX with py = g‘i‘fz, X e Qand pu= %, X € Q' respectively. Then
(5.6) gives

A=p or h=M\+p. (5.7)

On the other hand, for such an SX = \X, X € C, (5.5) gives

MAGX — hSoX = A\26X — S2¢X. (5.8)
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Here we decompose X € C = Q& Q1 as
X=Y+7Z7
where Y € Q and Z € Q1. Then SX = \X = \Y + \Z gives the following:
SY =AY and SZ=)\Z,

because the distributions @ and Q' are invariant by the shape operator. Then by using the matrix
representation of the shape operator, (5.8) gives the following decompositions:

a\+ 2 9 ad+2)7
hAQY — h Y = \¢Y — Y, Y .
ov ~ (g2 Jor —xov - (552) v vea (5.9
oz — h =22 Vo7 = A2pz — (22 2¢Z Ze ot (5.10)
2\ — « N 2\ — « ’ ' '
By taking inner products of (5.9) and (5.10) with the vector fields ¢Y and ¢Z, respectively, we have
9 a\+2 a\+ 2
_ — = A1
A h)\+2)\a{h o 0, (5.11)
a a\
A% — hA h— =0. 12
+2)\—a{ 2)\—04} 0 (5.12)
Then subtracting (5.12) from (5.11) gives
2a\ + 2
h=——. 5.13
2\ —« ( )
Now from (5.7) let us consider the following two cases:
Case 1. A =p.
From the matrix representation of the shape operator, A = gi\fi gives that
M —aA—1=0.
Since the discriminant D = o? + 4 > 0, we have two distinct solutions A = cotr and p = — tanr with

the multiplicities (m — 2) and (m — 2), respectively, i.e., the shape operator S can be expressed as

[ 0 0 0 0 0 0 |
0 O O 0 0 0 0
0 0 O« O 0 0 0
0 0 0 cotr 0 0 0
S —
0 cotr 0
0 0 —tanr
10 0 0 0 e 0 0 oo —tanr

This means that the shape operator S commutes with the structure tensor ¢, i.e., S-¢ = ¢-S. Then by
Theorem 1.3, m = 2k, and M is locally congruent to an open part of a tube around a totally geodesic CP*
in Q%*.

Case 2. )\ # p.

Now we only consider A # p on the distribution Q. Since on the distribution O+ we have assumed
that S¢ = ¢S5, it follows that A = 2)‘2‘@. This gives A = 0 or A = « on the distribution Q+. Moreover,
by the Ricci commuting property, we have the following from (5.3), together with (5.6), (5.7) and (5.13),
al+2  2al+2
2A—a 22 —a

A+ (5.14)
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This gives A = 0 or A = . Then we have two subcases.

Subcase 2.1. A =0.
Then we can arrange the matrix of the shape operator such that

o 0 0 0 0 0]
0 0@ 0 0 0 0 0
0 0(a) 0 0 0 0
0 0 0 0 0 0
S:

0

_2

@
0 0 0 0 -0 0 - —2]

In this case the formula h = A + p and the notion of trace h of the shape operator S give

h:0—z=a+(m—2)(—z).

« «

Then it gives that a? = 2(m — 3), i.e., a = \/2(m — 3).

Now let us consider the case h = 3av+ (m — 2)(—2). Then, from this, together with h = A4 p = —

we know a? = 2(m — 3). Then o = \/2(m — 3).
Subcase 2.2. X\ =a.

In this subcase, the expression of the shape operator becomes

(@ 0 0 0 0 0 0 |
0 a(0) 0 0 0 0 0
0 0 a0 0 0 0 0
0 0 0 « 0 0 0
S =
0 « 0
242
0 0 0 0 ot 0
a2
00 o 0 -~ 0 0 ... oF2

In this case also the formula h = A + p and the notion of trace h of the shape operator S yield

242 242
h=a+2 + :(m+1)a+(m72)a + .
@
Then it implies that (2m — 3)a? = —2m + 4, which gives us a contradiction for m > 3.

Next, we consider the case that h = (m — 1)a + (m — 2)% in the above expression. Then

2
2
hz)\—i—,uzoz—l—a i

gives
(2m — 5)a® +2(m — 3) = 0,

which also gives a contradiction for m > 4.
Summing up the above discussions, we assert the following:

2195

2

o’



2196 Suh Y J et al. Sci China Math November 2016 Vol. 59 No.11

Theorem 5.2.  Let M be a real hypersurface in complex quadric Q™, m = 4, with commuting Ricci
tensor and A-isotropic normal. If the shape operator commutes with the structure tensor on the distribu-
tion QL. then M is locally congruent to a tube of radius r over a totally geodesic CP*, m = 2k, in Q**
or M has 3 distinct constant principal curvatures given by

a=1+/2(m —3), =0, A=0, and = ————= or
( ) p o5
2 6
a=1/=(m-=3), v=0, A=0, and p=-— V6
3 m—3

with corresponding principal curvature spaces

To=[¢], T, =[AE AN], &(Ty) =T,, dimTy = dimT, =m — 2.

6 Proof of Theorem 1.5 for 2-principal unit normal vector field

In this section, we want to prove our Theorem 1.5 for real hypersurfaces with commuting Ricci tensor
and 2-principal unit normal vector field.
From the basic formulas for the real structure A and the Kéhler structure J we have the following:

JAX = J{BX + p(X)N} = ¢BX + n(BX)N — p(X)E,
AJX = A{pX +n(X)N} = BoX + p(¢X)N — n(X)pBE — n(X)n(BEN.

From this, the anti-commuting structure AJ = —J A gives the following:
¢BX +n(BX)N — p(X)§ = —BoX — p(¢X)N + n(X)$BE + n(X)n(BEN. (6.1)
Then comparing the tangential and normal component of (6.1) gives the following:
n(BX) = —p(¢X) +n(X)n(BE) (62)

and
0BX = —BoX + p(X)E + n(X)dBE. (6.3)

Since N is A-principal, i.e., AN = N, we know that B = —¢, and ¢BX = —B¢X. Then (6.3) yields
—2¢BX + (TrS)(¢S — S¢) X — (¢S* — S?¢)X =0, (6.4)

where we have used p(X) = g(AX, N) = 0. When N is 2-principal, on the distribution C = Q we have

25¢S — a(pS + S¢) = 2¢. (6.5)
So if we put SX = AX in (6.5), we have
aX+2
X = puoX = X. .
SOX = poX = 520 (66)
Then from (6.3) and (6.5), it follows that
—2¢0BX + (AN —p){h— (A + p)}pX = 0. (6.7)

It is well known that the tangent space T.Q™ of the complex quadric Q™ is decomposed as
T.Qm =V (A) @ JV(A),

where V(A) = {X € T,Q™ | AX = X} and JV(A) = {X € T.Q™ | AX = —X}. So SX = \X for
X € C. The vector field X can be decomposed as follows:

X=Y+2 YEeV(A), ZecJV(A),
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where AY = BY =Y and AZ = BZ = —Z. So it follows that BX = AX = AY + AZ =Y — Z. Then
¢BX = ¢Y — ¢Z. From this, together with (6.7), it follows that

—2(¢Y = 0Z) + (A = w{h — (A + p)}(@Y + ¢Z) = 0.

Then by taking inner products with ¢Y and ¢Z, respectively, we get

A=wi{h—A+w}-2=0 (6.8)

and
A=wi{h—A+p}+2=0. (6.9)

This gives a contradiction. Accordingly, we conclude that real hypersurfaces in Q™ with commuting Ricci
tensor and RA-principal normal vector field do not exist.
Summing up the above discussions, we assert the following:

Theorem 6.1. There does not exist any real hypersurface in compler quadric Q™, m > 4, with
commuting Ricci tensor and A-prinicipal normal vector field.

From Theorems 5.2 and 6.1, together with Lemma 4.2, we give a complete proof of our Theorem 1.5
in Section 1.

Remark 6.2. In this paper, we have proved that a tube over a totally geodesic CP* in Q™, m = 2k,
mentioned in our main theorem is Ricci commuting, i.e., Ric-¢ = ¢-Ric. But related to the notion of
Ricci parallel, Suh [19] asserted that a tube over CP¥ never has parallel Ricci tensor, i.e., the Ricci tensor
does not satisfy VRic = 0.

Remark 6.3. In [21], a non-existence property of parallel normal Jacobi operator VRy = 0 for Hopf
real hypersurfaces in Q™ was given. Motivated by this result, it is interesting to consider the classification
problem of commuting normal Jacobi operator, i.e., Ry-¢ = ¢-Ry, where R denotes the curvature tensor
of the complex quadric Q™.

Remark 6.4. In [22], Suh has also given a classification of parallel structure Jacobi operator R, i.c.,
VR¢ = 0. Related to this fact, another problem is to consider a complete classification of commuting
structure Jacobi operator, i.e., Re:¢ = ¢-R¢, where the structure Jacobi operator R¢ is defined by
ReX = R(X,£)¢ for the Reeb vector field ¢ and any vector field X on a real hypersurface M in Q™.
Here R denotes the curvature tensor of M in Q™.

Remark 6.5. As another commuting problem between Jacobi operators Ry, R¢ and the Ricci tensor
Ric, it will be interesting to study complete classifications of Hopf hypersurfaces in Q™ with commuting
properties like Rg-RN = RN-R& Ric-R¢ = Re-Ric or Ric-Ry = Ry -Ric.
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