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Abstract We prove that if a three-dimensional N (k)-paracontact metric manifold
admits a Yamabe soliton (g, ξ), then the scalar curvature is constant and the manifold
is a paraSasakian manifold. Moreover, we show that if a three-dimensional N (k)-
paracontact metric manifold admits a Yamabe soliton (g, V ), then either the manifold
is a space of constant curvature, or the flow vector field V is Killing.
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1 Introduction

The study of the Yamabe flow appeared in the work of Hamilton [18] as a tool to con-
struct Yamabe metrics on compact Riemannian manifolds. A time-dependent metric
g(·, t) on a Riemannian or, pseudo-Riemannian manifold M is said to evolve by the
Yamabe flow if the metric g satisfies
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∂

∂t
g(t) = −rg(t), g(0) = g0 (1.1)

on M where r is the scalar curvature. Ye [29] has found a point-wise elliptic gradient
estimate for the Yamabe flow on a locally conformally flat compact Riemannian mani-
fold. In the case of Ricci flow, Yamabe solitons or the singularities of the Yamabe flow
appear naturally. A Yamabe soliton is defined on a Riemannian or, pseudo-Riemannian
manifold (M, g) by a vector field V satisfying the equation [3]

1

2
£V g = (r − λ)g, (1.2)

where £V g denotes the Lie derivative of the metric g along V , r stands for the scalar
curvature, while λ is a constant. A Yamabe soliton is said to be expanding, steady,
or shrinking, respectively, if λ < 0, λ = 0, or λ > 0. Otherwise, it will be called
indefinite.

When the vector field V is a gradient of a smooth function f : M → R, the equation
(1.2) becomes

(r − λ)g = Hess f, (1.3)

where Hess f denotes the Hessian of f and in this case f is called the potential
function of the Yamabe soliton and g is said to be a gradient Yamabe soliton.

There are several papers on the Yamabe flow by Barbosa and Ribeiro Jr [3], Bren-
dle [4], Cao et al. [9], Chow [14], Yang and Zhang [27] and many others. According
to Hsu [19], the metric of any compact gradient Yamabe soliton is a metric of con-
stant scalar curvature (see also Daskalopoulos and Sesum [16]). Yamabe solitons on a
three-dimensional Sasakian manifold were studied by Sharma [25]. A complete clas-
sification of Yamabe solitons of non-reductive homogeneous 4-spaces was given by
Calvaruso and Zaeim [8]. Very recently, Wang [26] proved that a three-dimensional
Kenmotsu manifold admitting a Yamabe soliton is of constant sectional curvature −1
and the Yamabe soliton is expanding with λ = −6.

Therefore, it is interesting to consider Yamabe solitons on three-dimensional N (k)-
paracontact manifolds and in this direction we have the following theorems.

Theorem 1.1 If a three-dimensional N (k)-paracontact metric manifold admits a
Yamabe soliton (g, ξ), ξ being theReeb vector field of the paracontactmetric structure,
then the scalar curvature is constant and the manifold is a paraSasakian manifold.

Theorem 1.2 If a three-dimensional N (k)-paracontact metric manifold admits a
Yamabe soliton (g, V ), V being an arbitrary vector field, then the manifold is a space
of constant curvature, or the flow vector field V is Killing.

The present paper is organized as follows: In Sect. 2 we give some well-known
basic results on three-dimensional N (k)-paracontact metric manifolds. Last section is
devoted to the detailed proof of Theorems 1.1 and 1.2.
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2 Preliminaries

The study of nullity distribution on paracontact geometry is one among the most
interesting topics in modern paracontact geometry. Kaneyuki and Kozai [20] initiated
the study of paracontact geometry. Since then, many authors [1,2,10,15] contribute to
the study of paracontact geometry. A systematic study of paracontact metric manifolds
was carried out by Zamkovoy [30]. The importance of paracontact geometry interplays
with the theory of para-Kähler manifolds and its role in pseudo-Riemannian geometry
and mathematical physics. More recently, Cappelletti-Montano et al. [12] introduced
a new type of paracontact geometry, so-called paracontact metric (k, μ)-spaces, where
k and μ are some real constants. Martin-Molina [22,23] obtained some classification
theorems on paracontact metric (k, μ)-spaces and constructed some examples (see
also [6]).

A smooth manifold M2n+1 has an almost paracontact structure (φ, ξ, η) if it admits
a (1, 1)-type tensor field φ, a vector field ξ (called the Reeb vector field) and a 1-form
η satisfying the following conditions [21]

(i) φ2X = X − η(X)ξ ,
(ii) φ(ξ) = 0, η ◦ φ = 0, η(ξ) = 1,
(iii) the tensor field φ induces an almost paracomplex structure on each fibre of D =

ker(η), that is, the eigendistributions D+
φ and D−

φ of φ corresponding to the
eigenvalues 1 and −1, respectively, have same dimension n.

An almost paracontact manifold equipped with a pseudo-Riemannian metric g such
that

g(φX, φY ) = −g(X,Y ) + η(X)η(Y ), (2.1)

for all X,Y ∈ χ(M), is called almost paracontact metric manifold and (φ, ξ, η, g) is
said to be an almost paracontact metric structure.

An almost paracontact structure is normal [30] if and only if the (1, 2)-
type torsion tensor Nφ = [φ, φ] − 2dη ⊗ ξ = 0, where [φ, φ](X,Y ) =
φ2[X,Y ] + [φX, φY ] − φ[φX,Y ] − φ[X, φY ]. An almost paracontact structure
is called a paracontact structure if g(X, φY ) = dη(X,Y ) [30]. Any almost
paracontact metric manifold (M2n+1, φ, ξ, η, g) admits (at least, locally) a φ-
basis [30], that is, a pseudo-orthonormal basis of vector fields of the form
{ξ, E1, E2, . . . , En, φE1, φE2, . . . , φEn}, where ξ, E1, E2, . . . , En are space-like
vector fields and then, by (2.1) the vector fields φE1, φE2, . . . , φEn are time-like.
For a three-dimensional almost paracontact metric manifold, any (local) pseudo-
orthonormal basis of ker(η) determines a φ-basis, up to sign. If {e2, e3} is a (local)
pseudo-orthonormal basis of ker(η), with e3, time-like, so by (2.1) vector field φe2 ∈
ker(η) is time-like and orthogonal to e2. Therefore, φe2 = ±e3 and {ξ, e2,±e3} is a φ-
basis [7]. In a paracontact metric manifold, one can introduce a symmetric, trace-free
(1, 1)-tensor h = 1

2£ξφ satisfying [13,30]

φh + hφ = 0, hξ = 0, (2.2)

∇Xξ = −φX + φhX, (2.3)
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for all X ∈ χ(M). Note that, the condition h = 0 is equivalent to ξ being Killing
vector field and then (φ, ξ, η, g) is said to be K-paracontact structure. An almost
paracontact metric manifold is said to be paraSasakian manifold if and only if [30]

(∇Xφ)Y = −g(X,Y )ξ + η(Y )X (2.4)

holds, for any X,Y ∈ χ(M). A normal paracontact metric manifold is paraSasakian
and satisfies

R(X,Y )ξ = −(η(Y )X − η(X)Y ), (2.5)

for any X,Y ∈ χ(M), but unlike contact metric geometry the relation (2.5) does
not imply that the paracontact manifold is paraSasakian. It is well known that every
paraSasakian manifold is K -paracontact. The converse is not always true, but it holds
in the three-dimensional case [5].

According to Cappelletti-Montano and Di Terlizzi [13], we give the definition of
paracontact metric (k, μ)-manifolds.

Definition 2.1 A paracontact metric manifold is said to be a paracontact (k, μ)-
manifold if the curvature tensor R satisfies

R(X,Y )ξ = k(η(Y )X − η(X)Y ) + μ(η(Y )hX − η(X)hY ), (2.6)

for all vector fields X,Y ∈ χ(M) and k, μ are real constants.

In particular, if μ = 0, then the paracontact metric (k, μ)-manifold is called an
N (k)-paracontact metric manifold. Thus, for a N (k)-paracontact metric manifold the
curvature tensor satisfies

R(X,Y )ξ = k(η(Y )X − η(X)Y ), (2.7)

for all X,Y ∈ χ(M).
In a N (k)-paracontact metric manifold (M3, φ, ξ, η, g), the following relations

hold [17,24]:

QX =
( r
2

− k
)
X +

(
3k − r

2

)
η(X)ξ, (2.8)

S(X,Y ) =
( r
2

− k
)
g(X,Y ) +

(
3k − r

2

)
η(X)η(Y ), (2.9)

R(X,Y )Z =
( r
2

− 2k
)

{g(Y, Z)X − g(X, Z)Y }
+

(
3k − r

2

)
{g(Y, Z)η(X)ξ − g(X, Z)η(Y )ξ

+η(Y )η(Z)X − η(X)η(Z)Y }, (2.10)

S(X, ξ) = 2kη(X), (2.11)

where Q, S, R and r are the Ricci operator, Ricci tensor, curvature tensor and the
scalar curvature, respectively. From (2.10) it follows that

R(ξ, X)Y = k{g(X,Y )ξ − η(Y )X}. (2.12)
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In addition, using (2.3) we have

(∇Xη)Y = g(X, φY ) − g(hX, φY ), (2.13)

for all X,Y ∈ χ(M). We have the following result due to Cappelletti-Montano et al.
([12], p.686).

Lemma 2.2 Any paracontact metric (k, μ)-manifold of dimension three is Einstein if
and only if k = μ = 0.

Though any paracontact metric (k, μ)-manifold of dimension three is Einstein if
and only if k = μ = 0, it always admits some compatible Einstein metrics [11].

3 Proof of the Main Theorems

3.1 Proof of Theorem 1.1

Proof Let us consider a Yamabe soliton (g, ξ). Thus, from (1.2) we have

1

2
£ξ g = (r − λ)g. (3.1)

This implies
g(∇Xξ,Y ) + g(X,∇Y ξ) = 2(r − λ)g(X,Y ). (3.2)

Making use of (2.3) in the above equation yields

g(−φX + φhX,Y ) + g(X,−φY + φhY ) = 2(r − λ)g(X,Y ). (3.3)

Applying (2.1) in (3.3) we obtain

g(φhX,Y ) = (r − λ)g(X,Y ). (3.4)

Substituting X = ξ in the above equation we have r = λ. Using this in (3.1) we
have £ξ g = 0, thus ξ is a Killing vector field and consequently M is a K -paracontact
manifold. Additionally, in dimension 3, a K -paracontact manifold is a paraSasakian
manifold [5]. Moreover, since λ is constant, the scalar curvature r is constant. Thus,
we have finished the proof of the theorem. ��

Before we prove Theorem 1.2, we first present some key lemmas used later. From
(1.2), we see that for a Yamabe soliton the vector field V is a conformal vector field,
that is,

£V g = 2ρg, (3.5)

where ρ is called the conformal coefficient (here ρ = r − λ). Further, ρ = 0 is
equivalent to V being Killing.
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Lemma 3.1 [28]On an n-dimensional Riemannian or, pseudo-Riemannian manifold
(Mn, g) endowed with a conformal vector field V , we have

(£V S)(X,Y ) = −(n − 2)g(∇X Dρ,Y ) + (	ρ)g(X,Y ),

£V r = −2ρr + 2(n − 1)	ρ

for any vector fields X and Y , where D denotes the gradient operator and	 = −divD
denotes the Laplacian operator of g.

Lemma 3.2 On any three-dimensional N (k)-paracontact metric manifold

ξ(r) = 0. (3.6)

Proof In a three-dimensional N (k)-paracontact manifold, we have

Q =
( r
2

− k
)
id +

(
3k − r

2

)
η ⊗ ξ. (3.7)

We have the following well-known formula on pseudo-Riemannian manifolds

trace{Y → (∇Y Q)X} = 1

2
∇Xr

for any vector field X . With the help of the above formula and Eqs. (2.3) and (2.11)
we have from (3.7)

ξ(r)η(X) = 0. (3.8)

Substituting X = ξ in (3.8) implies that ξ(r) = 0 as we wanted to prove. ��

3.2 Proof of Theorem 1.2

Proof It is well known that the Reeb vector field ξ is a unit vector field, that is,
g(ξ, ξ) = 1. Taking the Lie derivative of this relation along the vector field V and
using (1.2), we have

η(£V ξ) = −(£V η)(ξ) = λ − r. (3.9)

Making use of ρ = r − λ and n = 3 in Lemma 3.1 we obtain

(£V S)(X,Y ) = −g(∇X Dr,Y ) + 	rg(X,Y ), (3.10)

£V r = −2r(r − λ) + 4	r. (3.11)

Taking Lie derivative of (2.9) along the vector field V we have

(£V S)(X,Y ) = 1
2 (£V r){g(X,Y ) − η(X)η(Y )} + ( r

2 − k
)
(£V g)(X,Y )

+ (
3k − r

2

) {(£V η)(X)η(Y ) + η(X)(£V η)(Y )}. (3.12)
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Equating the right hand sides of (3.10) and (3.12) and using Eqs. (1.2) and (3.11) we
obtain

−g(∇X Dr, Y ) =(2	r − r(r − λ)){g(X,Y ) − η(X)η(Y )}
+

( r
2

− k
)
2(r − λ)g(X,Y ) − 	rg(X,Y )

+
(
3k − r

2

)
{(£V η)(X)η(Y ) + η(X)(£V η)(Y )}.

(3.13)

For X = Y = ξ , the above equation gives

ξ(ξ(r)) = 	r − 4k(r − λ). (3.14)

Applying Lemma 3.2 in the foregoing equation we have

	r = 4k(r − λ). (3.15)

In addition, putting Y = ξ in (3.13) and using Eqs. (2.3) and (3.9) we obtain

(
3k − r

2

)
(£V η)(X) = (λ − r)

( r
2

− 3k
)

η(X) − (φX)(r) + (φhX)(r). (3.16)

Making use of (3.16) in (3.13) yields

∇X Dr =(	r)X + (r(r − λ) − 2	r){X − η(X)ξ} − (r − λ)(r − 2k)X

− (λ − r)(r − 6k)η(X)ξ + (φX)(r)ξ − (φhX)(r)ξ

− (φDr)η(X) − (φhDr)η(X).

(3.17)

From (3.17) and (3.15) we have

∇X Dr = − 2k(r − λ){X − η(X)ξ} − g(φDr, X)ξ − g(φhDr, X)ξ

− (φDr)η(X) − (φhDr)η(X).
(3.18)

We now consider a local orthonormal frame {ei : i = 1, 2, 3} on M3. Applying the
formula S(X, Dr) = g(R(ei , X)Dr, ei ) and Eqs. (2.1)–(2.3) in (3.18), we compute

S(X, Dr) = −(1 + α)g(φ∇ei Dr, ei )η(X) = 0,

where α = ±√
1 + k and i = 1, 2, 3. Using this in (2.9) and noticing ξ(r) = 0, we

have (r − 2k)Xr = 0, that is, X (r − 2k)2 = 0. Thus, the scalar curvature of the
manifold is constant. Applying this result in (3.15) gives k(r − λ) = 0. Thus, either
k = 0, or r = λ.
Case 1: Suppose k = 0, then from Lemma 2.2 we conclude that the manifold
becomes Einstein and hence, being three-dimensional, a space of constant curvature.
Case 2: If r = λ, then the Eq. (1.2) reduces to £V g = 0, that is, V is a Killing
vector field, which finishes the proof of the theorem. ��
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