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In this study, we have developed an embedded formula of the Chebyshev collocation 
method for stiff problems, based on the zeros of the generalized Chebyshev polynomials. 
A new strategy for the embedded formula, using a pair of methods to estimate the local 
truncation error, as performed in traditional embedded Runge–Kutta schemes, is proposed. 
The method is performed in such a way that not only the stability region of the embedded 
formula can be widened, but by allowing the usage of larger time step sizes, the total 
computational costs can also be reduced. In terms of concrete convergence and stability 
analysis, the constructed algorithm turns out to have an 8th order convergence and it 
exhibits A-stability. Through several numerical experimental results, we have demonstrated 
that the proposed method is numerically more efficient, compared to several existing 
implicit methods.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The target problem we are concerned with is an initial value problem (IVP) of the form,

φ′(t) = f (t, φ(t)), t ∈ (t0, t f ]; φ(t0) = φ0, (1.1)

where φ(t) := [φ1(t), · · · , φd(t)]T , and f (t, φ(t)) := [ f1(t, φ(t)), · · · , fd(t, φ(t))]T are assumed to be sufficiently smooth for 
the simplicity of the analysis. Here, the superscript T and index d denote the transpose of a vector and the dimension of 
the given system, respectively. Initial value problems are mathematical models used to describe a diverse range of natural 
phenomena, such as those in computational fluid dynamics, chemical reactions, electrical engineering, medical science, etc. 
Therefore, the effort to develop a numerical scheme capable to solve IVPs and applicable to a broad variety of scientific 
problems, is of special interest. In particular, understanding the stiffness of an IVP is a critical issue in this regard, and 
research conducted by mathematicians and other scientists on this problem has intensified in recent years. Indeed, the 
prolonged effort to seek ever more efficient and stable numerical methods has continued for several decades. Stiff IVPs are 
mainly solved using implicit schemes [2,3,5,11,20,22,23], as explicit schemes require very small step sizes due to the issue 
of their instability.
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This study particularly focuses on the collocation method, which is one of several widespread implicit Runge–Kutta (RK) 
schemes and uniquely defined by the choice of collocation points. That is, for given pairwise distinct collocation points cN

j

(0 ≤ cN
j ≤ 1), j = 0, · · · , N , if we let tmj = tm + cN

j h, with a time step size h, the collocation method corresponding to cN
j is 

represented by the collocation polynomial pN (t) of degree N + 1 satisfying

p′
N

(
tmj
)= f

(
tmj,α

N
j

)
, j = 0,1,2, · · · , N; pN(tm) = ym, (1.2)

where ym is the approximation of φ(tm) and αN
j := pN (tmj) is an approximation of φ(tmj) = φ(tm + cN

j h). Let us define a 

matrix BN :=
(

aN
ij

)N

i, j=1
and a vector γ N :=

[
aN

10, · · · , aN
N0

]T
with

aN
ij :=

cN
i∫

0

lN
j (η)dη, lN

j (η) :=
∏
k �= j

η − cN
k

cN
j − cN

k

, i, j = 0,1, · · · , N.

Using this matrix and vector, if the first collocation point satisfies cN
0 = 0, the solution αN

j of (1.2) can be obtained system-
atically from the solution of the nonlinear equation

αN = h
(
BN ⊗ Id

)
F (αN) + 1N ⊗ ym + hγ N ⊗ f (tm, ym), (1.3)

which is known as the equivalent RK form of (1.2) [7]. Here,

αN :=
[(

αN
1

)T
, · · · ,

(
αN

N

)T]T
, F (αN) :=

[(
f
(

tm1,α
N
1

))T
, · · · ,

(
f
(

tmN ,αN
N

))T]T
, 1N := [1, · · · ,1]T,

Id and ⊗ denote the identity matrix of size d, and the Kronecker product, respectively. Notice that the nonlinear system 
(1.3) requires a Newton-like iterative method for solving a (Nd) × (Nd) linear system expressed by the full Jacobian matrix 
for F , at each iteration, which is computationally expensive. In this study, we will employ the simplified Newton’s iteration 
(SNI), which uses a fixed Jacobian in each integration step to overcome this difficulty (see Section 2).

For controlling the size of the time step, a good estimation of the local truncation error is highly important in implicit RK 
methods. Traditionally, two methods are used simultaneously for the estimation of the local truncation error: the difference 
between the numerical solution and the extra lower order solution. One of the main challenges of implicit methods is 
the question of the reduction of computational cost of the calculation of the extra solution. For example, the widely used 
embedded Radau method [7] calculates the lower order solution from a linear combination of the intra-step values of 
the numerical solution to reduce the total computational cost. Generally, a collocation polynomial pÑ (s) of degree Ñ < N
provides an expensive algorithm for solving the nonlinear system (1.3), when the lower order solution is calculated from 
(1.3) directly. Therefore, studying the accurate and efficient estimation of the local truncation error for collocation methods 
it is a very important research direction.

The purpose of this study is to provide an efficient embedded formula for the collocation method. In the early 1980s, 
Hasegawa et al. [9] introduced an elegant algorithm for the generalized Chebyshev interpolation procedure, that increased 
the number of sample points moderately rather than simply doubling them, and in such a manner that all zeros of the 
lower degree Chebyshev interpolation were contained by those of the higher degree Chebyshev interpolation. Following the 
publication of the algorithm, it was extensively used in interpolation theory, quadrature rules, and collocation methods for 
solving IVPs (e.g., see [9,10,12–18]).

The main contribution of this study is to achieve an efficient embedded formula for the collocation method, using 
this idea for the zeros of the Chebyshev polynomials. More precisely, the collocation points are taken as the zeros of the 
generalized Chebyshev polynomials, consisting the Chebyshev–Gauss–Lobatto (CGL) points 

{
η j
}4

j=0, together with two extra 
points, {νk}1

k=0, given by

η j := 1

2

(
cos

(
4 − j

4
π

)
+ 1
)
, j = 0,1, · · · ,4,

νk := 1

2

(
cos
((k

4
+ 3

8

)
π
)

+ 1
)
, k = 0,1,

(1.4)

where η j and νk are the zeros of the Chebyshev polynomials T ∗
5 (s) − T ∗

3 (s) and T ∗
2 (s) − cos(3π/4), respectively. Here, T ∗

k (s)
denotes the shifted Chebyshev polynomial of the first kind of degree k. Now, let 

{
τ j
}

be a set of the points, η j , together 
with νk , and arranged so that

τ j =
{
η j, 0 ≤ j ≤ 4,

ν j−5, 4 < j ≤ 6.
(1.5)
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From here on, N is taken a fixed number of a value of either N = 4 or N = 6. Depending on the choice of N , a pair of cN
j

(0 ≤ j ≤ N) is introduced, given by

cN
j :=
{
η j, N = 4,

τ j, N = 6,
(1.6)

where η j and τ j are defined by (1.4) and (1.5), respectively. Since cN
4 = 1, the next approximation ym+1 can be obtained by

ym+1 ≈ αN
4

where αN is the solution of (1.3). Also, the collocation method based on the collocation points of (1.6) has the following 
convergence property.

Theorem 1.1. The numerical solution of the collocation method (1.2) corresponding to the collocation points cN
j defined by (1.6) has a 

convergence order N + 2 and a stage order N + 1 (N = 4, 6).

Proof. Let us define a function M(t) by M(t) =
N∏

j=0

(
t − cN

j

)
. Then, using the change of variable s = 2t − 1 and the definition 

of cN
j given by (1.6), it can be seen that

1∫
0

M(t)tq−1dt = 1

2

1∫
−1

( s + 1

2

)q−1
M
( s + 1

2

)
ds

= 1

2N+1+q

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1∫
−1

(s + 1)q−1s
(

s2 − 1
)(

s2 − 1

2

)
ds, N = 4,

1∫
−1

(s + 1)q−1s
(

s2 − 1
)(

s2 − 1

2

)(
s2 − 2 − √

2

4

)
ds, N = 6.

Since the two integrands, s
(

s2 − 1
)(

s2 − 1
2

)
and s

(
s2 − 1

)(
s2 − 1

2

)(
s2 − 2−√

2
4

)
, are odd functions over the integration 

interval, it can be shown that the above integral is zero only when q = 1. Thus, by using Theorem 7.9 in [6], the proof of 
the convergence order can be completed. In addition, since Chebyshev–Gauss–Lobatto points are used as collocation points, 
the stage order is N + 1. For a detailed proof, see the reference [8]. �

As mentioned above, the SNI of (1.3) for the lower order solution α4
4 corresponding to c4

4 = 1 requires massive computa-
tional costs with each iteration and integration step. To overcome this complexity, instead of using the matrix, B−1

4 directly, 
its eigenvalues are replaced with those of B−1

6 in such a way that not only the stability region of the embedded formula 
can be widened, but also both LU decompositions from B−1

6 , and the function values from α6, can be used to find the 
solution α4. This approach yields a dramatic reduction of the computational cost (see Section 3 for further details). In terms 
of the concrete convergence and stability analysis, the constructed algorithm turns out to be A-stable and have an 8th order 
convergence (see Sections 2 and 3, respectively).

Recently, we have developed E2CCM4(6) [18] using the Chebyshev interpolation for the solution φ, based on the same 
collocation points defined by (1.6). The method has only the 6th order of convergence, but is almost L-stable. Despite this 
good stability, E2CCM4(6) lacks the efficient embedded structure compared to the proposed scheme, which we have con-
firmed numerically by running several numerical tests. Finally, in Section 4, the results of several experiments are presented 
to validate our analysis.

2. Implementation for (1.3)

At the beginning of this section, we give a review of the SNI we implemented to solve the nonlinear system (1.3), which 
can be found, for example, in Ref. [7]. After it, we discuss the eigenvalue decomposition for the resulting linear systems, 
which will be used in Section 3 to develop an embedded formula for estimating the local truncation error. To discuss the 
SNI, let us combine the new variable

w N :=
[(

w N
1

)T
, · · · ,

(
w N

N

)T]T = αN − 1N ⊗ ym (2.1)
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with the system (1.3) to obtain

G(w N) := −w N + dN + h
(
BN ⊗ Id

)
F
(

1N ⊗ ym + w N
)

= 0, (2.2)

where dN := hγ N ⊗ f (tm, ym). Then, the SNI for the (k + 1)th approximation w(N,k+1) to the solution w N is described by{(
INd − h(BN ⊗J )

)
�w(N,k) = G(w(N,k)),

w(N,k+1) = w(N,k) + �w(N,k),
(2.3)

where w(N,0) is a given initial guess and J is a fixed Jacobian matrix of the function f given by

J := fφ(tm, ym).

By setting N = 6, the next approximate solution ym+1 can be obtained for φ(tm+1), using the SNI given by (2.3). We assume 
that the iteration of (2.3) stops at the k∗th step, and satisfies

‖�w(6,k∗)‖2 = ‖w(6,k∗+1) − w(6,k∗)‖2 < ε (2.4)

for a given tolerance ε . For a practical choice of the tolerance ε , our algorithm adopts a traditional procedure introduced in 
[7, p. 121], which is implicitly defined by

ε = 1 − θk∗

θk∗
κ
(

Atol+‖ym‖2 Rtol
)
, (2.5)

where Atol and Rtol are given absolute and relative tolerances, respectively, and

θk∗ = ‖�ω(6,k∗)‖2

‖�ω(6,k∗−1)‖2
, κ = max

(
2.22 × 10−15/Rtol,min(0.03,Rtol1/3)

)
.

Since c6
4 = 1, the approximation ym+1 for φ(tm+1) is then defined by

ym+1 = ym + w(6,k∗+1)
4 . (2.6)

The choice of the initial guess w(6,0) strongly influences the convergence of the SNI (2.3). In this paper, we are using the 
technique of polynomial extrapolation for the initial guess as follows. We first introduce a notation

(m)w(6,k) :=
[(

(m)w(6,k)
1

)T
, · · · ,

(
(m)w(6,k)

6

)T]T
for the kth iterated solution obtained by (2.3) in the mth integration step [tm, tm+1], where each component (m) w(6,k)

j

denotes the vector of intra-step values at the intra-time tmj = tm + hc6
j . Now, we use an extrapolation polynomial β of 

degree 6 satisfying the interpolation conditions

β(0) = 0, β(c6
j ) = (m−1)w(6,k∗+1)

j , j = 1,2, · · · ,6,

where (m−1) w(6,k∗+1)
j denotes the intra-step values in the previous step [tm−1, tm]. Then, each component (m) w(6,0)

j (1 ≤
j ≤ 6) of the initial guess is chosen in the mth integration step [tm, tm+1] by evaluating β at time 1 + smc6

j as follows⎧⎨⎩ (0)w(6,0)
j = 0,

(m)w(6,0)
j = β(1 + smc6

j ) + ym−1 − ym, m ≥ 1, j = 1,2, · · · ,6,

where sm = tm+1−tm
tm−tm−1

.

In the following lemma, an approximation property is shown for the intra-step values ym + w(6,k∗)
j obtained from the 

k∗th iteration step of the SNI (2.3), which will be used in the construction of the embedded formula.

Lemma 2.1. Assume that �w(6,k∗)
j (1 ≤ j ≤ 6) are obtained at the k∗th iteration step from (2.3), and they also satisfy the inequality 

given by (2.4), for a given tolerance ε . Then, for a sufficiently small h, it is valid that∥∥∥φ(tmj) −
(

ym + w(6,k∗)
j

)∥∥∥
2
= O
(

h7 + ε
)
. (2.7)
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Proof. Using the definition (2.1), Theorem 1.1, and the triangle inequality, we obtain the following:∥∥∥φ(tmj) −
(

ym + w(6,k∗)
j

)∥∥∥
2
=
∥∥∥φ(tmj) − α6

j +
(
α6

j − ym − w(6,k∗)
j

)∥∥∥
2

= O
(

h7 + ‖w6
j − w(6,k∗)

j ‖2

)
.

(2.8)

For the estimation of ‖w6
j − w(6,k∗)

j ‖2, the Taylor expansion of (2.2) is applied about w(6,k∗) given by

J̃ X = G(w(6,k∗)) +O
(
‖X‖2

2

)
, X := w6 − w(6,k∗), (2.9)

where J̃ is the Jacobian defined by

J̃ := I6d − h
(
Ĵi j
)
, Ĵi j := a6

i j fφ
(

tmj, ym + w(6,k∗)
j

)
.

Since

J̃ = I6d − h(B6 ⊗J ) +O(h2),

equation (2.9) reads(
I6d − h(B6 ⊗J )

)
X = G(w(6,k∗)) +O

(
‖X‖2

2 + h2‖X‖2

)
. (2.10)

For a sufficiently small h and a smooth function f , the matrix I6d − h(B6 ⊗ J ) is bounded. Hence, combining (2.3) with 
(2.4) leads to

G
(

w(6,k∗)
)

= O(ε). (2.11)

Note that for a sufficiently small h,∥∥∥(I6d − h (B6 ⊗J )
)−1∥∥∥≤ 1

1 − h‖B6 ⊗J ‖ ≤ C,

where ‖ · ‖ denotes a matrix norm and C is a constant independent of h. Therefore, the equation (2.10) gives

‖X‖2 ≤ C1

∥∥∥G
(

w(6,k∗)
)∥∥∥

2
+ C2 ‖X‖2

2 + C3h2 ‖X‖2 ,

where Ci (i = 1, 2, 3) are constants independent of h. Since w(6,k∗) is a numerical approximation of w6, without loss of 
generality, it can be assumed that the quantity ‖X‖2 is also sufficiently small. Then, the above quadratic inequality for ‖X‖2, 
can be solved by

a ≤ κ −
√

κ2 − 4C1C2b

2C2
= 4C1C2b

2C2(κ +
√

κ2 − 4C1C2b)
≤ Cb, κ := 1 − C3h2 (2.12)

for some constant C independent of the step size h, where a = ‖X‖2 and b =
∥∥∥G
(

w(6,k∗)
)∥∥∥

2
. Combining (2.8) with (2.11)

and substituting the result into (2.12) completes the proof. �
We now review the eigenvalue decomposition used to reduce the computational cost of the SNI (2.3). Using the complex 

eigenvalues λ6, j ± iμ6, j of B−1
6 , and their corresponding eigenvectors u6, j ± iv6, j , the matrix B−1

6 can be decomposed by

B−1
6 = T6�6T −1

6 ,

�6 = diag(�6,1,�6,2,�6,3), T6 =
[

u6,1,−v6,1,u6,2,−v6,2,u6,3,−v6,3

]
,

where �6, j =
[

λ6, j −μ6, j
μ6, j λ6, j

]
. Multiplying the first equation in (2.3) by h−1T −1

6 B−1
6 ⊗ Id yields

(
h−1�6 ⊗ Id − I6 ⊗J

)
(T −1

6 ⊗ Id)�w(6,k) = (h−1T −1
6 B−1

6 ⊗ Id)G(w(6,k)). (2.13)

Instead of solving the matrix system (2.13) directly, by introducing new variables given by

x(6,k) :=
[(

x(6,k)
1

)T
, · · · ,

(
x(6,k)

6

)T]T := (T −1
6 ⊗ Id)�w(6,k),

q := (qT, · · · ,qT)T := (h−1T −1B−1 ⊗ I )G(w(6,k)),

(2.14)
1 6 6 6 d
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its solution can be obtained by using three d × d complex linear systems given by(
h−1(λ6,1 + iμ6,1)Id −J

)(
x(6,k)

1 + ix(6,k)
2

)= q1 + iq2,(
h−1(λ6,2 + iμ6,2)Id −J

)(
x(6,k)

3 + ix(6,k)
4

)= q3 + iq4,(
h−1(λ6,3 + iμ6,3)Id −J

)(
x(6,k)

5 + ix(6,k)
6

)= q5 + iq6.

(2.15)

In this study, we use the LU factorization as a linear solver for the linear systems of (2.15). It should be noted that if the 
dimension d of the system (1.1) is large, one can use a parallel computation for (2.15), after calculating the vector q defined 
by (2.14).

This section is ended by a demonstration of the stability of the collocation method (1.3). For this purpose, we test the 
method with Dahlquist’s problem φ′(t) = λφ(t). Since f (t, φ) = λφ for Dahlquist’s problem, the right-hand side of (1.3)
becomes

h
(
BN ⊗ Id

)
F (αN) + 1N ⊗ ym + hγ N ⊗ f (tm, ym) = λhBNαN + ym

(
1N + hλγ N

)
.

Hence, the Chebyshev collocation system (1.3) applied to the Dahlquist’s problem leads to(
IN − λhBN

)
α = ym

(
1N + λhγ N

)
(2.16)

with the unknown α = [α1, · · · , αN ]T . Thus, by solving the linear system (2.16) with N = 6, the proposed method becomes

ym+1 = S(λh)ym, (2.17)

where the stability function S(z) is the 4th component of the vector 
(
I6 − zB6

)−1(
16 + zγ 6

)
. From Cramer’s rule, it can 

be shown that

S(z) =
det

(
I6 − zB6 16 + zγ 6−zaT4 1 + za40

)
det
(
I6 − zB6

) , (2.18)

where a4 and a40 denote the 4th column of the matrix BT
6 and the vector γ T

6 , respectively. A detailed proof can be found 
in Ref. [14, Proposition 5.2]. For the stability function S(z), the stability region of the method is defined by (see [7, p. 16])

� := {z ∈C : |S(z)| < 1}. (2.19)

When the left-half complex plane is contained in �, the method is called A-stable [7, p. 42]. Applying a symbolic calculation 
by Mathematica to the formula (2.18), it can be shown that the explicit form of S(z) is given by

S(z) = Q (z)

Q (−z)
:=

6∏
k=1

z + zk

z − zk
, Q (z) :=

6∑
k=0

ωkzk,

where zk are the roots of Q (−z) and

(ω0, · · · ,ω6) :=
(

1,
1

2
,

76 + √
2

672
,

20 + √
2

1344
,

130 + 17
√

2

107520
,

38 + 11
√

2

645120
,

2 + √
2

1290240

)
.

From the Routh tableau for Q (z) given in Table 1, it can be seen that the conditions of the Routh theorem are satisfied, and 
hence the real parts of −zk are all negative (see Theorem 13.4 in [6]). Thus, for every complex number z whose real part is 
negative, it can be concluded that∣∣∣∣ z + zk

z − zk

∣∣∣∣≤ 1, k = 1,2, · · · ,6.

This means that the collocation method (1.3) is indeed A-stable.

3. Embedded formula

Since the collocation method (1.3) corresponding to c6
j defined by (1.6) is a 7-stage implicit RK method, the local trunca-

tion error can be estimated by using the well-known results of RK theory. Instead of this method, here we propose a new 
embedded formula which uses modified eigenvalues of B−1, and has a wide stability region, without the extra function 
4



382 X. Piao et al. / Journal of Computational Physics 351 (2017) 376–391
Table 1
Routh tableau for Q (z).

j = 0 j = 1 j = 2 j = 3

i = 0 2+√
2

1290240 − 130+17
√

2
107520

76+√
2

672 −1

i = 1 38+11
√

2
645120 − 20+√

2
1344

1
2

i = 2 23(2430+119
√

2)
64619520

−41140+743
√

2
403872 1

i = 3 57866−5739
√

2
7084161

16(−9140+347
√

2)
337341

i = 4 17761948−2250053
√

2
322284480 −1

i = 5 2352(384720−27977
√

2)
3183566377

i = 6 1

evaluations featuring in the usual RK method. For the estimation of the local truncation error, we first solve the linear 
system(

I4d − h
(
B4 ⊗J

))
(w(4,1) − w(4,0)) = G(w(4,0)),

w(4,0) =
[(

w(6,k∗)
1

)T
, · · · ,

(
w(6,k∗)

4

)T]T
,

(3.1)

and consider a lower order solution ỹm+1 defined by

ỹm+1 = ym + w(4,1)
4 . (3.2)

Here, w(6,k∗) is the solution obtained from (2.3) and satisfying (2.4). The linear system (3.1) can be induced by a similar 
application of the SNI introduced in (2.3) for the collocation method of the case N = 4 (see (1.3) and (1.6)). In the subsequent 
lemma and theorem, we want to show that the solution ỹm+1 of (3.2) can be used as a lower order solution in an embedded 
formula.

For this purpose, we begin with an estimation of the solution of (3.1) by using the results of Theorem 1.1 and Lemma 2.1.

Lemma 3.1. For the function G defined by (2.2) and the variable w(4,0) defined by (3.1), we have

‖w(4,1) − w(4,0)‖2 = O
(
h5 + ε

)
. (3.3)

Proof. For the solution w4 of the nonlinear equation (2.2) with N = 4, applying the Taylor expansion about w4 for 
G(w(4,0)) yields

G
(

w(4,0)
)

= G
(

w4
)

+JG (ζ )
(

w(4,0) − w4
)

= JG (ζ )
(

w(4,0) − w4
)

,

where JG denotes the Jacobian of G and ζ is a vector between w(4,0) and w4. Note that the assumption that the function 
f is smooth leads to a uniform bound for the Jacobian JG . Thus, by taking the l2-norm of both sides of the above equation 
and applying the triangle inequality together with Lemma 2.1 and Theorem 1.1, one finds∥∥∥G(w(4,0))

∥∥∥
2
≤ C1‖w(4,0) − w4‖2

≤ C1

⎛⎜⎝∥∥∥w(6,k∗) − w6
∥∥∥

2
+

√√√√√ 4∑
j=1

∥∥∥w6
j − w4

j

∥∥∥2

2

⎞⎟⎠
= C1

⎛⎜⎝∥∥∥w(6,k∗) − w6
∥∥∥

2
+

√√√√√ 4∑
j=1

∥∥∥α6
j − α4

j

∥∥∥2

2

⎞⎟⎠
≤ C1

⎛⎜⎝∥∥∥w(6,k∗) − w6
∥∥∥

2
+

√√√√√ 4∑
j=1

∥∥∥α6
j − φ(tmj)

∥∥∥2

2
+
∥∥∥φ(tmj) − α4

j

∥∥∥2

2

⎞⎟⎠
≤ C2(h

5 + ε),

(3.4)

where C1 and C2 are some constants. For a sufficiently small h and a smooth function f , we have
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∥∥∥∥(I4d − h (B4 ⊗J )
)−1
∥∥∥∥≤ 1

1 − h‖B4 ⊗J ‖ ≤ C,

where C is a constant that is independent of h. Then, by combining (3.4) with (3.1), the proof can be completed. �
Based on the above lemma, the estimation for the lower order solution defined by (3.2) can be made as follows.

Theorem 3.2. Let ỹm+1 := ym + w(4,1)
4 be the lower order solution at time t = tm+1 defined by (3.2). Then, for a given tolerance ε , it 

is valid that∥∥∥φ(tm+1) − ỹm+1

∥∥∥
2
= O
(
h5 + ε

)
.

Proof. Lemma 2.1, Lemma 3.1 and the triangle inequality lead to∥∥φ(tm+1) − ỹm+1
∥∥

2 =
∥∥∥φ(tm+1) − (ym + w(4,1)

4 )

∥∥∥
2

≤
∥∥∥φ(tm+1) − (ym + w(4,0)

4 )

∥∥∥
2
+
∥∥∥w(4,0)

4 − w(4,1)
4

∥∥∥
2

= O
(

h5 + ε
)
,

which completes the proof. �
Let us assume that 

(
λ4, j ± iμ4, j, u4, j ± iv4, j

)
is a pair of the eigenvalues and eigenvectors of B−1

4 . Then, the matrix B−1
4

can be decomposed by

B−1
4 = T4�4T −1

4 , �4 = diag(�4,1,�4,2), T4 =
[

u4,1,−v4,1,u4,2,−v4,2

]
,

where �4, j =
[

λ4, j −μ4, j
μ4, j λ4, j

]
. Using this eigenvalue decomposition and the process for obtaining (2.13), the linear system 

(3.1) can be written as(
h−1�4 ⊗ Id − I4 ⊗J

)
(T −1

4 ⊗ Id)
(

w(4,1) − w(4,0)
)

= (h−1T −1
4 B−1

4 ⊗ Id)G(w(4,0)). (3.5)

Thus, as can be seen in (2.15), two d × d complex linear systems have to be solved to obtain the lower order solution 
for (3.5), which is computationally inefficient compared to the existing RK methods. Hence, we would like to construct an 
efficient algorithm to calculate w(4,1) by modifying the eigenvalues of B−1

4 . To achieve this aim, we take the perturbed 
eigenvalues ̂λ4,k + iμ̂4,k of λ4,k + iμ4,k such that∣∣∣̂λ4,k + iμ̂4,k − (λ4,k + iμ4,k)

∣∣∣≤ c (3.6)

with a fixed constant c and define matrices

B̂−1
4 = T4�̂4T −1

4 , �̂4 =
[
�̂4,1 0

0 �̂4,2

]
, �̂4, j =

[
λ̂4, j −μ̂4, j

μ̂4, j λ̂4, j

]
.

Then, instead of solving the linear system (3.5) for the lower order solution, we solve(
h−1�̂4 ⊗ Id − I4 ⊗J

)
(T −1

4 ⊗ Id)
(

ŵ(4,1) − w(4,0)
)

= (h−1T −1
4 B−1

4 ⊗ Id)G(w(4,0)), (3.7)

and define the modified lower order solution ŷm+1 by

ŷm+1 := ym + ŵ(4,1)
4 . (3.8)

The following theorem shows that the modified lower order solution ŷm+1 of (3.8) can be used as a lower order solution in 
the embedded formula.

Theorem 3.3. The modified lower order solution ̂ym+1 defined by (3.8) satisfies∥∥∥φ(tm+1) − ŷm+1

∥∥∥
2
= O
(
h5 + ε

)
for a given tolerance ε .
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Proof. For a sufficiently small h and a smooth function f , we first note that∥∥∥∥(B4B̂−1
4 ⊗ Id − h (B4 ⊗J )

)−1
∥∥∥∥≤ ‖B̂4B−1

4 ‖
1 − h‖B̂4 ⊗J ‖ ≤ C,

where C is a constant independent of h. Thus, by using the inequality (3.4), the solution of (3.7) can be estimated by

‖ŵ(4,1) − w(4,0)‖2 = O
(
‖G(w(4,0)‖2

)
= O
(

h5 + ε
)
.

Therefore, Lemma 2.1 and the triangle inequality lead to

‖φ(tm+1) − ŷm+1‖2 =
∥∥∥φ(tm+1) − (ym + ŵ(4,1)

4 )

∥∥∥
2

≤
∥∥∥φ(tm+1) − (ym + w(4,0)

4 )

∥∥∥
2
+
∥∥∥w(4,0)

4 − ŵ(4,1)
4

∥∥∥
2

= O
(

h5 + ε
)
,

which completes the proof. �
From now on, as mentioned in Introduction, we demonstrate a way to choose perturbed eigenvalues ̂λ4,k + iμ̂4,k so that 

not only the stability region of the embedded formula can be widened, but also the total amount of computational cost can 
be reduced. For this purpose, using the property

max
j,k

∣∣∣λ6, j + iμ6, j − (λ4,k + iμ4,k)

∣∣∣≤ 10, (3.9)

which can be obtained by the aid of Mathematica, we take the perturbed eigenvalue ̂λ4,k + iμ̂4,k as

λ̂4,k + iμ̂4,k = arg min
λ6, j+iμ6, j

∣∣∣(λ6, j + iμ6, j

)
−
(
λ4,k + iμ4,k

)∣∣∣, k = 1,2, j = 1,2,3.

In this case, the constant c in (3.6) becomes less than 10, so the above discussions with these perturbed eigenvalues are 
valid. Thus, by a similar procedure of (2.13)–(2.15), after solving(

h−1(̂λ4,1 + iμ̂4,1)Id −J
)(

y1 + i y2
)= q1 + iq2,(

h−1(̂λ4,2 + iμ̂4,2)Id −J
)(

y3 + i y4
)= q3 + iq4,

q := (qT1 , · · · ,qT4 )T := (h−1T −1
4 B−1

4 ⊗ Id)G(w(4,0)),

(3.10)

the solution ŵ(4,1) − w(4,0) of the linear system (3.7) can be obtained by

ŵ(4,1) − w(4,0) =
(

T4 ⊗ Id

)[
yT1 , · · · , yT4

]T
.

Since the two d × d complex matrices of (3.10) are the same as those in the linear systems of (2.15), the same LU decom-
positions in (2.15) can be used.

Finally, this section is concluded by studying the stability of the solution ŵ(4,1) , obtained from the linear systems (3.7). 
For this, we apply the Dahlquist’s problem with φ′ = f (t, φ) = λφ to the system (3.7). From (2.2), we have

G(w(4,0)) = −w(4,0) + zγ 4 ym + zB4(14 ym + w(4,0)), z := λh.

Thus, the equation (3.7) gives the linear system(
B4B̂−1

4 − zB4

)
(ŵ(4,1) − w(4,0)) = −w(4,0) + zγ 4 ym + zB4(14 ym + w(4,0)),

or equivalently(
I4 − zB̂4

)
ŵ(4,1) =

(
I4 − B̂4B−1

4

)
w(4,0) + zB̂4B−1

4 γ 4 ym + zB̂414 ym. (3.11)

By the definition of w(4,0) in (3.1) and the equation (2.16), each component w(6,k∗)
j of w(4,0) can be calculated by

w(6,k∗)
j =

(
S j(z) − 1

)
ym, S j(z) =

det

(
I6 − zB6 16 + zγ 6−zaTj 1 + za j0

)
det
(
I6 − zB6

) ,
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Fig. 1. The stability regions for the lower order solution obtained from our proposed method Ŝ4(z) and the Radau schemes (S̃s(z), s = 3,5).

where a j and a j0 denote the jth column of the matrix BT
6 and the vector γ T

6 , respectively. Thus, if we define a vector θ by

θ := [S1(z) − 1, · · · ,S4(z) − 1]T ,

then the equation (3.11) can be simplified by(
I4 − zB̂4

)
ŵ(4,1) = η(z)ym, η(z) :=

(
I4 − B̂4B−1

4

)
θ + zB̂4B−1

4 γ 4 + zB̂414. (3.12)

Applying Cramer’s rule to (3.12), the 4th component ŵ(4,1)
4 of ŵ(4,1) can be obtained by

ŵ(4,1)
4 =

det

(
I4 − zB̂4 η(z)

−ẑaT4 â40

)
det
(
I4 − zB̂4

) ym,

where â4 and â40 denote the 4th column of the matrix B̂T
4 and the vector η(z)T , respectively. Finally, the lower order 

solution ŷm+1 at time t = tm+1 for the Dahlquist’s problem becomes

ŷm+1 = ym + ŵ(4,1)
4 = Ŝ4(z)ym, Ŝ4(z) = 1 +

det

(
I4 − zB̂4 η(z)

−ẑaT4 â40

)
det
(
I4 − zB̂4

) . (3.13)

The lower order solution of the Dahlquist’s problem by the Radau scheme with s stages is stated as follows

ỹm+1 = ym + h̃λ−1 f (tm, ym) + h
s∑

j=1

b̃ j f (tm + cs
jh, g j)

= S̃s(z)ym,

where ̃λ is the real eigenvalue of the matrix B−1
s , g j ( j = 1, 2, · · · , s) are the values obtained from the Radau method, and 

b̃ j are to be determined such that ỹm+1 − ym+1 = O(hs+1). A detailed formula for S̃s(z) can be seen in [7, p. 123]. For 
comparison, we present the stability region, � defined in (2.19) with Ŝ4(z), of the proposed method in Fig. 1 (second) and 
those of the Radau schemes in Fig. 1 (third, fourth). The first panel of Fig. 1 shows the distribution of the eigenvalues for 
B−1

N . It can be seen that the stability region of the proposed scheme for the lower order solution has a better stability 
region than those of the Radau schemes.

Remark 3.4.

(1) For the pair of solutions αN
4 and ŷm+1 of the Dahlquist’s problem obtained from the systems (2.16) and (3.13), respec-

tively, an asymptotic behavior of the local truncation errors êrr(z) = |α6
4 − ŷm+1| and err(z) = |α6

4 − α4
4| can be seen in 

Fig. 2. It can be seen that not only have both errors, êrr(z) and err(z), the asymptotic property that êrr(z), err(z) → 0
as z → ∞, but also both their magnitudes are less than 1.

(2) It is well known that the estimation êrr(z) for the local truncation error in the Radau method goes to −1 as z → ∞; 
hence, it is not completely free from the so-called “hump” phenomenon. To overcome this problem, Hairer and Wanner 
[7] suggested an adjusted error estimation recalculated by one additional function evaluation for an adjusted initial 
value. In contrast, the proposed scheme has a well-behaved asymptotic behavior without any extra function evaluations, 
which is remarkable.
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Fig. 2. The estimate errors for y′ = λy with different error estimation schemes versus z = λh.

Finally, based on (2.6), (2.15), (3.8), (3.10), and the discussion above, we introduce the pseudo code for our algorithm 
ECCM46.

ALGORITHM ECCM46( f , [t0, tend], y0, Rtol, Atol)
Remark: The algorithm ECCM46 is the Chebyshev collocation method based on zeros of the generalized Chebyshev 
polynomials defined in (1.6). It calculates the approximate solution of (1.1). Here, [t0, tend] is the required integration 
interval, and y0 is a given initial value. Furthermore, the relative and absolute tolerances are given as Rtol and Atol, 
respectively.

1. Initialize h, m = 0, tm := t0, ym := y0.
2. If tm ≥ tend , then exit.
3. If tm + h > tend , then h = tend − tm .
4. Perform the iteration scheme (2.14) and (2.15), and then calculate ym+1 of (2.6) with the tolerance ε defined by 

(2.5).
5. Solve the linear system (3.10) to obtain ŵ(4,1) and then calculate ŷm+1 by using (3.8).

6. Compute the error err :=
√

1

d

d∑
j=1

(
ym+1, j− ŷm+1, j

Atol +max(|ym, j |,|ym+1, j |) Rtol

)2
.

7. If err < 1, then save tm := tm + h, ym := ym+1. After setting the next time step size h with the standard step size 
controller (see [7,18]), go to step 2.

8. If err ≥ 1, then resize h using the traditional step size controller (see [7,18]) and go to step 4.

4. Numerical results

In this section, in order to demonstrate the efficiency of our method (ECCM46), it is tested by five widely used physical 
problems. For the numerical comparison, three other implicit methods were used: Radau5, Radau9 [7], and E2CCM46 [18]. 
The efficiency of each numerical algorithm was measured in terms of the computational time (cputime), the number of 
function evaluations (nfeval), and the number of acceptance time steps (naccept) required to solve each problem, by varying 
the relative tolerances (Rtol) and absolute tolerances (Atol). As shown in Fig. 3 and Fig. 5, the marked points in all numerical 
comparisons, going from left to right, correspond to the errors as the tolerances are reduced in size. In each numerical 
experiment, the cputime was determined by taking the average cputime of 200 executions of the numerical schemes for a 
small scale problem, or the average of 10 executions for a large scale problem, in order to get an accurate measurement. 
All numerical tests were executed using the Visual Studio 2010 software, written in C++, and in a Windows 7 operating 
system.

4.1. Prothero–Robinson equation

In this example, the order of numerical convergence was evaluated by using a well-known Prothero–Robinson equation 
[19] given by

φ′(t) = ν(φ(t) − g(t)) + g′(t), t ∈ (0,20]; φ(0) = 0,

where ν is a negative constant and g(t) = sin(t). Note that the exact solution of this problem is φ(t) = sin(t), which does 
not exhibit stiffness, but the magnitude of the eigenvalue ν constitutes the stiffness of the problem. The maximum error 
Err(h) = maxm{|φ(tm) − ym|} and the rate of convergence Rate(h) = log(Err(h)/Err(h/2))/ log 2 were calculated for a given 
step size h, with different eigenvalues ν = −10k , k = 0, 6; the results for a selection of step sizes h are shown in Table 2. 
The table shows that the method has 8th order of numerical convergence for the non-stiff case (ν = −1), which guarantees 
the order of theoretical convergence discussed in Section 3. Moreover, it has the 6th order of numerical convergence for 
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Table 2
Order of convergence.

n ν = −100 (non-stiff) ν = −106 (stiff)

Err(h) Rate(h) Err(h) Rate(h)

−2 2.3599 × 10−4 – 5.1828 × 10−9 –
−1 8.2026 × 10−7 8.19 4.7815 × 10−11 6.76
0 3.4361 × 10−9 7.90 6.8093 × 10−13 6.13
1 1.3599 × 10−11 7.98 1.0464 × 10−14 6.02
2 5.8842 × 10−14 7.85 6.8001 × 10−16 3.94

Table 3
Comparisons of ECCM46 and ECCM46O for Burgers’ equation with ν = 0.01.

Method Rtol = 100 Atol Error naccept nfeval njac ndec cputime

ECCM46 1.0e−4 6.0362e−6 12 204 6 12 18.285
1.0e−5 2.3134e−6 14 236 7 13 19.758

ECCM46O 1.0e−4 4.6160e−6 11 215 7 12 27.946
1.0e−5 1.5295e−7 12 240 6 12 28.497

Table 4
Comparisons of ECCM46 and ECCM46O for Burgers’ equation with ν = 0.001.

Method Rtol = 100 Atol Error naccept nfeval njac ndec cputime

ECCM46 1.0e−4 6.4094e−4 16 370 12 18 28.739
1.0e−5 6.4260e−4 18 426 12 18 29.184

ECCM46O 1.0e−4 6.4442e−4 18 426 18 24 54.084
1.0e−5 6.4215e−4 17 485 13 19 46.120

the stiff case (ν = −106), which is not surprising as our method is similar to the Lobatto IIIA method ([7, p. 226]), and the 
global error with a uniform time step size h can be expressed as

φ(tm+1) − ym+1 = S(z)(φ(tm) − ym) + O (z−1h7), when h → 0 and z = hν → ∞,

where S(z) is the stability function.

4.2. Burgers’ equation

In this example, the effectiveness of the eigenvalue modification for calculating the lower order solution from the systems 
(3.10) was examined. We denote the method without the eigenvalue modification as ECCM46O. As a test problem, the 
following one-dimensional Burgers’ equation was used:

ut + uux = νuxx, u(0, x) = − sin(πx), u(t,−1) = u(t,1) = 0, t ∈ (0,1], x ∈ [−1,1].
For the spatial discretization, the fourth-order, compact finite difference scheme was used for both ux , and uxx , with a spatial 
grid size �x = 2

1024 , and the method of lines by varying the viscosity ν = 0.01, 0.001 was applied. The results are listed 
in Tables 3 and 4. In the tables, njac and ndec denote the total number of Jacobians and LU decompositions, respectively, 
needed to simulate the problem. It can be seen in Table 3 that the cputime and the computational costs of ECCM46 from 
nfeval and ndec, are better than those of ECCM46O, which supports the proposed theoretical modification. However, from 
the magnitude of the numerical errors listed in the third column of Table 3, it can be seen that some truncation errors 
were introduced by the modification of the eigenvalues, and hence the results of ECCM46O are slightly better than those of 
ECCM46. Nevertheless, it can be seen in Table 4, that for the relatively small viscosity ν = 0.001 the computational costs 
of ECCM46 are much better than those of ECCM46O. In contrast, the numerical errors from both methods have similar 
behavior, which may be caused by the strong stiffness of Burgers’ equation.

4.3. Oregonator

For the third example, the Oregonator was investigated, which is the simplest model of the chemical dynamics of the 
oscillatory Belousov–Zhabotinsky reaction. The problem is a stiff system consisting of three non-linear ODEs given by

dφ = f (φ), t ∈ [0,360]; φ(0) = [1,2,3]T,

dt
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Fig. 3. Comparisons of errors with function of cputime (left), function of nfeval (center) and function of naccept (right) with tolerances (Rtol, Atol) =
(10−2−n/4, 10−4−n/4), n = 0, 1, · · · , 32 for the Oregonator problem.

Fig. 4. Time step variation (left) in the whole time interval and the detailed figures (right) near the stiff region with (Rtol,Atol) = (10−10,10−12).

where

φ = [φ1, φ2, φ3]T and f (φ) =
⎡⎣77.27(φ2 − φ1φ2 + φ1 − 8.375 × 10−6φ2

1)

(−φ2 − φ1φ2 + φ3)/77.27
0.161(φ1 − φ3)

⎤⎦ .

In the absence of an analytic solution, the following reference solution was used, generated by Radau5 with Rtol = Atol =
1.1 × 10−18, at the end time t = 360,

φ1 = 0.1000814870318523 × 10, φ2 = 0.1228178521549917 × 104, φ3 = 0.1320554942846706 × 103.

The efficiency of the numerical algorithms were examined by three measurements, cputime, nfeval, and naccept with 
varying tolerances (Rtol, Atol) = (10−2−n/4, 10−4−n/4), n = 0, 1, · · · , 32, required to obtain the numerical solution at the 
given end time. In Fig. 3, the relative l2-norm errors of the numerical solutions corresponding to each tolerance are shown as 
a function of the measurements, on a logarithmic scale. The numerical results of E2CCM46 corresponding to the tolerances 
(Rtol, Atol) = (10−2−n/4, 10−4−n/4), n = 0, 1, 2, 3 are not included since the method does not work for the cases, which may 
come from the usage of the Chebyshev interpolation polynomial pN (t) with the interpolation conditions pN (tmj) = φ(tmj)

for the solution φ.
It can be seen that the error of ECCM46 shows far better performance in terms of cputime, nfeval, and naccept than the 

other methods Radau9, E2CCM46, and Radau5, as the tolerance is reduced. For example, ECCM46 exhibits an accuracy of 
13 digits with about 0.025 s cputime, 17000 nfeval and 500 naccept together, while Radau9, E2CCM46, and Radau5 need 
about 0.028 s, 0.07 s, 0.15 s cputime, 20000, 35000, 65000 nfeval, and 500, 2400, 8000 naccept, respectively. To investigate 
the efficiency of the developed embedded formula, the change of step size for each method was compared, and the results 
with (Rtol, Atol) = (10−10, 10−12) are shown in Fig. 4 (left). With the fixed tolerance, it can be seen that the time step sizes 
generated with ECCM46 are larger than those of the other methods, which means the ECCM46 uses consistently larger time 
step sizes in the execution of the algorithm than other methods. Furthermore, the enlarged figures for ECCM46 and Radau9 
near a stiff region (Fig. 4 (right)), show how the time step sizes of ECCM46 are changed near the stiff region, compared to 
those of Radau9. Again, the behavior we have seen is that ECCM46 has larger time step sizes, which is a significant result 
when we recall that the convergence order of ECCM46 is lower than that of Radau9. It is further evidence of the efficiency 
of the proposed embedded scheme.

4.4. Plate problem

In this example, the proposed method was used to determine the movement of a rectangular plate under the load of a 
car passing over it, which is known as the plate problem [7], and is described by
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Table 5
Comparison of ECCM46 and Radau9 for the plate problems.

Method Rtol = Atol Error nsteps naccept nfeval newt

ECCM46 10−8 6.2926e−010 66 56 530 1.1970
10−9 4.2344e−010 84 74 710 1.2619
10−10 6.7468e−012 116 104 1034 1.3362
10−11 3.0856e−013 127 119 1337 1.5984
10−12 5.9130e−014 188 179 1913 1.5372

Radau9 10−8 6.7808e−009 54 52 532 1.7778
10−9 1.0996e−009 75 73 768 1.8533
10−10 1.0254e−010 108 106 1116 1.8704
10−11 2.6386e−011 161 159 1669 1.8758
10−12 7.3572e−013 242 241 2526 1.8884

∂2u

∂t2
+ ω

∂u

∂t
+ σ�2u = f (x, y, t), � := [0,2] × [0,

4

3
]

with ω = 1000, σ = 100 and the initial and boundary conditions

u|∂� = 0, �u|∂� = 0, u(x, y,0) = 0,
∂u

∂t
(x, y,0) = 0.

Here, the load f (x, y, t) was idealized by the sum of two Gaussian curves which move in the x-direction and reside on “four 
wheels”

f (x, y, t) =
{

200
(

e−5(t−x−2)2 + e−5(t−x−5)2
)

if y = 4
9 or 8

9 ,

0 for all other y.

As a spatial discretization for the plate problem, using a uniform grid template for the plate � with 40 interior grid points 
xi = i�x, y j = j�x, where �x = 2/9 is the uniform grid size, the second order, central finite difference scheme was applied 
and a linear, and non-autonomous IVP was obtained with a medium stiffness. It is known that the Jacobian matrices for 
the IVP have a distributed spectrum, for which a higher stage order method can have an advantage over other methods 
[21]. To show this, the problem was solved on the integration interval 0 ≤ t ≤ 7 and the numerical results from ECCM46 
were compared with those from Radau9. The results are summarized in Table 5, and show that the numerical error of 
ECCM46 is far superior to that of Radau9. Also, ECCM46 uses a smaller number of integration trial steps (nsteps), and nfeval 
than Radau9. The increased efficiency results from the higher stage order of ECCM46 compared to Radau9 which has stage 
order 5.

4.5. Medical Akzo Nobel problem

As a final example, the problem known as the Medical Akzo Nobel problem (Medakzo) [1,4] was solved. This problem 
consists of coupled reaction–diffusion equations, and their spatial discretization yields a stiff ODE given by

dy

dt
= f (t, y), t ∈ [0,20]; y(0) = g ∈R

2d, (4.1)

where the function f is defined by⎧⎨⎩ f2 j−1 = α j
y2 j+1 − y2 j−3

2�x
+ β j

y2 j−3 − 2y2 j−1 + y2 j+1

�x2 − 100y2 j−1 y2 j,

f2 j = −100y2 j−1 y2 j, j = 1,2, · · · ,d.

Here, α j = 2( j�x−1)3

42 , β j = ( j�x−1)4

42 , �x = 1
d , the initial condition g is given by g = (0, 1, 0, 1, · · · , 0, 1)T , and the boundary 

conditions y−1(t) and y2d+1(t) are given by y2d+1 = y2d−1, y−1(t) = ψ(t) with the step function ψ(t) defined by

ψ(t) =
{

2 for t ∈ (0,5],
0 for t ∈ (5,20].

The boundary conditions show that f undergoes a discontinuity in time at t = 5. Hence, we take this IVP as a benchmark 
problem to show that the proposed scheme works well in the case with discontinuities. The problem (4.1) was simulated 
with various tolerances (Rtol, Atol) = (10−2−n/4, 10−2−n/4), n = 0, 1, · · · , 32, and d = 1000 was taken to achieve a high 
resolution of the spatial accuracy. To compare the efficiency, the reference solution obtained from Radau9 was used with 
(Rtol, Atol) = (10−13, 10−15), and three measurements, cputime, nfeval, and naccept were performed which was required to 
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Fig. 5. Comparison of errors with function of cputime (left), function of nfeval (middle) and function of naccept (right) by varying tolerances Rtol = Atol =
10−2−n/4, n = 0, 1, · · · , 32 for the Medakzo problem.

Fig. 6. Reliability of control for error behavior by varying tolerances Rtol = Atol = 10−2−n/4, n = 0,1, · · · ,32 for the Medakzo problem.

obtain the numerical solution at the end time. The relative l2-norm errors of the numerical solutions corresponding to each 
tolerance are shown in Fig. 5 as a function of the measurements, on a logarithmic scale. It can be seen that ECCM46 yields 
to a better performance in terms of cputime, nfeval, and naccept compared to other methods. Moreover, the smaller the 
tolerance, the better the performance of ECCM46 was. For example, ECCM46 achieves an accuracy of 10 digits with about 
2.5 s cputime, 3000 nfeval, and 200 naccept, while Radau5 and Radau9 need about 6 s and 7 s cputime, 7000 and 8000 
nfeval, and 500 and 1000 naccept, respectively.

Finally, to show the reliability of the control of error estimate in our method, we demonstrate how the obtained accuracy 
depends on the control parameter in Fig. 6. As expected, the behavior of both higher order methods (Radau9 and ECCM46) 
corresponds to the given tolerances more consistently compared to the lower order method (Radau5). In addition, it can be 
seen that the proposed method ECCM46 behaves well without any oscillation compared to Radau9, as the tolerance goes to 
small.

5. Conclusion and further discussion

An embedded formula of the Chebyshev collocation method for stiff problems has been constructed and analyzed. Instead 
of the traditional method to estimate the local truncation error, we developed a new embedded formula to calculate the 
lower order solution. To achieve this, the eigenvalues of the complex linear systems, derived from the collocation method 
for the lower order solution, are replaced by those of the higher order solution. The proposed embedded scheme yields to 
a wide stability region for the Dahlquist’s problem. The local truncation error, err(z), of the scheme goes to 0, as z goes 
to ∞, which is similar to the asymptotic behavior of another widely used method, Radau5. The convergence and stability 
analysis shows that the scheme has 8th order of convergence and A-stability. By using several numerical experiments, we 
have shown that the scheme has a higher order of convergence, better stability and lower computational costs, compared 
to existing methods.
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