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A necessary condition for two commutative noetherian rings to be singularly equivalent

Hiroki Matsui

Let R be a commutative noetherian ring. The singularity category of R is by definition the Verdier
quotient

Dsg(R) := Db(modR)/Kb(projR).

where Db(modR) stands for the bounded derived category of finitely generated R-modules, and Kb(projR)
the bounded homotopy category of finitely generated projective R-modules. The singularity category has
the structure of a triangulated category which has been introduced by Buchweitz [3] and connected to
the Homological Mirror Symmetry Conjecture by Olrov [5].

For two commutative noetherian rings R and S, we say that R,S are singularly equivalent if their
singularity categories Dsg(R),Dsg(S) are equivalent as triangulated categories. It is well known that
Morita equivalences and derived equivalences imply singularly equivalences. Complete characterization
for Morita equivalences and derived equivalences are kown [4, 6], however singularly equivalences are
quite difficult. Indeed, only a few examples of such equivalences are known.

The main purpose of this talk is give the following necessary condition for singularly equivalences:

Theorem 1. Let R and S be local complete intersection rings which are locally hypersurfaces on the
punctured spectra. If R and S are singularly equivalenct, then their singular loci SingR and SingS are
homeomorphic.

The key to prove this theorem is the support theory for triangulated categories. The support theory is
developed by P. Balmer [1, 2] for “tensor” triangulated categories and is a powerful tool to show such a
reconstruction theorem. Since singularity categories do not have tensor triangulated structure in general,
we discuss the support theory “without” tensor structure.
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Localization functors in derived categories of commutative Noetherian rings

Tsutomu Nakamura

This talk is based on joint work with Y. Yoshino [3]. Let R be a commutative Noetherian ring. We
denote by D = D(Mod R) the derived category of all chain complexes of R-modules. In this talk, we
introduce the notion of localization functors with cosupport in subsets of SpecR. Recall that the cosupport
of X ∈ D is defined by cosuppX = { p ∈ SpecR |RHomR(κ(p), X) ̸= 0 }, where κ(p) = Rp/pRp. For
a subset of SpecR, we write CW = {Y ∈ D | cosuppY ⊂ W }, which is a colocalizing subcategory of
D. By some argument of localization theory of triangulated categories, there exists a left adjoint funtor
λW : D → CW to the inclusion functor jW : CW ↪→ D, see [2]. We define the localization functor with
cosupport in W as the functor λW . This notion is a common generalization of classical localizations
(−) ⊗R S−1R with respect to multiplicatively closed subsets S of R and left derived functors LΛV (a) of
a-adic completion functors ΛV (a) for ideals a of R.

In this talk, we will report several properties of λW , including the two results bellow.

Theorem 1. Let W be a subset of SpecR. Assume that there is no inclusion relation between two distinct
prime ideals in W . Then λW is isomorphic to

∏
p∈W LΛV (p)(−⊗R Rp).

In the following theorem, we denote by ηW the natural morphism idD → λW induced by the adjointness
property of (λW , jW ), and use the fact that λUλW = λU if U ⊂W .

Theorem 2. Let W be a subset of SpecR and X be a chian complex in D. Assume that W0 is a subset
of W with W0

s ∩W = W , where W0
s
is the specialization-closure of W0. We set W0 = W \ W1. Then

there is a triangle of the following form;

λWX
f−−−−→ λW1X ⊕ λW0X

g−−−−→ λW1λW0X −−−−→ λWX[1],

where

f =

(
ηW1(λWX)

ηW0(λWX)

)
, g =

(
λW1(ηW0(X)) (−1) · ηW1(λW0X)

)
.

Thanks to these theorems, we can compute λW by the induction on the maximum length of chains
of prime ideals in W . Moreover, the second one says that λWX is the homotopy pullback of the two
morphisms λW1(ηW0(X)) : λW1X → λW1λW0X and ηW1(λW0X) : λW0X → λW1λW0X.

As an application of the results, we are able to obtain a simpler proof of a classical theorem in [4] by
Raynaud and Gruson, which states that the projective dimension of a flat R-module is at most the Krull
dimension of R. Furthermore, time permitting, we will give an explicit way to compute λW by using
the notion of Čech complexes, which enables us to construct pure injective resolutions (cf. [1]) of flat or
finitely generated R-modules in a functorial manner.
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On the vanishing of self extensions over Cohen-Macaulay local rings

Tokuji Araya

This talk is based on joint work with O. Celikbas, A. Sadeghi and R. Takahashi.
Throughout R denotes a commutative Noetherian local ring and modR denotes the category of all

finitely generated R-modules.
The celebrated Auslander-Reiten Conjecture, on the vanishing of self extensions of a module, is one

of the long-standing conjectures in ring theory.

Conjecture (Auslander-Reiten [2]). Let M ∈ modR. If ExtiR(M,M) = ExtiR(M,R) = 0 for all i ≥ 1,
then M is free.

Although it is still open, there are several results in the literature that establish the conjecture over
Gorenstein rings under certain conditions.

For a nonnegative integer n and an R-module M , we set Xn(R) = {p ∈ Spec(R)|ht(p) ≤ n} and say
M is locally free on Xn(R) if Mp is a free Rp-module for each prime ideal p ∈ Xn(R).

Theorem 1 (Araya [1]). Let R be a Gorenstein local ring of dimension d ≥ 2 and let M ∈ modR. Then
M is free provided that the following hold:

(1) M is locally free on Xd−1(R).
(2) M is maximal Cohen-Macaulay.

(3) Extd−1
R (M,M) = 0.

Theorem 2 (Ono and Yoshino [3]). Let R be a Gorenstein local ring of dimension d ≥ 3 and let
M ∈ modR be a module. Then M is free provided that the following hold:

(1) M is locally free on Xd−2(R).
(2) M is maximal Cohen-Macaulay.

(3) Extd−2
R (M,M) = Extd−1

R (M,M) = 0.

By looking at these theorems, there is a natural conjecture.

Conjecture. Let n be a positive integer. Let R be a Gorenstein local ring of dimension d > n and let
M ∈ modR. Then M is free provided that the following hold:

(1) M is locally free on Xn(R).
(2) M is maximal Cohen-Macaulay.
(3) ExtiR(M,M) = 0 for all n ≤ i ≤ d− 1.

In this talk, we will give an affirmative answer of this conjecture. Moreover, we will show an extension
of this over Cohen-Macaulay local rings that admit canonical modules. In particular, our main result
recovers theorems of Araya, and Ono and Yoshino simultaneously.
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On delta invariants of certain ideals

Toshinori Kobayashi

Let (R,m, k) be a Cohen-Macaulay local ring with a canonical module. The Auslander δ-invariant
δR(M) for a finitely generated R-module M is defined to be the rank of maximal free summand of the
minimal Cohen-Macaulay approximation of M . For an integer n ≥ 0, the n-th δ-invariant is defined by
Auslander, Ding and Solberg [1] as δnR(M) = δR(Ω

n
RM), where Ωn

RM denotes the n-th syzygy module of
M in the minimal free resolution. On these invariants, combining the Auslander’s result (see [1, Corollary
5.7]) and Yoshino’s one [4], we can see the following theorem.

Theorem 1 (Auslander, Yoshino). Let d > 0 be the Krull dimension of R. Consider the following
conditions.

(a) R is a regular local ring.
(b) There exists n ≥ 0 such that δn(R/m) > 0.
(c) There exist n > 0 and l > 0 such that δn(R/ml) > 0.

Then, the implications (a) ⇔ (b) ⇒ (c) hold. The implication (c) ⇒ (a) holds if depth grm(R) ≥ d− 1.

Here we denote by grI(R) the associated graded ring of R with respect to an ideal I of R. In this talk,
I will give some necessary and sufficient conditions for an ideal to be a parameter ideal of R in terms of
the δ-invarinants. More precisely I will explain the following result.

Theorem 2. Let (R,m) be a Cohen-Macaulay local ring with a canonical module ω, having infinite
residue field k and Krull dimension d > 0. Let I be an m-primary ideal of R such that I/I2 is a free
R/I-module. Consider the following conditions.

(a) δ(R/I) > 0.
(b) I is a parameter ideal of R.
(c) There exists n ≥ 0 such that δn(R/I) > 0.
(d) There exist n > 0 and l > 0 such that δn(R/I l) > 0.

Then, the implications (a) ⇒ (b) ⇔ (c) ⇒ (d) hold. The implication (d) ⇒ (c) holds if depth grI(R) ≥
d− 1 and Ii/Ii+1 is a free R/I-module for any i > 0. The implication (b) ⇒ (a) holds if I ⊂ tr(ω).

Here tr(ω) is the trace ideal of ω. that is, the image of the natural homomorphism ω⊗RHomR(ω,R)→
R mapping x⊗ f to f(x) for x ∈ ω and f ∈ HomR(ω,R).

There are some examples of m-primary ideals I which satisfy the conditions in Theorem 2, that is,
Ii/Ii+1 is a free R/I-module and grI(R) ≥ d− 1. One of them is the maximal ideal m in the case where
grm(R) is Cohen-Macaulay (for example, R is a hypersurface or a localization of a homogeneous graded
Cohen-Macaulay ring.) Thus, Theorem 2 recovers Theorem 1 by letting I = m.

Other interesting examples are Ulrich ideals. These ideals are defined in [2] and many examples of
Ulrich ideals are given in [2] and [3]. As an application of Theorem 2, I will give an uniform upper bound
for orders of Ulrich ideals of R when R has Gorenstein punctured spectrum.
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The Krull dimension of composite power series rings over valuation rings

Minjae Kwon

In this talk, we study the Krull dimension of composite power series rings V + XI[[X]] where V is
valuation rings and I is a nonzero ideal of V . We introduce the concepts a prime chain ordering and
a phi function. Using these concepts, I will show how to construct chain of prime ideals with length
2ℵ1 . If base ring V is a nondiscrete valuation ring, then we can construct the chain of prime ideals with
length 2ℵ1 in V + XI[[X]]. Hence we have the result the Krull dimension of V + XI[[X]] ≥ 2ℵ1 . If the
case base ring V is a discrete valuation ring with rank n, then we have the result the Krull dimension of
V +XI[[X]] = n+ 1.
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Around Azumaya rings - An overview of ring theory in the last decades

Robert Wisbauer

The classical Wedderburn-Artin structure theorem, states that an artin ring modulo its prime radical
is a finite product of matrix rings over division rings. Since the beginning of the last century, the
generalisation of this theorem has served as motivation for further development of abstract algebra. The
category theory emerging in the middle of the last century gave new impulse for research in this field.
Although it was initially taken up only hesitantly, it is now an indispensable part of the ongoing research
- not only in algebra.

In this approach also coalgebraic structures took their place, opening new ways to characterise (and
generalise) separable, Azumaya and Frobenius algebras. Over fields, all these examples are finite dimen-
sional, whereas Azumaya rings, which include all simple algebras, need not be so. Thus they need a
somewhat different treatment.

Düsseldorf
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On quiver Grassmannians and orbit closures
for gen-finite modules

Julia Sauter

This is joint work in progress with Matthew Pressland, generalizing work with Crawley-Boevey [3],
which in turn generalized [1, 2, 4].

One calls a module gen-finite if there are only finitely many isomorphism classes of indecomposable
modules which are generated by the module.

Given a cogenerator for an algebra, we will show that its endomorphism ring admits a natural tilting
module. We will show how to use this to construct desingularizations of quiver Grassmannians and orbit
closures for gen-finite modules.
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The moduli of subalgebras of the full matrix ring of degree 3

Kazunori Nakamoto and Takeshi Torii

Let k be an algebraically closed field. We say that k-subalgebras A and B of M3(k) are equivalent if
P−1AP = B for some P ∈ GL3(k). There are 26 equivalence classes of k-subalgebras of M3(k). More
generally, let us consider subalgebras of M3(R) over an arbitrary commutative ring R (or scheme X).

Definition 1. We say that a subsheaf A of OX -algebras of Mn(OX) is a mold of degree n on a scheme
X if Mn(OX)/A is a locally free sheaf. We denote by rankA the rank of A as a locally free sheaf.

Proposition 2. The following cotravariant functor is representable by a closed subscheme of the Grass-
mann scheme Grass(d, n2):

Moldn,d : (Sch)op → (Sets)
X 7→

{
A A is a rank d mold of degree n on X

}
.

Let us consider the moduli Mold3,d of rank d molds of degree 3. For d = 1, 6, 7, 8, 9, we have:

Example 3. Let n = 3. If d = 1 or d ≥ 6, then

Mold3,1 = SpecZ,
Mold3,6 = Flag := GL3/{(aij) ∈ GL3 | aij = 0 for i > j},

Mold3,7 = P2
Z
⨿

P2
Z,

Mold3,8 = ∅,
Mold3,9 = SpecZ.

In this talk, we describe the moduli Mold3,d of rank d molds of degree 3 for d = 2 and 3.

Theorem 4. When d = 2, we have Mold3,2 ∼= P2
Z × P2

Z.

Theorem 5. When d = 3, we have an irreducible decomposition Mold3,3 = Moldreg3,3 ∪MoldS2
3,3 ∪MoldS3

3,3,

where the relative dimensions of Moldreg3,3 , MoldS2
3,3, and MoldS3

3,3 over Z are 6, 4, and 4, respectively.

Moreover, both MoldS5
3,3 := Moldreg3,3 ∩MoldS2

3,3 and MoldS4
3,3 := Moldreg3,3 ∩MoldS3

3,3 have relative dimension

2 over Z, and MoldS2
3,3 ∩MoldS3

3,3 = ∅.
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Two-sided tilting complexes and folded tree-to-star complexes

Yuta Kozakai

Let Γ be a Brauer tree with e edges and multiplicity m of the exceptional vertex, and A a Brauer
tree algebra associated to Γ and B a Brauer tree algebra associated to a Brauer star with e edges and
exceptional vertex with multiplicity m in the center (or equivalently is a symmetric Nakayama algebra
with e simple modules and nilpotency degree of the radical being m+ 1). In [2], Rickard showed that a
Brauer tree algebra is determined by the number of the edges and the multiplicity of the exceptional vertex
up to derived equivalence. This fact was shown by proving that A is derived equivalent to the algebra B
by constructing a one-sided tilting complex T over A with endomorphism ring B which is called Rickard
tree-to-star complex. Moreover, in [4], Rickard and Schaps constructed one-sided tilting complexes over
A with endomorphism ring B by applying operations called foldings to the Rickard tree-to-star complex
T . The complexes are called Rickard-Schaps tree-to-star complexes.

On the other hand, in [3] and [1] it is shown that for a one-sided tilting complex over an algebra
there exists a two-sided tilting complex which is isomorphic to the one-sided tilting complex when re-
stricted to the one-sided action. Hence there should exist two-sided tilting complexes of A-B-bimodules
corresponding to the Rickard tree-to-star complex and the Rickard-Schaps tree-to-star complexes. In
this talk, we construct the two-sided tilting complex of A-B-bimodules which is isomorphic to Rickard
tree-to-star complex T in the bounded derived category of A-modules by using concrete A-B-bimodules.
Moreover, we realize operations on the two-sided tilting complex corresponding to the foldings, hence we
give the construction of the two-sided tilting complexes which correspond to Rickard-Schaps tree-to-star
complexes.
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Singularity categories and silting objects

Takuma Aihara

Tilting theory is now an essential tool in the study of finite dimensional algebras, and it influences
many branches of mathematics. In the theory, silting objects play a central and important role. Then,
we would think how many such objects there exist. By silting mutation [1], once we find a silting object,
then one can get infinitely many silting ones. On the other hand, we know that the singularity category
of a non-semisimple selfinjective algebra, which is triangule equivalent to the stable module category [2],
has no silting object [1].

In this talk, we will discuss the existence of silting objects, and particularly consider about silting
objects of a singularity category. A main result is the following:

Theorem 1. Let Λ be a finite dimensional algebra over an algebraically closed field and denote by Dsg(Λ)
the singularity category of Λ. If the right selfinjective dimension inj.dim(ΛΛ) of Λ is finite, then Dsg(Λ)
and Dsg(Λ

op) admit no silting object. Here, Λop stands for the opposite algebra of Λ.
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Two-term silting complexes over radical square zero algebras

Toshitaka Aoki

Let k be an algebraically closed field. In the representation theory of finite dimensional k-algebras,
the notion of silting complexes is introduced as a generalization of tilting complexes. In particular, we
are interested in two-term silting complexes for a given finite dimensional k-algebra Λ. It is known that
they correspond to several important objects in representation theory such as support τ -tilting modules,
and the classification of them has been established for certain classes of algebras, preprojective algebras
of Dynkin type or Brauer graph algebras for example. We denote by 2-siltΛ (respectively, tiltΛ) the set
of isomorphism classes of basic two-term silting complexes for Λ (respectively, finitely generated basic
tilting Λ-modules). Note that they have the natural structure of partially ordered set.

In this talk, we give a classification of two-term silting complexes for algebras with radical square zero,
that is, any such algebra Λ satisfying J2

Λ = 0 where JΛ is the Jacobson radical of Λ. They provide one of the
most fundamental classes of algebras. Let Λ be a finite dimensional k-algebra with radical square zero, and
let Q = (Q0, Q1) be the ordinary quiver of Λ. For the representation theory of Λ, a path algebra kQs of Qs

is important, where Qs := (Qs
0, Q

s
1) is a separated quiver of Q defined by Qs

0 := {i+|i ∈ Q0}
⨿
{i−|i ∈ Q0}

and Qs
1 := {i+ → j−|i→ j in Q1}. Indeed, it was used to characterize the radical square zero algebras of

finite representation type, that is, having only finitely many indecomposable modules up to isomorphisms
(see, for example, [2]). Now, we consider a map ϵ : Q0 → {+,−} called a signature on Q and define a full
subquiver Qϵ of Q

s for ϵ whose vertices are given by a set {iϵ(i) ∈ Qs
0|i ∈ Q}. Then we have the following

theorem.

Theorem 1. Let Λ be a finite dimensional k-algebra with radical square zero, and let Q be the ordinary
quiver of Λ. Then there is a bijection between

2-siltΛ
1−1←→

⨿
ϵ : a signature

on Q

tiltkQop
ϵ

where Qop
ϵ is the opposite quiver of Qϵ. Moreover, if we fix a signature ϵ on Q, then the restriction of

this correspondence induces an isomorphism of partially ordered sets.

This result is a refinement of a work of Adachi [1], in which he gives a characterization of radical
square zero algebras having only finitely many (support) τ -tilting modules up to isomorphisms. As an
application, we calculate the number of isomorphism classes of basic two-term tilting complexes over
Brauer line algebras, which are a special class of Brauer tree algebras.

Theorem 2. Let Γn be a Brauer line algebra corresponding to the multiplicity-free Brauer line with n
vertices. Then the number of isomorphism classes of basic two-term tilting complexes for Γn is

(
2n
n

)
.
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Central elements of the Jennings basis and certain Morita invariants

Taro Sakurai

From Morita theoretic viewpoint, computing Morita invariants is important. We prove that the inter-
section of the center and the nth (right) socle ZSn(A) := Z(A)∩ Socn(A) of a finite-dimensional algebra
A is a Morita invariant; This is a generalization of important Morita invariants — the center Z(A) and
the Reynolds ideal ZS1(A). (See Table 1.)

As an example, we also studied ZSn(FG) for the group algebra FG of a finite p-group G over a field F
of positive characteristic p. Such an algebra has a basis along the socle filtration, known as the Jennings
basis. We prove certain elements of the Jennings basis are central and hence form a linearly independent
set of ZSn(FG). In fact, such elements form a basis of ZSn(FG) for every integer 1 ≤ n ≤ p if G is
powerful. As a corollary we have Socp(FG) ⊆ Z(FG) if G is powerful.

Table 1. What is known about ZSn(FG) = Z(FG) ∩ Socn(FG) for a finite group G.

dimension basis
(representation-theoretic) (group-theoretic)

Z(FG) k(G) conjugacy class sums
ZSn(FG) unknown unknown
ZS2(FG) ℓ(G) +

∑
dimExt1(S, S) unknown1

ZS1(FG) ℓ(G) p-regular section sums
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Simple modules in the Auslander-Reiten quivers for finite group algebras

Shigeo Koshitani

We will be looking at the positions of simple modules in the stable Auslander-Reiten quivers for group
algebras of finite groups over a field. This is joint work with Caroline Lassueur.
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Functor categories on derived categories of hereditary algebras

Yuta Kimura

For a given triangulated category T , it is nature to ask whether T is triangle equivalent to the
(bounded) derived category of an abelian category. Since there are many studies on the derived category
of an abelian category, describing a triangulated category as a derived category is very useful.

Let C be an additive category. A C-module is a contravariant functor from C to Ab, where Ab is
the category of abelian groups. This is an analog of modules over rings when we regard C as a ring
with several objects. A finitely presented C-module is also defined in the same way as defining a finitely
presented module over a ring. We denote by mod C the category of finitely presented C-modules. If C is
triangulated, then it is known that mod C is Frobenius and abelian, and its stable category mod C is also
triangulated.

In this talk, we focus on the triangulated category modDb(modH), where H is a finite dimensional
hereditary algebra. We construct a triangle equivalence between this category and the bounded derived
category of some abelian category. An important step is to establish a functor category analog of Happel’s
triangle equivalence [2, Chapter II, 4.9 Theorem] for repetitive algebras.

Let H be a finite dimensional hereditary algebra of finite representation type. Namely, there exists
a basic H-module M satisfying addM = modH. We call the algebra ΓH := EndmodH(M) the stable

Aunslander algebra of H. Iyama and Oppermann [3] showed that modDb(modH) is triangle equivalent
to the bounded derived category of ΓH .

We extend the triangle equivalence of Iyama and Oppermann to the case when H is a representation
infinite hereditary algebra. If H is representation finite, then mod(modH) ≃ modΓH holds. Therefore
the role of the stable Auslander algebra ΓH is played by the stable category of H. It is known that
mod(modA) is abelian for any finite dimensional algebra A. We have the following theorem.

Theorem 1. [3, 4] Let H be a finite dimensional hereditary algebra. Then we have a triangle equivalence

modDb(modH) ≃ Db(mod(modH)).

The category modH is a so-called dualizing variety, which was introduced and studied by Auslander
and Reiten [1]. To show Theorem 1, we need the following theorem. For a category C, we denote by RC
the repetitive category of C.

Theorem 2. [4] Let A be a dualizing variety. Then the following holds.

(a) RA is a dualizing variety.
(b) modRA is a Frobenius abelian category.
(c) If any modules in modA and modAop have finite projective dimension, then we have a triangle

equivalence modRA ≃ Db(modA).

The category of finitely generated projective modules projA over a finite dimensional algebra A is a
typical example of a dualizing variety. If A = projA and A is of finite global dimension, then Theorem 2
gives a Happel’s triangle equivalence for repetitive algebras.
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d-representation-finite self-injective algebras

Erik Darpö

In this talk, I shall present a systematic method to construct self-injective algebras which are d-rep-
resentation-finite in the sense of higher-dimensional Auslander–Reiten theory. Such algebras are given
as orbit algebras of the repetitive categories of algebras of finite global dimension satisfying a certain
finiteness condition for the Serre functor. The condition holds, in particular, for all fractionally Calabi-
Yau algebras of global dimension at most d. This generalizes Riedtmann’s classical construction of
representation-finite self-injective algebras.

Applications include n-fold trivial extensions and higher preprojective algebras, which can be shown
to be d-representation-finite in many cases.
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BRICKS OVER PREPROJECTIVE ALGEBRAS

Sota Asai

In representation theory of finite-dimensional algebras over a field K, preprojective algebras of Dynkin
type are an important class of algebras. For each Dynkin diagram ∆, the preprojective algebra Π of type
∆ is defined as a quotient of the path algebra of the double quiver Q of type ∆.

One of the characteristic properties of the preprojective algebras is that they have many connections
with the Coxeter groups W corresponding to type ∆. There is an ideal I(w) of Π associated to each
element w ∈ W , which is defined in [5] and [2] by using a reduced expression of w. Actually, Mizuno [6]
proved that the ideal I(w) is a support τ -tilting Π-module, and that the quotient Π/I(w) is a support
τ−1-tilting Π-module, and that this correspondence w 7→ Π/I(w) gives a bijection from W to the set
sτ -1-tiltΠ of basic support τ−1-tilting Π-modules, compatible with the poset structures.

Mizuno [6] also proved that every torsion-free class in modΠ is functorially finite. Thus, from my
previous paper [1], we get a bijection from the set sτ -1-tiltΠ to the set sbrickΠ of semibricks in modΠ
given by M 7→ socEndΠ(M) M . Here, the term “semibricks” means Π-modules which are direct sums of
some bricks, and bricks are Π-modules whose endomorphism rings are division K-algebras.

Therefore, there exists a bijection S : W → sbrickΠ. I am studying the explicit behaviors of this
bijection.

It follows from [4] and [3] that the bijection S : W → sbrickΠ is restricted to a bijection from the set
j-irrW of join-irreducible elements in W to the set brickΠ of bricks in modΠ. Thanks to the combina-
torial works on indecomposable τ−1-tilting Π−1-modules developed in [4], we can explicitly describe the
restricted bijection S : j-irrW → brickΠ.

In order to extend the explicit description of S : j-irrW → brickΠ to the original bijection S : W →
sbrickΠ, we consider the following problem:

let w ∈ W and S(w) be decomposed into bricks as a direct sum S(w) = S1 ⊕ · · · ⊕ Sm,
and take the unique join-irreducible element wi ∈ j-irrW such that S(wi) = Si for each
i, then what is the relationship between w and w1, . . . , wm?

The answer is the following. This is one of the main results in my talk.

Theorem 1. In above, w = w1 ∨ · · · ∨ wm holds, and it is the canonical join decomposition of w.

This means that w coincides with the join of w1, . . . , wm, and that w1, . . . , wm satisfy some kinds of
minimality, see [4] for the precise definition. I emphasize that, though canonical join decompositions
are defined in a purely combinatorial way, they give the indecomposable direct summands of semibricks,
which are in the representation-theoritic side. In other words, the bricks as the indecomposable direct
summands of a semibrick also have some combinatorial aspect.

In this talk, I would like to explain the bijection S : W → sbrickΠ from these viewpoints. I will also
give some examples of getting semibricks from elements of the Coxeter group W .

References

[1] S. Asai, Semibricks, arXiv:1610.05860.
[2] A. B. Buan, O. Iyama, I. Reiten, J. Scott, Cluster structures for 2-Calabi–Yau categories and unipotent groups, Compos.

Math. 145 (2009), 1035–1079.
[3] L. Demonet, O. Iyama, G. Jasso, τ -tilting finite algebras, bricks, and g-vectors, arXiv:1503.00285.
[4] O. Iyama, N. Reading, I. Reiten, H. Thomas, Lattice structure of Weyl groups via representation theory of preprojective

algebras, arXiv:1604.08401.
[5] O. Iyama, I. Reiten, Fomin–Zelevinsky mutation and tilting modules over Calabi–Yau algebras, Amer. J. Math. 130

(2008), 1089–1149.

[6] Y. Mizuno, Classifying τ -tilting modules over preprojective algebras of Dynkin type, Math. Z. 277 (2014) no. 3–4,
665–690.

Graduate School of Mathematics
Nagoya University
Nagoya, Aichi 464-8602 JAPAN

Email: m14001v@math.nagoya-u.ac.jp

–16–



Wide subcategories are semistable

Toshiya Yurikusa

In this talk, we provide a complement of Ingalls-Thomas-type bijections for finite dimensional algebras.
For the path algebra kQ of a finite connected acyclic quiver Q over a field k, Ingalls and Thomas [1]

gave bijections between the following objects:

(1) Isomorphism classes of basic support tilting modules in mod(kQ).
(2) Functorially finite torsion classes in mod(kQ).
(3) Functorially finite wide subcategories of mod(kQ).
(4) Functorially finite semistable subcategories of mod(kQ).

Note that they also proved that (1)-(4) above correspond bijectively with the clusters in the cluster
algebra of Q and the isomorphism classes of basic cluster tilting objects in the cluster category of kQ.

By τ -tilting theory, for an arbitrary finite dimensional algebra Λ, there are Ingalls-Thomas-type bijec-
tions between the following objects:

(1) Isomorphism classes of basic support τ -tilting modules in modΛ.
(2) Functorially finite torsion classes in modΛ.
(3) Left finite wide subcategories of modΛ.

Notice that the statement for semistable subcategories of modΛ is missing. The aim of this talk is to give
the following complement of Ingalls-Thomas-type bijections.

Theorem 1. [2] The following objects are the same.

(3) Left finite wide subcategories of modΛ.
(4) Left finite semistable subcategories of modΛ.

More generally, we show that wide subcategories of modΛ associated with two-term presilting com-
plexes of Λ are semistable.

Theorem 2. [2] For a two-term presilting complex U of Λ, the wide subcategory ⊥H−1(νU) ∩ H0(U)⊥

of modΛ is semistable.
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Tilting theory for Gorenstein rings in dimension one

Osamu Iyama

The stable category of Cohen-Macaulay modules is a basic object in Cohen-Macaulay representation
theory. It has a structure of a triangulated category when the ring is Gorenstein. It is known that the
stable category is often triangle equivalent to the derived category of a (non-commutative) ring. I will
discuss such triangle equivalences in dimension one. This talk is based on joint works with R. Buchweitz,
M. Herschend and K. Yamaura.
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A categorical approach to algebras and coalgebras

Robert Wisbauer

As mentioned in my first talk, categorical techniques turned out to be very effective in algebra and
representation theory. Hereby, it was a key observation that module theory of an algebra A over a field
K is the theory of the functor

A⊗K − : MK →MK ,

an endofunctor of the category of K-vektor spaces. The algebra A is defined by K-linear maps multiplica-
tion A⊗K A→ A and unit e : K → A, subject to associativity and unitality conditions. Left A-modules
are given by a K-vector space V with K-linear maps ϱ : A⊗K V → V , also subject to associativity and
unitality conditions. Together with A-linear maps, this yields the category AM of left A-modules, The
algebra (A,m) and (A⊗K V,m⊗ V ), are left A-modules and this leads to the free and forgetful functors

ϕA : MK → AM, V 7→ (A⊗ V,m⊗ V ), UA : AM→MK , (M,ρ) 7→M

and the bijection
HomA(A⊗K V,M)→ HomK(V,UA(M)),

that is, the functor UA is right adjoint to A⊗K −. This all is very well known and now it is no problem
to replace MK by an arbitrary category A and the functor A⊗K − by any endofunctor F : A→ A.

Then we need natural transformations, m : FF → F and e : 1→ F , which should satisfy the respective
associativity and unitality conditions. This gives F a monad structure. An F -module is an object V ∈ A
with a morphism ϱ : F (V ) → V and (F,m) and (F (V ),mV ) are first examples of this. Morphisms of
F -modules are morphisms from A respecting the module structures and they yield the category AF of
F -modules with free and forgetful functors

ϕF : A→ AF , V 7→ (F (V ),mV ), UF : AF → A, (M,ϱ) 7→M,

and the bijection

MorF (F (V ),M)→ MorA(V,UF (M)), F (V )
f→M 7→ V

eV→ F (V )
f→M,

showing that the functor UF is right adjoint to ϕF .
This shows at which elementary level structures from module theory can be trasnferred to arbitrary

categories and one is no longer restricted to tensor functors. If the functor F has a right adjoint G,
then the monad structure on F provides G with the structure of a comonad. Thus this approach leads
naturally to comonads (coalgebras, bocses) and comodules.

Düsseldorf
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Hisao Tominaga, one of founders of this Symposium

Shuichi Ikehata

The Symposium on Ring Theory and Representation Theory has been held annually in Japan and
the Proceedings have been published by the organizing committee. The first Symposium was organized
in 1968 by Hisao Tominaga, Hiroyuki Tachikawa, Manabu Harada and Shizuo Endo. In particular,
Tominaga made a great contribution to the development of this symposium. He was a professor at
Okayama University since 1966. His research covers a wide area of the theory of noncommutative rings
which contains Galois theory of rings, the structure theory of rings, and etc. He wrote many excellent
papers and raised many disciples. He also edited Mathematical Journal of Okayama University for a
long time. His contributions to ring theory have been acclaimed by many mathematicians. He died in
Okayama, February 23, 1994. In this talk I would like to talk about his mathematics and his personality.

Okayama University
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Infinite sequences of Frobenius extensions

Mitsuo Hoshino, Noritsugu Kameyama and Hirotaka Koga

We use the notation A/R to denote that a ring A contains a ring R as a subring. Recall that a ring
extension A/R is said to be a Frobenius extension of first kind if A is finitely generated projective as a
right R-module and if A ∼= HomR(A,R) as (R,A)-bimodules. In this talk, to each Frobenius extension
of first kind A/R we associate a sequence of ring extensions

A0 = R ⊂ A1 = A ⊂ · · · ⊂ An ⊂ · · ·
such that each Ai+1/Ai is a Frobenius exteinsion of first kind.
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The defining relations and the Calabi-Yau property of
3-dimensional quadratic AS-regular algebras

Ayako Itaba, Ryo Onozuka, James Eccles

Let k be an algebraically closed field of characteristic 0, A a graded k-algebra finitely generated in
degree 1 and V a k-vector space. An AS-regular algebra introduced by Artin-Schelter [1] is one of the
main interests in noncommutative algebraic geometry. Using a geometric pair (E, σ), 3-dimensional
quadratic AS-regular algebras are classified by Artin-Tate-Van den Bergh [2], where E is the projective
space P2 or a cubic curve of P2 as follows and σ is an automorphism of E.

(elliptic curve)(cuspidal curve) (nodal curve)
(double line)

(triple line)

These algebras are geometric (see [3]).
In this talk, we consider 3-dimensional quadratic AS-regular algebras. By using the normalization of a

variety, we determine the defining relations of Type CC and Type NC 3-dimensional quadratic AS-regular
algebras (these algebras correspond to cuspidal and nodal cubic curve in the projective space). Also, we
consider the following conjecture: for a 3-dimensional quadratic AS-regular algebra A, there exists a
Calabi-Yau AS-regular algebra C such that A and C are graded Morita equivalent. Using the twist of a
superpotential in the sense of Mori-Smith [4] and the defining relations determined above, we will show
that this conjecture holds in most cases.
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Strongly quasi-hereditary algebras and rejective subcategories

Mayu Tsukamoto

Quasi-hereditary algebras were introduced by Scott [6] to study highest weight categories in the repre-
sentation theory of semisimple complex Lie algebras and algebraic groups. Ringel [5] introduced a special
class of quasi-hereditary algebras called right-strongly quasi-hereditary algebras, motivated by Iyama’s
finiteness theorem of representation dimensions of artin algebras [3]. One of the advantages of right-
strongly quasi-hereditary algebras is that they have better upper bound of global dimension than that of
general quasi-hereditary algebras [5, §4].

For an artin algebra A and its factor algebra B, we naturally regard modB as a full subcategory of
modA. In this case, each X ∈ modA has a right (resp. left) (modB)-approximation of X which is monic
(resp. epic) in modA. More generally, Iyama [3, 4] called subcategories of an additive category with
these properties a right (resp. left) rejective subcategories. They are a special class of coreflective (resp.
reflective) subcategories appearing in the classical theory of localizations of abelian categories. Using the
notion of right rejective (resp. left rejective, coreflective, reflective) subcategories, we introduce the notion
of total right rejective (resp. total left rejective, coreflective, reflective) chains of an additive category. In
this talk, we characterize right-strongly (resp. left-strongly) quasi-hereditary algebras in terms of these
chains.

Theorem 1 ([7, Theorem 3.33]). Let A be an artin algebra and

(1) A = Ae0A > Ae1A > · · · > AeiA > Aei+1A > · · · > Aen1
A > 0

a chain of idempotent ideals of A, where ei is an idempotent of A. Then the following conditions are
equivalent:

(i) (1) is a right-strongly (resp. left-strongly) heredity chain.
(ii) The following chain is a total right (resp. left) rejective chain of projA.

0 ⊂ adden−1A ⊂ adden−1A ⊂ · · · ⊂ addeiA ⊂ · · · ⊂ adde0A = projA.

(iii) (1) is a heredity chain of A and the following chain is a coreflective (resp. reflective) chain of
projA.

0 ⊂ adden−1A ⊂ adden−1A ⊂ · · · ⊂ addeiA ⊂ · · · ⊂ adde0A = projA.

As application, we sharpen a well-known result of Dlab-Ringel [1, Theorem 2] stating that any artin
algebra of global dimension at most two is quasi-hereditary. In fact, we prove that such an algebra is
always right-strongly (resp. left-strongly) quasi-hereditary by combining [4, Theorem 3.6] and Theorem
1. Moreover we show that the Auslander algebra of a representation-finite algebra A is strongly quasi-
hereditary if and only if A is a Nakayama algebra. It also can be proved from a recent result [2, Theorem
3], which is shown by a different method.
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Degenerations of Cohen-Macaulay modules via matrix representations

Naoya Hiramatsu

The notion of degenerations of modules appears in geometric methods of representation theory of finite
dimensional algebras. Yoshino [6] gives a scheme-theoretical definition of degenerations, so that it can
be considered for modules over a noetherian algebra which is not necessary finite dimensional. Many
authors [1, 3, 6, 7] have studied the degeneration problem of modules. The author and Yoshino [2] give
the complete description of degenerations over a ring of even-dimensional simple hypersurface singularity
of type (An).

Let (R,m) a commutative noetherian complete local k-algebra with a residue field k. It is known
that there exists a regular local k-subalgebra S of R such that R is a module-finite S-algebra. (Cohen’s
structure theorem for a complete local rings). Let M be a Cohen-Macaulay R-module. Then M is
free as S-module, so that we can obtain a k-algebra homomorphism R → EndS(M). It is called a
matrix-representation of M over S.

Let R be a hypersurface ring which is of the form

k[[x0, x1, . . . , xd]]/(x
2
0 + x2

2 + · · ·x2
d).

It is known that R has countable representation type and all objects in CM(R) are classified (e.g. [4]).
The purpose of the talk is to give the necessary condition for the degenerations of Cohen-Macaulay

modules by considering it via matrix representations. As an application, we will give the description
of degenerations of indecomposable Cohen-Macaulay R-modules in the case where R is of dimension
1 and 2. Note that the matrices in the theorem below are matrix representations of indecomposable
Cohen-Macaulay R-modules.

Theorem 1. Let k be an algebraically closed field of characteristic zero.

(1) Let R = k[[x, y]]/(x2). Then

(
0 ya

0 0

)
degenerates to

(
0 yb

0 0

)
if and only if a ≤ b and a ≡ b

mod 2.

(2) Let R = k[[x, y, z]]/(x2 − yx). Then

(
0 za

0 y

)
(resp.

(
y za

0 0

)
) never degenerates to

(
0 zb

0 y

)
(resp.

(
y zb

0 0

)
) for all a < b.

This talk is based on a joint work with Yuji Yoshino.
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Symmetric Hochschild extensions and the normalized 2-cocycles

Tomohiro Itagaki

In this talk, we give a sufficient condition related 2-cocycles for Hochschild extension algebras to be
symmetric. Let K be an algebraically closed field. For a finite dimensional algebra A over a K, the
trivial extension algebra T (A) := A⋉HomK(A,K) of A by the standard duality module HomK(A,K) is
very important in the representation theory of self-injective algebras. This is also one of the Hochschild
extension algebras of A. In particular, the equivalent class of the trivial extension corresponds to the
cohomology class of zero map in the second Hochschild cohomology groups H2(A,HomK(A,K)). It is well
known that the trivial extension algebra T (A) of K-algebra A is symmetric and the symmetric regular
K-linear map µ : T (A)→ K is given by µ(a, f) = f(1), where a ∈ A and f ∈ HomK(A,K). However, it
is known that Hochschild extension algebras are self-injective [2] and they are not necessarily symmetric
in general [1].

In [1], Ohnuki, Takeda and Yamagata gave a sufficient condition related to 2-cocycles for Hochschild
extension algebras to be symmetric by giving a symmetric regular linear map. Moreover, they also shew
that the condition is not a necessary condition for Hochschild extension algebras to be symmetric by
giving an example of an algebra and a 2-cocycle.

In this talk, we give another sufficient condition related 2-cocycles for Hochschild extension algebras
to be symmetric. The 2-cocycle in the above example satisfies our sufficient condition. Our idea is that
we change 1 ∈ A which appeared at the image of µ into the same or another element in the center Z(A)
of A depending on 2-cocycles.

Consequently, we can show that for any 2-cocycle α satisfied the sufficient condition in [1] there exists
2-cocycle β such that [β] = [α] ∈ H2(A,HomK(A,K)) and β satisfies the sufficient condition in our
result. In order to prove that, we define E-normalized 2-cocycles, where E is a complete set of primitive
orthogonal idempotents, and we also show that for any 2-cocycle α there exists a 2-cocycle α such that
the cohomology classes of α and α coincide.
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On S-Noetherian rings

Jung Wook Lim

In commutative algebra, Noetherian rings are very important tools. Due to their importance, there
have been several attempts to generalize the concept of Noetherian rings in order to extend the well-
known results for Noetherian rings. One of them is the notion of S-Noetherian rings. Let R denote
a commutative ring with identity, S a (not necessarily saturated) multiplicative subset of R, and M
a unitary R-module. Anderson and Dumitrescu defined R an S-Noetherian ring if each ideal of R is
S-finite, i.e., for each ideal I of R, there exist an s ∈ S and a finitely generated ideal J of R such that
sI ⊆ J ⊆ I. They defined M to be S-finite if there exist an s ∈ S and a finitely generated R-submodule
F of M such that sM ⊆ F . Also, M is called S-Noetherian if each submodule of M is S-finite.

In this talk, we summarize some results on S-Noetherian rings.
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RELATIVE NON-COMMUTING GRAPH OF A FINITE RING

Jutirekha Dutta and Dhiren K. Basnet∗

Let S be a subring of a finite ring R and CR(S) = {r ∈ R : rs = sr ∀ s ∈ S}. The relative non-
commuting graph of the subring S in R, denoted by ΓS,R, is a simple undirected graph whose vertex set
is R\CR(S) and two distinct vertices a, b are adjacent if and only if a or b ∈ S and ab ̸= ba. In this paper,
we discuss some properties of ΓS,R, determine diameter, girth, some dominating sets and chromatic index
for ΓS,R. Also, we derive some connections between ΓS,R and the relative commuting probability of S in
R. Finally, we show that the relative non-commuting graphs of two relative Z-isoclinic pairs of rings are
isomorphic under some conditions. Some of the significant results are as given below.

Theorem 1. Let S be a non-commutative subring of a ring R. Then ΓS,R is not a star graph or a
bipartite graph or an n-regular graph for any square free odd positive integer n.

Theorem 2. Let R be a ring with unity and S a subring of R. Then ΓS,R is not complete.

Theorem 3. Let S be a non-commutative subring of a ring R. If Z(S) = {0} then diam(ΓS,R) = 2 and
girth(ΓS,R) = 3.

Theorem 4. Let S be a subring of a ring R and A ⊆ V (ΓS,R). Then A is a dominating set for ΓS,R if
and only if CR(A) ⊆ A ∪ CR(S).

Theorem 5. Let R be a ring. Then the non-commuting graph ΓR,R is of class 2.

Theorem 6. Let S be a subring of a ring R. Then the relation between ΓS,R and the relative commuting
probability Pr(S,R)) is

|E(ΓS,R)| = |S||R|(1− Pr(S,R))− |S|2
2 (1− Pr(S)).

Theorem 7. Let S1 and S2 be two subrings of the finite rings R1 and R2 respectively. Let the pairs
(S1, R1) and (S2, R2) are relative Z-isoclinic. Then ΓS1,R1

∼= ΓS2,R2
if |Z(R1) ∩ S1| = |Z(R2) ∩ S2| and

|Z(R1)| = |Z(R2)|.
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On Nakayama Conjecture and related conjectures - Review

Masahisa Sato

Nakayama Conjecture is the old and world wide famous conjecture proposed by Japanese mathemati-
cian ”Tadashi Nakayama” in 1958 who was the professor in Nagoya University. This conjecture was his
challenge to homological algebra, in fact, he suspected the power of homological algebra which had been
created in this era.
In fact, Professor Tachikawa taught us in his last lecture in 1994 that Professor Nakayama had proposed;

”If homological algebra is enough powerful to mathematics,
then solve this problem.”

Since then, many many ring theorists have attempted to solve Nakayama Conjecture.
I believe that the greatest contributor of studying of Nakayama Conjecture is Professor Tachikawa.
Let’s consider one aspect of Nakayama Conjecture, like the injective envelope E(R) of an artinian ring
R is projective. A ring with this property is called QF-3 ring.
Every one knows that theory of QF-3 rings are very important in Ring Theory.
The theory of QF-3 rings is developed and summarized in Tachikawa’s lecture note LNM 351; ”Quasi-
Frobenius Rings and Generalizayuions, QF-3 and QF-1 Rings, ” published in 1973.

In this talk, we shed light on Nakayama Conjecture again as turning point ”50th” of our symposium
hoping some Japanese young ring theorists are interested in and solve Nakayama Conjecture to progress
ring theory more actively.

Nakayama Conjecture is as following.

Nakayama Conjecture Let A be a finite dimensional algebra over a field K and 0 → A → E1 →
E2 → . . . a minimal injective resolution of A. If all Ei’s are projective, then A is self-injective.

Also we give relating problems so called ”Generalized Nakayama Conjecture”, ”Strong Nakayama
Conjecture”, ”Tachikawa Conjecture”, ”Finitistic dimension Conjecture” and so on. We discuss relations
between their conjectures.

This lecture is the same one as the Invited lecture I did in English for International Conference on
Algebra and its Applications held in Aligarh Muslim University, India . So this time, I will give my
lecture in Japanese in order that I can explain more correctly and young Japanese ring theorists can
understand much more.
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When is an abelian category a quantum projective space?

Izuru Mori and Kenta Ueyama

Fix a field k. For a locally finite graded right coherent algebra A over k, we define the quotient category
tailsA := grmodA/ fdimA where grmodA is the category of finitely presented graded right A-modules,
and fdimA is the full subcategory of grmodA consisting of modules finite dimensional over k. The k-linear
abelian category tailsA is called the noncommutative projective scheme associated to A by Artin-Zhang
[1] since if A is commutative and finitely generated in degree 1 over k, then tailsA is equivalent to the
category of coherent sheaves over the projective scheme associated to A by Serre [4]. Moreover, if A is
an AS-regular algebra introduced by Artin-Schelter [1], then tailsA is regarded as a quantum projective
space since an AS-regular algebra is a noncommutative generalization of a polynomial algebra, and a
projective space is exactly the projective scheme associated to a polynomial algebra. Since a projective
space is the most basic example of a projective scheme in commutative algebraic geometry, a quantum
projective space is the most basic example of a noncommutative projective scheme in noncommutative
algebraic geometry.

In this talk, we will characterize a k-linear abelian category C such that C ∼= tailsA for some graded
right coherent AS-regular algebra A over R introduced in [3]. If time permits, we will prove that if C is
a smooth quadric surface in a quantum P3 in the sense of Smith-Van den Bergh [5], then there exists a
right noetherian AS-regular algebra A over kK2 of dimension 3 and of Gorenstein parameter 2 such that
C ∼= tailsA where kK2 is the path algebra of the 2-Kronecker quiver.

References

[1] M. Artin and W. Schelter, Graded algebras of global dimension 3, Adv. Math. 66 (1987), 171-216.

[2] M. Artin and J. J. Zhang, Noncommutative projective schemes, Adv. Math. 109 (1994), no. 2, 228–287.

[3] H. Minamoto and I. Mori, The structure of AS-Gorenstein algebras, Adv. Math. 226 (2011), no. 5, 4061–4095.
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Two constructions of Iwanaga-Gorenstein algebras

Aaron Chan

We consider two series {A(m)}m≥1, {A[m]}m≥1 of algebras constructed from a given algebra A via two

different methods. As far as we know, the algebra A(m) was first studied by Assem and Iwanaga [1],
whereas A[m] was first studied by Yamagata [2]. Both of these works show that when A is hereditary,
then the global dimension increases as m increases. In the case of A[m], the same holds for the series of
dominant dimensions of A[m].

In this talk, we show how one can calculate the self-injective dimension and dominant dimension
explicitly of A(m) for a hereditary algebra A. We use this to show that A being representation-finite is
equivalent to having one (or equivalently, infinitely many) of the A(m)’s being a higher Auslander algebra,
i.e. the global dimension and dominant dimension coincides. Moreover, it turns out that the same result
holds after replacing A(m) by A[m]. If time allows, we will also explain how this can be generalised to a
much wider class of Iwanaga-Gorenstein algebras.

This is a joint work with Osamu Iyama and René Marczinzik.
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Classifications of exact structures and Cohen-Macaulay-finite algebras

Haruhisa Enomoto

In this talk, I will discuss a classification of exact structures on a given additive category and its
application, based on [1]. Exact categories, in the sense of Quillen, have been playing an important role
in the representation theory of algebras. In general, an additive category has many exact structures.
Recently, Rump [3] showed that every additive category has the largest exact structures, but no general
description of exact structures was known. We give an explicit description of all exact structures on a
given additive category E by using particular modules over E (equivalently, modules over the Auslander
algebra of E).

Let k be a field. For simplicity, all algebras are assumed to be finite dimensional over k. To this end,
the following condition for simple modules plays an indispensable role.

Definition 1. Let Γ be an algebra and S a simple Γ-module. We say that S satisfies the 2-regular
condition if the following conditions are satisfied.

(1) The projective dimension of S is equal to 2.
(2) ExtiΓ(S,Γ) = 0 for i = 0, 1.
(3) Ext2Γ(S,Γ) is simple Γop-module.

Surprisingly, the following shows that categorical notion (exact structures) is deeply related to homo-
logical condition (2-regular conditions). Also this can be seen as a classification of exact categories with
finitely many indecomposables.

Theorem 2. Let E be an idempotent complete Hom-finite additive k-category with finitely many inde-
composables, and let Γ be its Auslander algebra. Then there exists a bijection between the following two
classes.

(1) Exact structures on E.
(2) Sets of simple Γ-modules satisfying the 2-regular condition.
(3) Sets of dotted arrows in the translation quiver Q(Γ) associated with Γ.

As an application, we give the Auslander-type correspondence for Cohen-Macaulay-finite Iwanaga-
Gorenstein algebras. We say that an algebra Λ is Iwanaga-Gorenstein if the left and right injective
dimension of Γ itself is finite. For such an algebra Λ, a finitely generated Γ-module X is called Cohen-
Macaulay if ExtiΛ(X,Λ) = 0 for all i > 0. We say that an Iwanaga-Gorenstein algebra is Cohen-Macaulay-
finite (CM-finite) if there exist finitely many Cohen-Macaulay modules up to isomorphism. By using the
previous theorem and the results in [2], we proved the following.

Theorem 3. There exists a bijection between the following two classes.

(1) Morita-equivalence classes of CM-finite Iwanaga-Gorenstein algebras.
(2) Equivalence classes of pairs (Γ,X), where Γ is an algebra with finite global dimension and X is a

union of stable τ -orbits in the translation quiver Q(Γ).

Moreover, we give an explicit method to construct a CM-finite algebra from the pair (Γ,X). This
gives a systematic method to construct CM-finite Iwanaga-Gorenstein algebras, and all such algebras are
obtained in this way. Thus our result reduces the classification problem of CM-finite Iwanaga-Gorenstein
algebras to that of algebras with finite global dimension.
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Sigma-pure-injective modules for string algebras

William Crawley-Boevey

This is joint work with Raphael Bennett-Tennenhaus. I will discuss the classification of modules for
string algebras, and especially the classification of Σ-pure-injective modules. It turns out that they are
direct sums of string and band modules.
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The Feit-Thompson conjecture is true

Kaoru Motose

We set f := qp−1
q−1 and t := pq−1

p−1 for primes 2 < p < q. Feit and Thompson conjectured f never divides t.

It is trivial for p = 2. The utility and the cause of this conjecture are stated in [1], [2] and [3, B25].
If d is a common divisor of f and t then d ≡ 1 mod 2pq (see for example [5]). Using this fact and a

computer, Stephans found the unique example : for p = 17 and q = 3313, the prime r = 2pq+1 = 112643
is the greatest common divisor of f and t (see [6]). This example was the conductor to the proof of our
theorem. In this talk, we shall give a proof of the next theorem.

Theorem. If 1 < d is a common divisor of f and t, then d is prime and d ≤ q2 − q + 1.
Hence f never divides t.
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The number of partial matrix rings

Gangyong Lee∗, Mauricio Medina-Bárcenas, and Khanh Tung Nguyen
(Chungnam National University∗, Chungnam National University, Vietnam National University)

Recently, Lee, Roman, and Zhang defined a partial matrix ring. We call an n × n partial matrix
ring over a ring A, denoted by PMn(A), a subring of a full n × n matrix ring over A, with elements
matrices whose entries are either elements of A or 0, such that nonzero entries are independent of each
other. I.e., PMn(A) =

∑
(i,j)∈U eijA where eij are matrix units and U is a subset of the index set I × I,

I = {1, 2, . . . , n}. Note that in a partial matrix ring R = PMn(A),
∑n

i=1 eiiA ⊆ R (because R has the
unity) and not every choice of an index-pair set U will generate a structure closed under multiplication
of matrices.

Even if we do not know whether PMn(A) =
∑

(i,j)∈U eijA is a ring or not (it depends on a set U as

above), in this talk, we will provide how to make partial matrix rings as subrings of n × n full matrix
rings and the number of n × n partial matrix rings for some n ∈ N. Using the concept of pre ordered
sets and partial ordered sets, we will achieve our result. This talk is based on a joint work with Mauricio
Medina-Bárcenas and Khanh Tung Nguyen.
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The ordinary quivers of Hochschild extension algebras
for self-injective Nakayama algebras

Hideyuki Koie, Tomohiro Itagaki and Katsunori Sanada

This talk is based on [3]. Let K be an algebraically closed field, A a finite dimensional algebra over
K and D the standard duality functor HomK(−, K). By a Hochschild extension over A by D(A), we

mean an exact sequence 0 −→ D(A)
κ−→ T

ρ−→ A −→ 0 such that T is a K-algebra, ρ is an algebra
epimorphism and κ is a T -bimodule monomorphism. The algebra T is called a Hochschild extension
algebra. It is well known that T is a self-injective algebra (see [5]). Hochschild [2] proved that the set
of equivalence classes of Hochschild extensions over A by D(A) is in one-to-one correspondence with
the second Hochschild cohomology group H2(A, D(A)). We denote by Tα(A) the Hochschild extension
algebra corresponding to a 2-cocycle α. Then, T0(A) is just the trivial extension algebra A ⋉D(A). In
[1], Fernandez and Platzeck gave the ordinary quiver for the trivial extension algebra of A by D(A).
Moreover, they described the relations for the trivial extension algebra under the assumption that any
oriented cycle in the ordinary quiver of A is zero in A. It seems that there is little information about the
ordinary quivers for general Hochschild extension algebras.

We are interested in the ordinary quivers for Hochschild extension algebras of a self-injective Nakayama
algebra. Let ∆ be the following cyclic quiver with s (≥ 1) vertices and s arrows. Suppose n ≥ 2
and A = K∆/Rn

∆, where Rn
∆ is the two-sided ideal of K∆ generated by the paths of length n. We

determine the ordinary quivers for Hochschild extension algebras of A by constructing the isomorphism Θ :⊕
q D(HH2(A))

∼−→ H2(A, D(A)) and referring to the Sköldberg’s results in [4], that is, the Hochschild

homology groupHHp(A) is N-graded by the length of cycles in the quiver, and the degree q partHHp, q(A)
is explicitly computed.

Theorem 1. Suppose that n ≥ 2, A = K∆/Rn
∆ and n ≤ q ≤ 2n − 1. Let α : A × A → D(A) be a

2-cocycle such that the cohomology class [α] of α belongs to Θ(D(HH2, q(A))) and [α] ̸= 0, and let Tα(A)
be the Hochschild extension algebra of A defined by α. Then the ordinary quiver ∆Tα(A) is given by

∆Tα(A) =

{
∆T0(A) if n ≤ q ≤ 2n− 2,

∆ if q = 2n− 1.

Corollary 2. Suppose that n ≥ 2 and A = K∆/Rn
∆. Let α : A × A → D(A) be a 2-cocycle and

[α] =
∑2n−1

q=n [βq], where βq : A × A → D(A) is a 2-cocycle such that the cohomology class [βq] of βq

belongs to Θ(D(HH2, q(A))). Then the following equation holds:

∆Tα(A) =

{
∆T0(A) if [β2n−1] = 0,

∆ if [β2n−1] ̸= 0.

References

[1] Fernández, E., Platzeck, M. (2002). Presentations of trivial extensions of finite dimensional algebras and a theorem of

Sheila Brenner. J. Algebra 249:326–344.

[2] Hochschild, G. (1945). On the cohomology groups of an associative algebra. Ann. Math. (2) 46:58–67.
[3] Koie, H., Itagaki, T., Sanada, K. The ordinary quivers of Hochschild extension algebras for self-injective Nakayama

algebras. submitted, arXiv:1707.01618
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Complex rings, Quaternion rings and Octonion rings

Isao Kikumasa, Kazutoshi Koike and Kiyoichi Oshiro

In 1840s, Hamilton discovered quaternions and Kelly, Graves independently discovered octonions.
These numbers are defined over real numbers and contain complex numbers. Through Frobenius, Wed-
derburn, Noether, many mathematician contineously studied these numbers. We may say that the roots
of the ring theory begin with these numbers.

In order to define these numbers for any ring R, we consider free R-modules:
C(R) = e0R⊕ e1R,
H(R) = e0R⊕ e1R⊕ e2R⊕ e3R,
O(R) = e0R⊕ e1R⊕ · · · ⊕ e7R

We define rei = eir for any r ∈ R and any ei, and multiplications in {ei} are defined by using the
so-called Kelly-Graves multiplication table. Then C(R), H(R) become rings and O(R) becomes a non-
associative ring. We call that C(R) is a complex ring, H(R)] is a quaternion ring and O(R) is an octonion
ring. For C(R), H(R), we put e0 = 1, e1 = i, e2 = j, e3 = k. Then multiplications for {i, j, k} are usual
forms as follows:

i2 = j2 = k2 = −1,
ij = k, jk = i, ki = j, ji = −k, kj = −i, ik = −j

For the field R of real numbers and a commutative field F , H(R), H(F ) are studied as number theory.

Recently, Lee-Oshiro showed the following result (Fronties Mathematics):

(A) If R is a Frobenius algebra, then C(R), H(R), O(R) are Frobenius algebras.

(B) If R is a quasi-Frobenius ring, then C(R)、H(R) are quasi-Frobenius rings.

It follows from (B) that, for a division ring D, C(D), H(D) are quasi-Frobenius rings. In this talk, we
report on the structure of these quasi-Frobenius rings. In particular, we show that if the characteristic
of D is not 2, then these quasi-Frobenius rings are division rings or simple rings. We comment the
conherence of this result with classical theory on H(F ) over a field F .
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Source algebra version of Donovan’s conjecture for finite group algebras

Shigeo Koshitani

In the modular representation theory of finite groups we have Donovan’s conjecture, which says that
for a given finite p-group D (where p is a prime number), there should be only FINITE number of Morita
equivalence classes of block algebras B of certain finite group algebras such that D is a defect group of B.
There is a stronger notion called a “Puig equivalence” than a Morita equivalence, and we have a similar
conjecture. We will be discussing the finiteness of Puig equivalence classes of block algebras for finite
group algebras. This is joint work with Caroline Lassueur as well.

Center for Frontier Science,
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On finitely graded IG-algebras and the stable categories of their (graded) CM-modules

Hiroyuki Minamoto and Kota Yamaura

First we discuss homological dimensions of trivial extension algebras A = Λ⊕C. The global dimension
had been studied by Fossum-Griffith-Reiten [3], Reiten [8], Palmer-Roos [7]. Finally, Löfwall [6] gave a
formula for the global dimension of A in terms of Λ and C by using “multiple Tor”. We give formulas of
injective and projective dimensions by using the iterated derived tensor product Ca := C⊗L

ΛC⊗L
Λ · · ·⊗L

ΛC.
We always equip A with the grading deg Λ = 0, degC = 1.

Theorem 1. Let M be a graded (right) A-module such that Mi = 0 for i ̸= 0, 1. Then,

idAM = gr.idAM = sup{idΛM1, idΛ(Θ
a
M ) + a+ 1 | a ≥ 0}

where Θa
M denotes the cone of the morphism RHomΛ(C

a,M0) → RHomΛ(C
a+1,M1) induced from the

A-module structure on M .

Next we discuss a finitely graded Iwanaga-Gorenstein(IG) algebra A. Representation theory of IG-
algebra was initiated by Auslander-Reiten [1], Happel [4] and Buchweitz [2], has been studied by many
researchers and is recently getting interest from other areas. We remark that every finitely graded
algebra is graded Morita equivalent to a trivial extension algebra via quasi-Veronese algebra construction
introduced by Mori [5]. So we concentrate on this case. Theorem 1 gives a condition that A = Λ ⊕ C
to be IG, in terms of Λ and C. We study the condition in the case where Λ is IG. But for simplicity, in
what follows, we assume that gldimΛ <∞.

Theorem 2. Assume that ΛC and CΛ are finitely generated module of pd < ∞. Then (1) A is IG if
and only if Db(modΛ) has an admissible subcategory T such that the functor F = − ⊗L

Λ C acts on it as
an equivalence and that F nilpotently acts on T⊥.

(2) If (1) is the case, then the restriction ϖ|T of canonical functor ϖ : Db(modΛ) → CMZA is an
equivalence.

We remark that there is a characterization involving duality by C. The characterization (1) enables
us to give a classification of C such that Λ ⊕ C is IG in the case where Λ is a path algebra of A2 or
A3-quivers. It follows from (2) that if A is finite dimensional, then the Grothendick group K0(CM

ZA) is
finite free module. Other applications will be given in the talk or the poster.

References

[1] Auslander, Maurice ; Reiten, Idun, Cohen-Macaulay and Gorenstein Artin algebras. Representation theory of finite
groups and finite-dimensional algebras (Bielefeld, 1991), 221-245. Progr. Math., 95, Birkhauser, Basel, 1991.

[2] Buchweitz, Ragnar-Olaf, Maximal Cohen-Macaulay Modules and Tate-Cohomology Over Gorenstein Rings, unpublished

manuscript available at https://tspace.library.utoronto.ca/handle/1807/16682
[3] Fossum, Robert M.; Griffith, Phillip A.; Reiten, Idun Trivial extensions of abelian categories. Homological algebra

of trivial extensions of abelian categories with applications to ring theory. Lecture Notes in Mathematics, Vol. 456.

Springer-Verlag, Berlin-New York, 1975. xi+122 pp.
[4] Happel, Dieter, On Gorenstein algebras. Representation theory of finite groups and finite-dimensional algebras (Bielefeld,

1991), 389-404, Progr. Math., 95, Birkhauser, Basel, 1991.
[5] Mori, Izuru, B-construction and C-construction. Comm. Algebra 41 (2013), no. 6, 2071-2091.

[6] Lofwall, Clas, The global homological dimensions of trivial extensions of rings. J. Algebra 39 (1976), no. 1, 287-307.

[7] Palmer, Ingegerd; Roos, Jan-Erik, Explicit formulae for the global homological dimensions of trivial extensions of rings.
J. Algebra 27 (1973), 380-413.

[8] I. Reiten, Trivial extensions and Gorenstein rings, Thesis, University of Illinois, Urbana.

Hiroyuki Minamoto
Department of Mathematics and Information Sciences Osaka Prefecture University
Sakai Nakamozu, Osaka 599-8531 JAPAN

Email: minamoto@mi.s.osakafu-u.ac.jp

Kota Yamaura
Department of Research Interdisciplinary Graduate School of Medicine and
Engineering University of Yamanashi, Kofu Takeda, Yamanashi 400-8510 JAPAN

Email: kyamaura@yamanashi.ac.jp

–38–



LATTICE OF TORSION CLASSES

Laurent DEMONET

This is a report on a joint work with Osamu Iyama, Nathan Reading, Idun Reiten and Hugh Thomas.
Let A be a finite dimensional algebra on a field k. A torsion class T in the category modA of finite-

dimensional A-modules is a full subcategory that is closed under extensions and quotients. Suppose that
modA contains only finitely many torsion classes. In this case, the set of torsion classes ordered by
inclusion is a finite lattice torsA. We study the lattice quotients of torsA from an algebraic point of
view. In particular, we give an algebraic categorification of the forcing relation on arrows of the Hasse
quiver of torsA. We deduce some important combinatorial results about torsA, in particular that it is
congruence uniform. Suppose now that B is a quotient of A by an ideal. It is elementary that torsB
is a lattice quotient of torsA via T 7→ T ∩modB. Therefore, we are interested in characterizing lattice
quotients L of torsA that are of the form torsB. We give several necessary conditions on L which become
sufficient when A is sufficiently easy. Il is the case in particular for preprojective algebras of type An

and hereditary algebras of finite representation type. Finally, using preprojective algebras, we get new
algebraic proofs of results on Cambrian lattices.
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How to capture t-structures by silting theory

Takahide Adachi and Mizuno Yuya
(This is a joint work with Dong Yang.)

The notion of t-structures, introduced by Beilinson-Bernstein-Deligne [2], has been playing an increas-
ing important role, due to relationships to silting theory [6, 7], cluster tilting theory [1, 5], the theory of
Bridgeland’s stability conditions [3], and so on.

In this talk, we study bounded t-structures from the viewpoint of silting theory and cluster tilting
theory. We introduce the notion of ST-pairs, which gives us a framework of our study. The following
examples are motivating examples of an ST-pair.

Example 1. (1) Let Λ be a finite-dimensional algebra. Let C := Kb(projΛ) the bounded homotopy
category of finitely generated projective Λ-modules, and D := Db(modΛ) the bounded derived
category of finitely generated Λ-modules. Then (C,D) is an ST-pair.

(2) Let Γ be a dg algebra satisfying the following conditions:
• Hp(Γ) = 0 for each integer p > 0.
• H0(Γ) is finite dimensional.
• Dfd(Γ) ⊆ perΓ.

Here C := perΓ is the perfect derived category of Γ and D := Dfd(Γ) the derived category of Γ
with finite dimensional total cohomology. Then (C,D) is an ST-pair.

In both cases in Example 1, there is an injective map from the set of isoclasses of basic silting objects
of C to the set of bounded t-structures on D (see [7] and [4]).

We generalize this result to the case of an ST-pair. Moreover, we give a characterization of the
condition that the injective map is bijective. This characterization allows us to capture all bounded
t-structures by silting theory. As an application, using the characterization and cluster tilting theory,
we give a classification of silting-discrete perfect derived categories of derived preprojective algebras and
Ginzburg dg algebras.
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Representations of equipped graphs

William Crawley-Boevey

An equipped graph can be thought of as a generalization of a quiver, in which one is allowed not just
arrows • −→ •, but also edges with two heads • ←→ • or two tails • −−− •.

Gelfand and Ponomarev [2] introduced representations of equipped graphs by vector spaces and linear
relations. Generalizing Gabriel’s Theorem, they showed that the equipped graphs of finite representation
type are exactly those whose underlying graph is a Dynkin diagram.

For example, by taking all edges to be two headed or two tailed, one can study the representation
theory of a graph without needing to choose an orientation.

I will discuss an analogue of Kac’s Theorem for equipped graphs, which I obtained in [1], and give
illustrations of the Auslander-Reiten theory for equipped graphs.

References

[1] W. Crawley-Boevey, Kac’s Theorem for equipped graphs and for maximal rank representations, Proc. Edinburgh Math.

Soc. 56 (2013), 443–447.
[2] I. M. Gelfand and V. A. Ponomarev, Gabriel’s theorem is also valid for representations of equipped graphs by relations,

Funct. Analysis Applic. 15 (1981), 132-133.

–41–


