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Abstract We prove that if a three-dimensional N (k)-paracontact metric manifold
admits a Yamabe soliton (g, &), then the scalar curvature is constant and the manifold
is a paraSasakian manifold. Moreover, we show that if a three-dimensional N (k)-
paracontact metric manifold admits a Yamabe soliton (g, V'), then either the manifold
is a space of constant curvature, or the flow vector field V is Killing.
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1 Introduction

The study of the Yamabe flow appeared in the work of Hamilton [18] as a tool to con-
struct Yamabe metrics on compact Riemannian manifolds. A time-dependent metric
g(-, t) on a Riemannian or, pseudo-Riemannian manifold M is said to evolve by the
Yamabe flow if the metric g satisfies
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5,80 =—re®), g0)=go (1.1)

on M where r is the scalar curvature. Ye [29] has found a point-wise elliptic gradient
estimate for the Yamabe flow on a locally conformally flat compact Riemannian mani-
fold. In the case of Ricci flow, Yamabe solitons or the singularities of the Yamabe flow
appear naturally. A Yamabe soliton is defined on a Riemannian or, pseudo-Riemannian
manifold (M, g) by a vector field V satisfying the equation [3]

1
§£vg =(r—-MNg, (1.2)

where £y g denotes the Lie derivative of the metric g along V, r stands for the scalar
curvature, while X is a constant. A Yamabe soliton is said to be expanding, steady,
or shrinking, respectively, if A < 0, A = 0, or A > 0. Otherwise, it will be called
indefinite.
When the vector field V is a gradient of a smooth function f : M — R, the equation
(1.2) becomes
(r — ))g = Hess f, (1.3)

where Hess f denotes the Hessian of f and in this case f is called the potential
function of the Yamabe soliton and g is said to be a gradient Yamabe soliton.

There are several papers on the Yamabe flow by Barbosa and Ribeiro Jr [3], Bren-
dle [4], Cao et al. [9], Chow [14], Yang and Zhang [27] and many others. According
to Hsu [19], the metric of any compact gradient Yamabe soliton is a metric of con-
stant scalar curvature (see also Daskalopoulos and Sesum [16]). Yamabe solitons on a
three-dimensional Sasakian manifold were studied by Sharma [25]. A complete clas-
sification of Yamabe solitons of non-reductive homogeneous 4-spaces was given by
Calvaruso and Zaeim [8]. Very recently, Wang [26] proved that a three-dimensional
Kenmotsu manifold admitting a Yamabe soliton is of constant sectional curvature —1
and the Yamabe soliton is expanding with A = —6.

Therefore, it is interesting to consider Yamabe solitons on three-dimensional N (k)-
paracontact manifolds and in this direction we have the following theorems.

Theorem 1.1 If a three-dimensional N (k)-paracontact metric manifold admits a
Yamabe soliton (g, &), & being the Reeb vector field of the paracontact metric structure,
then the scalar curvature is constant and the manifold is a paraSasakian manifold.

Theorem 1.2 If a three-dimensional N (k)-paracontact metric manifold admits a
Yamabe soliton (g, V), V being an arbitrary vector field, then the manifold is a space
of constant curvature, or the flow vector field V is Killing.

The present paper is organized as follows: In Sect. 2 we give some well-known
basic results on three-dimensional N (k)-paracontact metric manifolds. Last section is
devoted to the detailed proof of Theorems 1.1 and 1.2.
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2 Preliminaries

The study of nullity distribution on paracontact geometry is one among the most
interesting topics in modern paracontact geometry. Kaneyuki and Kozai [20] initiated
the study of paracontact geometry. Since then, many authors [1,2,10, 15] contribute to
the study of paracontact geometry. A systematic study of paracontact metric manifolds
was carried out by Zamkovoy [30]. The importance of paracontact geometry interplays
with the theory of para-Kihler manifolds and its role in pseudo-Riemannian geometry
and mathematical physics. More recently, Cappelletti-Montano et al. [12] introduced
anew type of paracontact geometry, so-called paracontact metric (k, t)-spaces, where
k and u are some real constants. Martin-Molina [22,23] obtained some classification
theorems on paracontact metric (k, )-spaces and constructed some examples (see
also [6]).

A smooth manifold M?"*! has an almost paracontact structure (¢, &, n) if it admits
a (1, 1)-type tensor field ¢, a vector field £ (called the Reeb vector field) and a 1-form
n satisfying the following conditions [21]

i) ¢*X = X —n(X)8,
(i) () =0, nop =0, n) =1,
(iii) the tensor field ¢ induces an almost paracomplex structure on each fibre of D =
ker(n), that is, the eigendistributions Dg and Dq: of ¢ corresponding to the

eigenvalues 1 and —1, respectively, have same dimension r.

An almost paracontact manifold equipped with a pseudo-Riemannian metric g such
that

g@X,pY) = —g(X, Y) +n(X)n(Y), 2.1

forall X, Y € x(M), is called almost paracontact metric manifold and (¢, &, n, g) is
said to be an almost paracontact metric structure.

An almost paracontact structure is normal [30] if and only if the (1,2)-
type torsion tensor Ny = [¢,¢] — 2dn ® § = 0, where [¢,d](X,Y) =
¢2[X, Y] + [¢X, Y] — ¢l X, Y] — ¢[X, ¢Y]. An almost paracontact structure
is called a paracontact structure if g(X,¢Y) = dn(X,Y) [30]. Any almost
paracontact metric manifold (M2”+1, ¢,&,n,g) admits (at least, locally) a ¢-
basis [30], that is, a pseudo-orthonormal basis of vector fields of the form
{£,E1,Ea, ..., Ey,0E 1, 0E>, ..., 0E,}, where &, E, Es, ..., E, are space-like
vector fields and then, by (2.1) the vector fields ¢ E1, ¢ E», ..., pE, are time-like.
For a three-dimensional almost paracontact metric manifold, any (local) pseudo-
orthonormal basis of ker(n) determines a ¢-basis, up to sign. If {es, e3} is a (local)
pseudo-orthonormal basis of ker(#), with e3, time-like, so by (2.1) vector field ¢e, €
ker(n) is time-like and orthogonal to e;. Therefore, ¢pey = *e3 and {£, s, £e3}isa¢p-
basis [7]. In a paracontact metric manifold, one can introduce a symmetric, trace-free
(1, D)-tensor h = L £¢¢ satisfying [13,30]

dh+hp =0, hé =0, 2.2)
Vx& = —¢X + ¢phX, 2.3)
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for all X € x(M). Note that, the condition 7 = 0 is equivalent to & being Killing
vector field and then (¢, &, n, g) is said to be K-paracontact structure. An almost
paracontact metric manifold is said to be paraSasakian manifold if and only if [30]

(Vxp)Y = —g(X, V)§ +n(¥)X (2.4)

holds, for any X, Y € yx(M). A normal paracontact metric manifold is paraSasakian
and satisfies
R(X,Y)§ = —(n(V)X —n(X)Y), (2.5)

for any X,Y € x(M), but unlike contact metric geometry the relation (2.5) does
not imply that the paracontact manifold is paraSasakian. It is well known that every
paraSasakian manifold is K -paracontact. The converse is not always true, but it holds
in the three-dimensional case [5].

According to Cappelletti-Montano and Di Terlizzi [13], we give the definition of
paracontact metric (k, ;)-manifolds.

Definition 2.1 A paracontact metric manifold is said to be a paracontact (k, j)-
manifold if the curvature tensor R satisfies

R(X,Y)E =k(n(Y)X —n(X)Y) + u(n(Y)hX — n(X)hY), (2.6)

for all vector fields X, Y € x (M) and k,  are real constants.

In particular, if & = 0, then the paracontact metric (k, i)-manifold is called an
N (k)-paracontact metric manifold. Thus, for a N (k)-paracontact metric manifold the
curvature tensor satisfies

R(X,Y)§ =k(n(Y)X —n(X)Y), (2.7)
forall X,Y € x(M).

In a N (k)-paracontact metric manifold (M3, ¢, &, n, g), the following relations
hold [17,24]:

0X = (5 —k) X + (3k = ) n(X)z, 2.8)
(%_k> (X, Y)+(3k—%) n(X)n(y), 2.9)

R(X,Y)Z = (% _ 2k> (2(Y, 2)X — g(X, Z)Y}

S(X,Y) =

+(3k - g) (8(Y, Z)n(X)E — g(X. Z)n(Y)E

+n(Y)n(Z)X — n(X)n(2)Y}, (2.10)
S(X, &) = 2kn(X), (2.11)

where O, S, R and r are the Ricci operator, Ricci tensor, curvature tensor and the
scalar curvature, respectively. From (2.10) it follows that

R, X)Y = k{g(X,Y)§ —n(Y)X}. (2.12)

@ Springer



Bull. Iran. Math. Soc. (2018) 44:183-191 187

In addition, using (2.3) we have

(VxmY = g(X, ¢Y) — g(hX, $Y), (2.13)

forall X,Y € x(M). We have the following result due to Cappelletti-Montano et al.
([12], p.686).

Lemma 2.2 Any paracontact metric (k, i)-manifold of dimension three is Einstein if
and only ifk = u = 0.

Though any paracontact metric (k, w)-manifold of dimension three is Einstein if
and only if k = p = 0, it always admits some compatible Einstein metrics [11].

3 Proof of the Main Theorems
3.1 Proof of Theorem 1.1

Proof Let us consider a Yamabe soliton (g, £). Thus, from (1.2) we have

1
§£gg =r—-M1g. 3.1
This implies
8(Vx§,Y) + g(X, Vy§) =2(r —M)g(X,Y). (3.2)

Making use of (2.3) in the above equation yields
g(—pX +phX,Y) 4+ g(X, =Y + dphY) =2(r — 1)g(X,Y). (3.3)
Applying (2.1) in (3.3) we obtain
ghX,Y)=(@r—-1gX,Y). 34

Substituting X = £ in the above equation we have r = A. Using this in (3.1) we
have £¢ ¢ = 0, thus £ is a Killing vector field and consequently M is a K -paracontact
manifold. Additionally, in dimension 3, a K -paracontact manifold is a paraSasakian
manifold [5]. Moreover, since A is constant, the scalar curvature r is constant. Thus,
we have finished the proof of the theorem. O

Before we prove Theorem 1.2, we first present some key lemmas used later. From
(1.2), we see that for a Yamabe soliton the vector field V is a conformal vector field,
that is,

£vg =12pg, (3.5)

where p is called the conformal coefficient (here p = r — A). Further, p = 0 is
equivalent to V being Killing.
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Lemma 3.1 [28] On an n-dimensional Riemannian or, pseudo-Riemannian manifold
(M", g) endowed with a conformal vector field V, we have

EvS(X,Y) = —(n—2)g(VxDp,Y) + (Ap)g(X, Y),
£yr = —2pr +2(n—1)Ap

for any vector fields X and Y, where D denotes the gradient operator and A = —divD
denotes the Laplacian operator of g.

Lemma 3.2 On any three-dimensional N (k)-paracontact metric manifold

£(r) =0. (3.6)

Proof In a three-dimensional N (k)-paracontact manifold, we have
r r
0=(5-k)id+(3k-3)nwe. 3.7)
2 2
We have the following well-known formula on pseudo-Riemannian manifolds
1
tracelY — (VyQ)X} = var

for any vector field X. With the help of the above formula and Egs. (2.3) and (2.11)
we have from (3.7)

E(r)n(X) = 0. (3.8)

Substituting X = £ in (3.8) implies that £(r) = 0 as we wanted to prove. O
3.2 Proof of Theorem 1.2
Proof Tt is well known that the Reeb vector field £ is a unit vector field, that is,

g(&,&) = 1. Taking the Lie derivative of this relation along the vector field V and
using (1.2), we have

nEvé) = —Evm@E) =1 —r (3.9

Making use of p =r — A and n = 3 in Lemma 3.1 we obtain

EvS)(X,Y) = —g(VxDr,Y)+ Arg(X,Y), (3.10)
Lyr = =2r(r — A) +4Ar. (3.11)

Taking Lie derivative of (2.9) along the vector field V we have

EvS)(X, Y) = S(Evn{g(X, ¥) = (X))} + (5 — k) Eve) (X, Y)
+ (3k = ) {EYMXON@) +n(XOEMX)). (3.12)
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Equating the right hand sides of (3.10) and (3.12) and using Eqgs. (1.2) and (3.11) we
obtain

—g(VxDr, Y) =QAr — r(r — M) {g(X, ¥) — n(X)n(¥)}
r
+<§—k> 2(r —M)g(X,Y) — Arg(X,Y) (3.13)
+ (3 - %) {Ev ) ON) + 1) Eyn) (V)

For X =Y = &, the above equation gives
EEW) = Ar —4k(r — 1). (3.14)
Applying Lemma 3.2 in the foregoing equation we have
Ar =4k(r — A). (3.15)
In addition, putting ¥ = £ in (3.13) and using Egs. (2.3) and (3.9) we obtain
(36— 5) €m0 = G =) (5 = 3k) n(X) = @X)() + @hX)(r). (3.16)

Making use of (3.16) in (3.13) yields

VxDr =(Ar)X + (r(r — &) — 2Ar){X — n(X)€} — (r = )(r — 2K)X
— (L= 1) = 6)N(X)E + (SX)(ME — (GhX)(r)E (3.17)
— ($Drn(X) = ($hDr)y(X).

From (3.17) and (3.15) we have

VxDr = =2k(r — M{X — n(X)&} — g(@Dr, X)§ — g(¢phDr, X)&

(3.18)
— (¢ Dr)n(X) — (¢hDr)n(X).
We now consider a local orthonormal frame {¢; : i = 1,2, 3} on M?>. Applying the
formula S(X, Dr) = g(R(e;, X)Dr, e;) and Egs. (2.1)—(2.3) in (3.18), we compute

S(X, Dr) = =(1 + a)g(¢Ve, Dr, ej)n(X) =0,

where « = ++/1 + k and i = 1, 2, 3. Using this in (2.9) and noticing £(r) = 0, we
have (r — 2k)Xr = 0, that is, X (r — 2k)?> = 0. Thus, the scalar curvature of the
manifold is constant. Applying this result in (3.15) gives k(r — A) = 0. Thus, either
k=0,orr =A.

Case 1: Suppose k = 0, then from Lemma 2.2 we conclude that the manifold
becomes Einstein and hence, being three-dimensional, a space of constant curvature.
Case 2: If r = A, then the Eq. (1.2) reduces to £yg = 0, that is, V is a Killing
vector field, which finishes the proof of the theorem. O
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